Solved

Solve the Problem A=πrr2+h2A = \pi r \sqrt { r ^ { 2 } + h ^ { 2 } }

Question 138

Multiple Choice

Solve the problem.
-The lateral surface area A of a right circular cone is given by A=πrr2+h2A = \pi r \sqrt { r ^ { 2 } + h ^ { 2 } } , where r and h are the radius and height of the cone. Determine the exact value (in terms of ) of the lateral surface area of
A cone with radius 3 m and height 5 m. Then give a decimal approximation to the nearest square meter.  Solve the problem. -The lateral surface area A of a right circular cone is given by  A = \pi r \sqrt { r ^ { 2 } + h ^ { 2 } }  , where r and h are the radius and height of the cone. Determine the exact value (in terms of )  of the lateral surface area of A cone with radius 3 m and height 5 m. Then give a decimal approximation to the nearest square meter.    A)   6 \pi \sqrt { 2 } \mathrm {~m} ^ { 2 } \approx 27 \mathrm {~m} ^ { 2 }  B)   10 \pi \sqrt { 2 } \mathrm {~m} ^ { 2 } \approx 44 \mathrm {~m} ^ { 2 }  C)   5 \pi \sqrt { 34 } \mathrm {~m} ^ { 2 } \approx 92 \mathrm {~m} ^ { 2 }  D)   3 \pi \sqrt { 34 } \mathrm {~m} ^ { 2 } \approx 55 \mathrm {~m} ^ { 2 }


A) 6π2 m227 m26 \pi \sqrt { 2 } \mathrm {~m} ^ { 2 } \approx 27 \mathrm {~m} ^ { 2 }
B) 10π2 m244 m210 \pi \sqrt { 2 } \mathrm {~m} ^ { 2 } \approx 44 \mathrm {~m} ^ { 2 }
C) 5π34 m292 m25 \pi \sqrt { 34 } \mathrm {~m} ^ { 2 } \approx 92 \mathrm {~m} ^ { 2 }
D) 3π34 m255 m23 \pi \sqrt { 34 } \mathrm {~m} ^ { 2 } \approx 55 \mathrm {~m} ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents