Solved

Produce a Rule for the Function Whose Graph Is Shown m(x)={x2+3 for x<12 for x1m ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } + 3 & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.

Question 323

Multiple Choice

Produce a rule for the function whose graph is shown.
- Produce a rule for the function whose graph is shown. -   A)   m ( x )  = \left\{ \begin{array} { l l } x ^ { 2 } + 3 & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.   B)   m ( x )  = \left\{ \begin{array} { l l } x ^ { 2 } - 3 & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.   C)   m ( x )  = \left\{ \begin{array} { l l } ( x + 3 )  ^ { 2 } & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.   D)   m ( x )  = \left\{ \begin{array} { l l } x ^ { 2 } - 3 & \text { for } x > 1 \\ - 2 & \text { for } x \leq 1 \end{array} \right.


A) m(x) ={x2+3 for x<12 for x1m ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } + 3 & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.

B) m(x) ={x23 for x<12 for x1m ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } - 3 & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.

C) m(x) ={(x+3) 2 for x<12 for x1m ( x ) = \left\{ \begin{array} { l l } ( x + 3 ) ^ { 2 } & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.

D) m(x) ={x23 for x>12 for x1m ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } - 3 & \text { for } x > 1 \\ - 2 & \text { for } x \leq 1 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents