Solved

Suppose the Variable X Represents Students, Y Represents Courses, and T(x

Question 133

Short Answer

suppose the variable x represents students, y represents courses, and T(x, y) means "x is taking y."  Match the English statement with all its equivalent symbolic statements in this list: 1.xyT(x,y)2.yxT(x,y)3.xyT(x,y)4.¬xyT(x,y)5.xy¬T(x,y)6.yxT(x,y)7.yx¬T(x,y)8.¬xyT(x,y)9.¬yxT(x,y)10.¬xy¬T(x,y)11.¬x¬y¬T(x,y)12.xy¬T(x,y)\begin{array}{l}\text { Match the English statement with all its equivalent symbolic statements in this list: }\\\begin{aligned}1 . & \exists x \forall y T ( x , y ) & 2 . & \exists y \forall x T ( x , y ) & 3 . & \forall x \exists y T ( x , y ) \\4 . & \neg \exists x \exists y T ( x , y ) & 5 . & \exists x \forall y \neg T ( x , y ) & 6 . & \forall y \exists x T ( x , y ) \\7 . & \exists y \forall x \neg T ( x , y ) & 8 . & \neg \forall x \exists y T ( x , y ) & 9 . & \neg \exists y \forall x T ( x , y ) \\10 . & \neg \forall x \exists y \neg T ( x , y ) & 11 . & \neg \forall x \neg \forall y \neg T ( x , y ) & 12 . & \forall x \exists y \neg T ( x , y )\end{aligned}\end{array}
-No course is being taken by all students.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents