Solved

In the Case When the Errors Are Homoskedastic and Normally β^\hat { \boldsymbol { \beta } }

Question 13

Short Answer

In the case when the errors are homoskedastic and normally distributed, conditional on X, then a. β^\hat { \boldsymbol { \beta } } is distributed N(β,Σβ^X)N \left( \boldsymbol { \beta } , \Sigma _ { \hat { \beta } \mid X } \right) , where Σβ^X=σu2I(k+1)\Sigma _ { \hat { \beta } \mid X } = \sigma _ { u } ^ { 2 } \boldsymbol { I } _ { ( \mathrm { k } + 1 ) } .
b. β^\hat { \boldsymbol { \beta } } is distributed N(β,Σβ^)\mathrm { N } \left( \boldsymbol { \beta } , \Sigma _ { \hat { \beta } } \right) , where Σβ^=Σn(β˙β)/n=QX1ΣVQX1/n\Sigma _ { \hat { \beta } } = \Sigma _ { \sqrt { n } ( \dot { \beta } - \beta ) } / n = \boldsymbol { Q } _ { X } ^ { - 1 } \Sigma _ { V } \boldsymbol { Q } _ { X } ^ { - 1 } / n .
c. β^\hat { \beta } is distributed N(β,Σβ˙X)N \left( \boldsymbol { \beta } , \Sigma _ { \dot { \beta } \mid X } \right) , where Σβ˙X=σu2(XX)1\Sigma _ { \dot { \beta } \mid X } = \sigma _ { u } ^ { 2 } ( \boldsymbol { X } \boldsymbol { X } ) ^ { - 1 } .
d. U^=PXY\hat { U } = \boldsymbol { P } _ { \boldsymbol { X } } \boldsymbol { Y } where PX=X(XX)1X\boldsymbol { P } _ { \boldsymbol { X } } = \boldsymbol { X } \left( \boldsymbol { X } ^ { \prime } \boldsymbol { X } \right) ^ { - 1 } \boldsymbol { X } ^ { \prime } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents