Solved

The OLS Formula for the Slope Coefficients in the Multiple

Question 44

Essay

The OLS formula for the slope coefficients in the multiple regression model become increasingly more complicated, using the "sums" expressions, as you add more regressors. For example, in the regression with a single explanatory variable, the formula is
i=1n(XiXˉ)(YiXˉ)i=1n(XiXˉ)2\frac { \sum _ { i = 1 } ^ { n } \left( X _ { i } - \bar { X } \right) \left( Y _ { i } - \bar { X } \right) } { \sum _ { i = 1 } ^ { n } \left( X _ { i } - \bar { X } \right) ^ { 2 } }
whereas this formula for the slope of the first explanatory variable is
β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } }
(small letters refer to deviations from means as in zi=ZiZˉz _ { i } = Z _ { i } - \bar { Z } ) in the case of two explanatory variables.Give an intuitive explanations as to why this is
the case.

Correct Answer:

verifed

Verified

The additional terms take into account t...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents