Solved

Convert the Integral to Polar Coordinates 1112x2f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { 1 } ^ { \sqrt { 2 - x ^ { 2 } } } f ( x , y ) d y d x

Question 69

Multiple Choice

Convert the integral to polar coordinates. 1112x2f(x,y) dydx\int _ { - 1 } ^ { 1 } \int _ { 1 } ^ { \sqrt { 2 - x ^ { 2 } } } f ( x , y ) d y d x


A) π/43π/41/sinθ2f(rcosθ,rsinθ) drdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) d r d \theta
B) 03π/41/sinθ2f(rcosθ,rsinθ) rdrdθ\int _ { 0 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
C) π/43π/412f(rcosθ,rsinθ) rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
D) π/43π/41/sinθ2f(rcosθ,rsinθ) rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
E) π/43π/41/sinθ2f(rcosθ,rsinθ) rdθdr\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d \theta d r

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents