Solved

Let R Be the Region Bounded Between the Two Ellipses x232+y222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 1

Question 56

Multiple Choice

Let R be the region bounded between the two ellipses x232+y222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 4 Use this change of coordinates x=3rcost,y=2rsintx=3 r \cos t, y=2 r \sin t for r0,0t2πr \geq 0,0 \leq t \leq 2 \pi to evaluate the integral R(4x2+9y2) dA\int _ { R } \left( 4 x ^ { 2 } + 9 y ^ { 2 } \right) d A


A) 240 π\pi
B) 3240 π\pi
C) 162 π\pi
D) 1620 π\pi
E) 1620

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents