Solved

A Solid Disk Icm = MR2) Rolls Without Slipping Up

Question 38

Multiple Choice

   A solid disk I<sub>cm</sub> =  mR<sup>2</sup>)  rolls without slipping up a plane a distance s. The plane is inclined at an angle θ with the horizontal. The disk has mass m, radius R, and an initial translational speed v. The distance s the disk rolls is A)   v<sup>2</sup>/g sin θ ) . B)   v<sup>2</sup>/g sin θ ) . C)   Rv/g sin θ ) . D)   mgsin θ - cos θ ) Rv) <sup>2</sup>. E)  v<sup>2</sup>/g sin θ ) .
A solid disk Icm =    A solid disk I<sub>cm</sub> =  mR<sup>2</sup>)  rolls without slipping up a plane a distance s. The plane is inclined at an angle θ with the horizontal. The disk has mass m, radius R, and an initial translational speed v. The distance s the disk rolls is A)   v<sup>2</sup>/g sin θ ) . B)   v<sup>2</sup>/g sin θ ) . C)   Rv/g sin θ ) . D)   mgsin θ - cos θ ) Rv) <sup>2</sup>. E)  v<sup>2</sup>/g sin θ ) .mR2) rolls without slipping up a plane a distance s. The plane is inclined at an angle θ with the horizontal. The disk has mass m, radius R, and an initial translational speed v. The distance s the disk rolls is


A)    A solid disk I<sub>cm</sub> =  mR<sup>2</sup>)  rolls without slipping up a plane a distance s. The plane is inclined at an angle θ with the horizontal. The disk has mass m, radius R, and an initial translational speed v. The distance s the disk rolls is A)   v<sup>2</sup>/g sin θ ) . B)   v<sup>2</sup>/g sin θ ) . C)   Rv/g sin θ ) . D)   mgsin θ - cos θ ) Rv) <sup>2</sup>. E)  v<sup>2</sup>/g sin θ ) .v2/g sin θ ) .
B) 11ec81b1_0372_75b9_8138_b76fd7fac723_TB7291_11v2/g sin θ ) .
C) 11ec81b1_0372_75b9_8138_b76fd7fac723_TB7291_11Rv/g sin θ ) .
D) 11ec81b1_0372_75b9_8138_b76fd7fac723_TB7291_11mgsin θ - cos θ ) Rv) 2.
E) v2/g sin θ ) .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents