Solved

The Linear Programming Problem
Max
6x1 + 2x2 + 3x3 \le

Question 29

Essay

The linear programming problem
Max
6x1 + 2x2 + 3x3 + 4x4
s.t.
x1 + x2 + x3 + x4 \le 100
4x1 + x2 + x3 + x4 \le 160
3x1 + x2 + 2x3 + 3x4 \le 240
x1, x2, x 3, x4 \ge 0
has the final tableau x1x2x3x4 s1 s2 s3 Basis cB6234000x22011/203/201/230x1610001/31/3020x44001/211/61/31/250zj62342.33.671380cjzj00002.33.671\begin{array} { c c | c c c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm { x } _ { 4 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 } & \\\text { Basis } & \mathrm { c } _ { \mathrm { B } } & 6 & 2 & 3 & 4 & 0 & 0 & 0 & \\\hline \mathrm { x } _ { 2 } & 2 & 0 & 1 & 1 / 2 & 0 & 3 / 2 & 0 & - 1 / 2 & 30 \\\mathrm { x } _ { 1 } & 6 & 1 & 0 & 0 & 0 & - 1 / 3 & 1 / 3 & 0 & 20 \\\mathrm { x } _ { 4 } & 4 & 0 & 0 & 1 / 2 & 1 & - 1 / 6 & - 1 / 3 & 1 / 2 & 50 \\\hline & \mathrm { z } _ { \mathrm { j } } & 6 & 2 & 3 & 4 & 2.33 & .67 & 1 & 380 \\& \mathrm { c } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & 0 & 0 & 0 & 0 & - 2.33 & - .67 & - 1 &\end{array} Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem.
LINEAR PROGRAMMING PROBLEM
MAX
6X1+2X2+3X3+4X4
S.T.
1) 1X1 + 1X2 + 1X3 + 1X4 < 100
2) 4X1 + 1X2 + 1X3 + 1X4 < 160
3) 3X1 + 1X2 + 2X3 + 3X4 < 240
OPTIMAL SOLUTION Objective Function Value ==
 Variable  Value  Reduced Cost X1X2X3X4\begin{array}{ccc}\text { Variable } & \text { Value } & \text { Reduced Cost } \\X 1 & - &- \\X 2 & - &- \\X 3 & - &- \\X 4 & - &-\end{array}

 Constraint  Slack/Surplus  Dual Price 123\begin{array}{ccc}\text { Constraint } & \text { Slack/Surplus } & \text { Dual Price } \\1 & - & - \\2 & - & - \\3 & - & -\end{array}
 OBJECTIVE COEFFICIENT RANGES \text { OBJECTIVE COEFFICIENT RANGES }

 Variable  Lower Limit  Current Value  Upper Limit X1X2X3X4\begin{array}{cccc}\text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\mathrm{X} 1 & - & -&- \\\mathrm{X} 2 & - & -&- \\\mathrm{X} 3 & - & -&- \\\mathrm{X} 4 & - & -&-\end{array}
 RIGHT HAND SIDE RANGES \text { RIGHT HAND SIDE RANGES }

 Constraint  Lower Limit  Current Value  Upper Limit 123\begin{array}{cccc}\text { Constraint }& \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\1 & - & -&-\\2 & - & -&-\\3 & - & -&-\\\end{array}

Correct Answer:

verifed

Verified

LINEAR PROGRAMMING PROBLEM
MAX
6X1 + 2X2...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents