Solved

Let θ^1,,θ^m\hat { \theta } _ { 1 } , \ldots \ldots , \hat { \theta } _ { m }

Question 29

Multiple Choice

Let θ^1,,θ^m\hat { \theta } _ { 1 } , \ldots \ldots , \hat { \theta } _ { m } be the maximum likelihood estimators of the unknown parameters θ1,,θm\theta _ { 1 } , \ldots \ldots , \theta _ { m } , and let χ2\chi ^ { 2 } denote the test statistic value based on these estimators. If the data are classified into k categories, then the critical value cαc _ { \alpha } that specifies a level α\alpha upper-tailed test satisfies


A) χ^α12cαχ^α,k1m2\hat { \chi } _ { α - 1 } ^ { 2 } \leq c _ α \leq \hat { \chi } _ { α , k - 1 - m } ^ { 2 }
B) χα,k1m2cαλ^α,k12\chi _ { α , k - 1 - m } ^ { 2 } \leq c _ { α } \leq \hat { \lambda } _ { α , k - 1 } ^ { 2 }
C) cαXα,k12c _ { α } \geq { X } _ {α , k - 1 } ^ { 2 }
D) cαλ^α,k1m2c _ { α } \leq \hat { \lambda } _ { α , k - 1 - m } ^ { 2 }
E) χα,m12cαχα,k12\chi _ {α , m - 1 } ^ { 2 } \leq c _ { α} \leq \chi_ {α , k - 1 } ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents