Solved

Let θ^1,θ^2,,θ^n\hat { \theta } _ { 1 } , \hat { \theta } _ { 2 } , \cdots \cdots , \hat { \theta } _ { n }

Question 19

Short Answer

Let θ^1,θ^2,,θ^n\hat { \theta } _ { 1 } , \hat { \theta } _ { 2 } , \cdots \cdots , \hat { \theta } _ { n } be the maximum likelihood estimates (mle's) of the parameters θ1,θ2,,θn\theta _ { 1 } , \theta _ { 2 } , \cdots \cdots , \theta _ { n } . Then the mle of any function h( θ1,θ2,,θn\theta _ { 1 } , \theta _ { 2 } , \cdots \cdots , \theta _ { n } ) of these parameters is the function h(θ^1,θ^2,,θ^m)h \left( \hat { \theta } _ { 1 } , \hat { \theta } _ { 2 } , \cdots \cdots , \hat { \theta } _ { m } \right) of the mle's. This result is known as the __________ principle.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents