Solved

Let XBin(m,p1) and YBin(n,p2)X \square \operatorname { Bin } \left( m , p _ { 1 } \right) \text { and } Y \square \operatorname { Bin } \left( n , p _ { 2 } \right)

Question 42

Multiple Choice

Let XBin(m,p1)  and YBin(n,p2) X \square \operatorname { Bin } \left( m , p _ { 1 } \right) \text { and } Y \square \operatorname { Bin } \left( n , p _ { 2 } \right) with X and Y independent variables, and let p^1=X/m and p^2=Y/n\hat { p } _ { 1 } = X / m \text { and } \hat { p } _ { 2 } = Y/ n Which of the following statements are not correct?


A) E(p^1p^2) =p1p2, so p^1p^2E \left( \hat { p } _ { 1 } - \hat { p } _ { 2 } \right) = p _ { 1 } - p _ { 2 } \text {, so } \hat { p } _ { 1 } - \hat { p } _ { 2 }
Is an unbiased estimator of p1p2p _ { 1 } - p _ { 2 }
B) When both m and n are large, the estimator p^1p^2\hat { p } _ { 1 } - \hat { p } _ { \mathbf { 2 } }
Individually has approximately normal distributions.
C) When both m and n are large, the estimator p^1p^2\hat { p } _ { 1 } - \hat { p } _ { 2 }
Has approximately a normal distribution.
D) V(p^1p^2) =p1q1/mp2q2/n, where ql=1pl for i=1,2V \left( \hat { p } _ { 1 } - \hat { p } _ { 2 } \right) = p _ { 1 } q _ { 1 } / m \quad p _ { 2 } q _ { 2 } / n , \text { where } q _ { l } = 1 - p _ { l } \text { for } i = 1,2
E) All of the above statements are correct.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents