Solved

Use the Conversion Formula cosx=sin(π2x)\cos x = \sin \left( \frac { \pi } { 2 } - x \right)

Question 54

Multiple Choice

Use the conversion formula cosx=sin(π2x) \cos x = \sin \left( \frac { \pi } { 2 } - x \right) to replace the expression f(t) =5.2cos(6πt) +10f ( t ) = 5.2 \cos ( 6 \pi t ) + 10
By a sine function.


A) f(t) =5.2sin(π26πt) +10f ( t ) = 5.2 \sin \left( \frac { \pi } { 2 } - 6 \pi t \right) + 10
B) f(t) =5.2sin(π6πt2) +10f ( t ) = 5.2 \sin \left( \frac { \pi - 6 \pi t } { 2 } \right) + 10
C) f(t) =5.2sin(π26t) +10f ( t ) = 5.2 \sin \left( \frac { \pi } { 2 } - 6 t \right) + 10
D) f(t) =6sin(π25.2πt) +10f ( t ) = 6 \sin \left( \frac { \pi } { 2 } - 5.2 \pi t \right) + 10
E) f(t) =10sin(π26πt) +5.2f ( t ) = 10 \sin \left( \frac { \pi } { 2 } - 6 \pi t \right) + 5.2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents