Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Philosophy
Study Set
Introduction to Formal Logic with Philosophical Applications
Quiz 2: Propositional Logic: Syntax and Semantic
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 61
Multiple Choice
Note: the solutions to most of the multiple choice questions in these sections use what call the standard assignment of truth values to atomic propositions. The standard assignment of truth values assigns the values given here to the variables in the wffs in the exercises, when read left to right. So, the first variable in the formula read left to right gets the α assignment; the second variable in the formula read left to right (if any) gets the β assignment; the third variable in the formula read left to right (if any) gets the γ assignment; and the fourth variable in the formula read left to right (if any) gets the δ assignment. For exercises with only one propositional variable, the standard assignment is:
α
1
0
\begin{array} { |l| } \hline \alpha\\ \hline \text { 1}\\ \hline \text {0 }\\\hline\end{array}
α
1
0
For exercises with two propositional variables, the standard assignment is:
α
β
1
1
1
0
0
1
0
0
\begin{array} { | c | c | } \hline \alpha& \boldsymbol { \beta } \\\hline 1 & 1 \\\hline 1 & 0 \\\hline 0 & 1 \\\hline0& 0\\\hline\end{array}
α
1
1
0
0
β
1
0
1
0
For exercises with three propositional variables, the standard assignment is:
α
β
γ
1
1
1
1
1
0
1
0
1
1
0
0
e
0
1
1
0
1
0
0
0
1
0
0
0
\begin{array} { | c | c | c | } \hline \alpha & \beta & \gamma \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 0 \\\hline 1 & 0 & 1 \\\hline 1 & 0& 0e \\\hline 0 & 1 & 1 \\\hline 0 & 1 & 0 \\\hline 0 &0& 1 \\\hline 0 & 0& 0 \\\hline\end{array}
α
1
1
1
1
0
0
0
0
β
1
1
0
0
1
1
0
0
γ
1
0
1
0
e
1
0
1
0
For exercises with four propositional variables, the standard assignment is:
α
β
γ
δ
1
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
0
1
1
0
\begin{array} { | l | l | l | l | } \hline \alpha & \boldsymbol { \beta } &\gamma& \delta\ \\\hline 1 & 1 & 1 & 1 \\\hline 1 & 1 & 1 & 0 \\\hline 1 & 1 & 0 & 1 \\\hline 1 & 1 & 0 & 0 \\\hline 1 & 0 & 1 & 1 \\\hline 1 & 0 & 1 & 0\\\hline 1 & 0 & 0 & 1 \\\hline 1 & 0& 0 & 0 \\\hline 0 & 1 & 1 & 1 \\\hline 0 & 1 & 1 &0 \\\hline\end{array}
α
1
1
1
1
1
1
1
1
0
0
β
1
1
1
1
0
0
0
0
1
1
γ
1
1
0
0
1
1
0
0
1
1
δ
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
\begin{array} { | c | c | c | c | } \hline 0 & 1 & 0 & 1 \\\hline 0 & 1 & 0 & 0 \\\hline 0& 0 & 1 & 1 \\\hline 0 & 0 & 1 & 0 \\\hline 0 & 0 & 0 & 1 \\\hline 0 & 0 & 0 & 0 \\\hline\end{array}
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
0
1
0
1
\begin{array} { |l | l | l | l |} \hline 0 & 1 & 0 & 1 \\\hline\end{array}
0
1
0
1
For each of the given propositions, determine which of the given sequences properly describes the column under the main operator, given the standard assignment of truth values to atomic propositions. -[J ? (K
∨
\lor
∨
L) ] ? [?L ? (K
∨
\lor
∨
J) ]
Question 62
Multiple Choice
Note: the solutions to most of the multiple choice questions in these sections use what call the standard assignment of truth values to atomic propositions. The standard assignment of truth values assigns the values given here to the variables in the wffs in the exercises, when read left to right. So, the first variable in the formula read left to right gets the α assignment; the second variable in the formula read left to right (if any) gets the β assignment; the third variable in the formula read left to right (if any) gets the γ assignment; and the fourth variable in the formula read left to right (if any) gets the δ assignment. For exercises with only one propositional variable, the standard assignment is:
α
1
0
\begin{array} { |l| } \hline \alpha\\ \hline \text { 1}\\ \hline \text {0 }\\\hline\end{array}
α
1
0
For exercises with two propositional variables, the standard assignment is:
α
β
1
1
1
0
0
1
0
0
\begin{array} { | c | c | } \hline \alpha& \boldsymbol { \beta } \\\hline 1 & 1 \\\hline 1 & 0 \\\hline 0 & 1 \\\hline0& 0\\\hline\end{array}
α
1
1
0
0
β
1
0
1
0
For exercises with three propositional variables, the standard assignment is:
α
β
γ
1
1
1
1
1
0
1
0
1
1
0
0
e
0
1
1
0
1
0
0
0
1
0
0
0
\begin{array} { | c | c | c | } \hline \alpha & \beta & \gamma \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 0 \\\hline 1 & 0 & 1 \\\hline 1 & 0& 0e \\\hline 0 & 1 & 1 \\\hline 0 & 1 & 0 \\\hline 0 &0& 1 \\\hline 0 & 0& 0 \\\hline\end{array}
α
1
1
1
1
0
0
0
0
β
1
1
0
0
1
1
0
0
γ
1
0
1
0
e
1
0
1
0
For exercises with four propositional variables, the standard assignment is:
α
β
γ
δ
1
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
0
1
1
0
\begin{array} { | l | l | l | l | } \hline \alpha & \boldsymbol { \beta } &\gamma& \delta\ \\\hline 1 & 1 & 1 & 1 \\\hline 1 & 1 & 1 & 0 \\\hline 1 & 1 & 0 & 1 \\\hline 1 & 1 & 0 & 0 \\\hline 1 & 0 & 1 & 1 \\\hline 1 & 0 & 1 & 0\\\hline 1 & 0 & 0 & 1 \\\hline 1 & 0& 0 & 0 \\\hline 0 & 1 & 1 & 1 \\\hline 0 & 1 & 1 &0 \\\hline\end{array}
α
1
1
1
1
1
1
1
1
0
0
β
1
1
1
1
0
0
0
0
1
1
γ
1
1
0
0
1
1
0
0
1
1
δ
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
\begin{array} { | c | c | c | c | } \hline 0 & 1 & 0 & 1 \\\hline 0 & 1 & 0 & 0 \\\hline 0& 0 & 1 & 1 \\\hline 0 & 0 & 1 & 0 \\\hline 0 & 0 & 0 & 1 \\\hline 0 & 0 & 0 & 0 \\\hline\end{array}
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
0
1
0
1
\begin{array} { |l | l | l | l |} \hline 0 & 1 & 0 & 1 \\\hline\end{array}
0
1
0
1
For each of the given propositions, determine which of the given sequences properly describes the column under the main operator, given the standard assignment of truth values to atomic propositions. -[M
∨
\lor
∨
(N • O) ]
∨
\lor
∨
[(M • N)
∨
\lor
∨
(?M • N) ]
Question 63
Multiple Choice
Note: the solutions to most of the multiple choice questions in these sections use what call the standard assignment of truth values to atomic propositions. The standard assignment of truth values assigns the values given here to the variables in the wffs in the exercises, when read left to right. So, the first variable in the formula read left to right gets the α assignment; the second variable in the formula read left to right (if any) gets the β assignment; the third variable in the formula read left to right (if any) gets the γ assignment; and the fourth variable in the formula read left to right (if any) gets the δ assignment. For exercises with only one propositional variable, the standard assignment is:
α
1
0
\begin{array} { |l| } \hline \alpha\\ \hline \text { 1}\\ \hline \text {0 }\\\hline\end{array}
α
1
0
For exercises with two propositional variables, the standard assignment is:
α
β
1
1
1
0
0
1
0
0
\begin{array} { | c | c | } \hline \alpha& \boldsymbol { \beta } \\\hline 1 & 1 \\\hline 1 & 0 \\\hline 0 & 1 \\\hline0& 0\\\hline\end{array}
α
1
1
0
0
β
1
0
1
0
For exercises with three propositional variables, the standard assignment is:
α
β
γ
1
1
1
1
1
0
1
0
1
1
0
0
e
0
1
1
0
1
0
0
0
1
0
0
0
\begin{array} { | c | c | c | } \hline \alpha & \beta & \gamma \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 0 \\\hline 1 & 0 & 1 \\\hline 1 & 0& 0e \\\hline 0 & 1 & 1 \\\hline 0 & 1 & 0 \\\hline 0 &0& 1 \\\hline 0 & 0& 0 \\\hline\end{array}
α
1
1
1
1
0
0
0
0
β
1
1
0
0
1
1
0
0
γ
1
0
1
0
e
1
0
1
0
For exercises with four propositional variables, the standard assignment is:
α
β
γ
δ
1
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
0
1
1
0
\begin{array} { | l | l | l | l | } \hline \alpha & \boldsymbol { \beta } &\gamma& \delta\ \\\hline 1 & 1 & 1 & 1 \\\hline 1 & 1 & 1 & 0 \\\hline 1 & 1 & 0 & 1 \\\hline 1 & 1 & 0 & 0 \\\hline 1 & 0 & 1 & 1 \\\hline 1 & 0 & 1 & 0\\\hline 1 & 0 & 0 & 1 \\\hline 1 & 0& 0 & 0 \\\hline 0 & 1 & 1 & 1 \\\hline 0 & 1 & 1 &0 \\\hline\end{array}
α
1
1
1
1
1
1
1
1
0
0
β
1
1
1
1
0
0
0
0
1
1
γ
1
1
0
0
1
1
0
0
1
1
δ
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
\begin{array} { | c | c | c | c | } \hline 0 & 1 & 0 & 1 \\\hline 0 & 1 & 0 & 0 \\\hline 0& 0 & 1 & 1 \\\hline 0 & 0 & 1 & 0 \\\hline 0 & 0 & 0 & 1 \\\hline 0 & 0 & 0 & 0 \\\hline\end{array}
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
0
1
0
1
\begin{array} { |l | l | l | l |} \hline 0 & 1 & 0 & 1 \\\hline\end{array}
0
1
0
1
For each of the given propositions, determine which of the given sequences properly describes the column under the main operator, given the standard assignment of truth values to atomic propositions. -[P ? (?R ? Q) ]
∨
\lor
∨
[(Q
∨
\lor
∨
R)
∨
\lor
∨
(?P • R) ]
Question 64
Multiple Choice
Note: the solutions to most of the multiple choice questions in these sections use what call the standard assignment of truth values to atomic propositions. The standard assignment of truth values assigns the values given here to the variables in the wffs in the exercises, when read left to right. So, the first variable in the formula read left to right gets the α assignment; the second variable in the formula read left to right (if any) gets the β assignment; the third variable in the formula read left to right (if any) gets the γ assignment; and the fourth variable in the formula read left to right (if any) gets the δ assignment. For exercises with only one propositional variable, the standard assignment is:
α
1
0
\begin{array} { |l| } \hline \alpha\\ \hline \text { 1}\\ \hline \text {0 }\\\hline\end{array}
α
1
0
For exercises with two propositional variables, the standard assignment is:
α
β
1
1
1
0
0
1
0
0
\begin{array} { | c | c | } \hline \alpha& \boldsymbol { \beta } \\\hline 1 & 1 \\\hline 1 & 0 \\\hline 0 & 1 \\\hline0& 0\\\hline\end{array}
α
1
1
0
0
β
1
0
1
0
For exercises with three propositional variables, the standard assignment is:
α
β
γ
1
1
1
1
1
0
1
0
1
1
0
0
e
0
1
1
0
1
0
0
0
1
0
0
0
\begin{array} { | c | c | c | } \hline \alpha & \beta & \gamma \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 0 \\\hline 1 & 0 & 1 \\\hline 1 & 0& 0e \\\hline 0 & 1 & 1 \\\hline 0 & 1 & 0 \\\hline 0 &0& 1 \\\hline 0 & 0& 0 \\\hline\end{array}
α
1
1
1
1
0
0
0
0
β
1
1
0
0
1
1
0
0
γ
1
0
1
0
e
1
0
1
0
For exercises with four propositional variables, the standard assignment is:
α
β
γ
δ
1
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
0
1
1
0
\begin{array} { | l | l | l | l | } \hline \alpha & \boldsymbol { \beta } &\gamma& \delta\ \\\hline 1 & 1 & 1 & 1 \\\hline 1 & 1 & 1 & 0 \\\hline 1 & 1 & 0 & 1 \\\hline 1 & 1 & 0 & 0 \\\hline 1 & 0 & 1 & 1 \\\hline 1 & 0 & 1 & 0\\\hline 1 & 0 & 0 & 1 \\\hline 1 & 0& 0 & 0 \\\hline 0 & 1 & 1 & 1 \\\hline 0 & 1 & 1 &0 \\\hline\end{array}
α
1
1
1
1
1
1
1
1
0
0
β
1
1
1
1
0
0
0
0
1
1
γ
1
1
0
0
1
1
0
0
1
1
δ
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
\begin{array} { | c | c | c | c | } \hline 0 & 1 & 0 & 1 \\\hline 0 & 1 & 0 & 0 \\\hline 0& 0 & 1 & 1 \\\hline 0 & 0 & 1 & 0 \\\hline 0 & 0 & 0 & 1 \\\hline 0 & 0 & 0 & 0 \\\hline\end{array}
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
0
1
0
1
\begin{array} { |l | l | l | l |} \hline 0 & 1 & 0 & 1 \\\hline\end{array}
0
1
0
1
For each of the given propositions, determine which of the given sequences properly describes the column under the main operator, given the standard assignment of truth values to atomic propositions. -(S ? ?T) ? {[V ? (?S • T) ]
∨
\lor
∨
[V ? (?T • S) ]}
Question 65
Multiple Choice
Note: the solutions to most of the multiple choice questions in these sections use what call the standard assignment of truth values to atomic propositions. The standard assignment of truth values assigns the values given here to the variables in the wffs in the exercises, when read left to right. So, the first variable in the formula read left to right gets the α assignment; the second variable in the formula read left to right (if any) gets the β assignment; the third variable in the formula read left to right (if any) gets the γ assignment; and the fourth variable in the formula read left to right (if any) gets the δ assignment. For exercises with only one propositional variable, the standard assignment is:
α
1
0
\begin{array} { |l| } \hline \alpha\\ \hline \text { 1}\\ \hline \text {0 }\\\hline\end{array}
α
1
0
For exercises with two propositional variables, the standard assignment is:
α
β
1
1
1
0
0
1
0
0
\begin{array} { | c | c | } \hline \alpha& \boldsymbol { \beta } \\\hline 1 & 1 \\\hline 1 & 0 \\\hline 0 & 1 \\\hline0& 0\\\hline\end{array}
α
1
1
0
0
β
1
0
1
0
For exercises with three propositional variables, the standard assignment is:
α
β
γ
1
1
1
1
1
0
1
0
1
1
0
0
e
0
1
1
0
1
0
0
0
1
0
0
0
\begin{array} { | c | c | c | } \hline \alpha & \beta & \gamma \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 0 \\\hline 1 & 0 & 1 \\\hline 1 & 0& 0e \\\hline 0 & 1 & 1 \\\hline 0 & 1 & 0 \\\hline 0 &0& 1 \\\hline 0 & 0& 0 \\\hline\end{array}
α
1
1
1
1
0
0
0
0
β
1
1
0
0
1
1
0
0
γ
1
0
1
0
e
1
0
1
0
For exercises with four propositional variables, the standard assignment is:
α
β
γ
δ
1
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
0
1
1
0
\begin{array} { | l | l | l | l | } \hline \alpha & \boldsymbol { \beta } &\gamma& \delta\ \\\hline 1 & 1 & 1 & 1 \\\hline 1 & 1 & 1 & 0 \\\hline 1 & 1 & 0 & 1 \\\hline 1 & 1 & 0 & 0 \\\hline 1 & 0 & 1 & 1 \\\hline 1 & 0 & 1 & 0\\\hline 1 & 0 & 0 & 1 \\\hline 1 & 0& 0 & 0 \\\hline 0 & 1 & 1 & 1 \\\hline 0 & 1 & 1 &0 \\\hline\end{array}
α
1
1
1
1
1
1
1
1
0
0
β
1
1
1
1
0
0
0
0
1
1
γ
1
1
0
0
1
1
0
0
1
1
δ
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
\begin{array} { | c | c | c | c | } \hline 0 & 1 & 0 & 1 \\\hline 0 & 1 & 0 & 0 \\\hline 0& 0 & 1 & 1 \\\hline 0 & 0 & 1 & 0 \\\hline 0 & 0 & 0 & 1 \\\hline 0 & 0 & 0 & 0 \\\hline\end{array}
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
0
1
0
1
\begin{array} { |l | l | l | l |} \hline 0 & 1 & 0 & 1 \\\hline\end{array}
0
1
0
1
For each of the given propositions, determine which of the given sequences properly describes the column under the main operator, given the standard assignment of truth values to atomic propositions. -{[X ? ?(Y
∨
\lor
∨
Z) ] • [Y ? ?(X
∨
\lor
∨
Z) ]} ? [(X • Z)
∨
\lor
∨
?(X • ?Z) ]
Question 66
Multiple Choice
Note: the solutions to most of the multiple choice questions in these sections use what call the standard assignment of truth values to atomic propositions. The standard assignment of truth values assigns the values given here to the variables in the wffs in the exercises, when read left to right. So, the first variable in the formula read left to right gets the α assignment; the second variable in the formula read left to right (if any) gets the β assignment; the third variable in the formula read left to right (if any) gets the γ assignment; and the fourth variable in the formula read left to right (if any) gets the δ assignment. For exercises with only one propositional variable, the standard assignment is:
α
1
0
\begin{array} { |l| } \hline \alpha\\ \hline \text { 1}\\ \hline \text {0 }\\\hline\end{array}
α
1
0
For exercises with two propositional variables, the standard assignment is:
α
β
1
1
1
0
0
1
0
0
\begin{array} { | c | c | } \hline \alpha& \boldsymbol { \beta } \\\hline 1 & 1 \\\hline 1 & 0 \\\hline 0 & 1 \\\hline0& 0\\\hline\end{array}
α
1
1
0
0
β
1
0
1
0
For exercises with three propositional variables, the standard assignment is:
α
β
γ
1
1
1
1
1
0
1
0
1
1
0
0
e
0
1
1
0
1
0
0
0
1
0
0
0
\begin{array} { | c | c | c | } \hline \alpha & \beta & \gamma \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 0 \\\hline 1 & 0 & 1 \\\hline 1 & 0& 0e \\\hline 0 & 1 & 1 \\\hline 0 & 1 & 0 \\\hline 0 &0& 1 \\\hline 0 & 0& 0 \\\hline\end{array}
α
1
1
1
1
0
0
0
0
β
1
1
0
0
1
1
0
0
γ
1
0
1
0
e
1
0
1
0
For exercises with four propositional variables, the standard assignment is:
α
β
γ
δ
1
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
0
1
1
0
\begin{array} { | l | l | l | l | } \hline \alpha & \boldsymbol { \beta } &\gamma& \delta\ \\\hline 1 & 1 & 1 & 1 \\\hline 1 & 1 & 1 & 0 \\\hline 1 & 1 & 0 & 1 \\\hline 1 & 1 & 0 & 0 \\\hline 1 & 0 & 1 & 1 \\\hline 1 & 0 & 1 & 0\\\hline 1 & 0 & 0 & 1 \\\hline 1 & 0& 0 & 0 \\\hline 0 & 1 & 1 & 1 \\\hline 0 & 1 & 1 &0 \\\hline\end{array}
α
1
1
1
1
1
1
1
1
0
0
β
1
1
1
1
0
0
0
0
1
1
γ
1
1
0
0
1
1
0
0
1
1
δ
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
\begin{array} { | c | c | c | c | } \hline 0 & 1 & 0 & 1 \\\hline 0 & 1 & 0 & 0 \\\hline 0& 0 & 1 & 1 \\\hline 0 & 0 & 1 & 0 \\\hline 0 & 0 & 0 & 1 \\\hline 0 & 0 & 0 & 0 \\\hline\end{array}
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
0
1
0
1
\begin{array} { |l | l | l | l |} \hline 0 & 1 & 0 & 1 \\\hline\end{array}
0
1
0
1
For each of the given propositions, determine which of the given sequences properly describes the column under the main operator, given the standard assignment of truth values to atomic propositions. -[(E ? ?F)
∨
\lor
∨
(G ? ?H) ]
∨
\lor
∨
[(?E • ?F) • (?G • ?H) ]
Question 67
Multiple Choice
Note: the solutions to most of the multiple choice questions in these sections use what call the standard assignment of truth values to atomic propositions. The standard assignment of truth values assigns the values given here to the variables in the wffs in the exercises, when read left to right. So, the first variable in the formula read left to right gets the α assignment; the second variable in the formula read left to right (if any) gets the β assignment; the third variable in the formula read left to right (if any) gets the γ assignment; and the fourth variable in the formula read left to right (if any) gets the δ assignment. For exercises with only one propositional variable, the standard assignment is:
α
1
0
\begin{array} { |l| } \hline \alpha\\ \hline \text { 1}\\ \hline \text {0 }\\\hline\end{array}
α
1
0
For exercises with two propositional variables, the standard assignment is:
α
β
1
1
1
0
0
1
0
0
\begin{array} { | c | c | } \hline \alpha& \boldsymbol { \beta } \\\hline 1 & 1 \\\hline 1 & 0 \\\hline 0 & 1 \\\hline0& 0\\\hline\end{array}
α
1
1
0
0
β
1
0
1
0
For exercises with three propositional variables, the standard assignment is:
α
β
γ
1
1
1
1
1
0
1
0
1
1
0
0
e
0
1
1
0
1
0
0
0
1
0
0
0
\begin{array} { | c | c | c | } \hline \alpha & \beta & \gamma \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 0 \\\hline 1 & 0 & 1 \\\hline 1 & 0& 0e \\\hline 0 & 1 & 1 \\\hline 0 & 1 & 0 \\\hline 0 &0& 1 \\\hline 0 & 0& 0 \\\hline\end{array}
α
1
1
1
1
0
0
0
0
β
1
1
0
0
1
1
0
0
γ
1
0
1
0
e
1
0
1
0
For exercises with four propositional variables, the standard assignment is:
α
β
γ
δ
1
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
0
1
1
0
\begin{array} { | l | l | l | l | } \hline \alpha & \boldsymbol { \beta } &\gamma& \delta\ \\\hline 1 & 1 & 1 & 1 \\\hline 1 & 1 & 1 & 0 \\\hline 1 & 1 & 0 & 1 \\\hline 1 & 1 & 0 & 0 \\\hline 1 & 0 & 1 & 1 \\\hline 1 & 0 & 1 & 0\\\hline 1 & 0 & 0 & 1 \\\hline 1 & 0& 0 & 0 \\\hline 0 & 1 & 1 & 1 \\\hline 0 & 1 & 1 &0 \\\hline\end{array}
α
1
1
1
1
1
1
1
1
0
0
β
1
1
1
1
0
0
0
0
1
1
γ
1
1
0
0
1
1
0
0
1
1
δ
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
\begin{array} { | c | c | c | c | } \hline 0 & 1 & 0 & 1 \\\hline 0 & 1 & 0 & 0 \\\hline 0& 0 & 1 & 1 \\\hline 0 & 0 & 1 & 0 \\\hline 0 & 0 & 0 & 1 \\\hline 0 & 0 & 0 & 0 \\\hline\end{array}
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
0
1
0
1
\begin{array} { |l | l | l | l |} \hline 0 & 1 & 0 & 1 \\\hline\end{array}
0
1
0
1
For each of the given propositions, determine which of the given sequences properly describes the column under the main operator, given the standard assignment of truth values to atomic propositions. -[(A ? B) ? (?C ? D) ] ? {[A • (B
∨
\lor
∨
D) ] ? [D • (B
∨
\lor
∨
?D) ]}
Question 68
Multiple Choice
construct a complete truth table for each of the following propositions. Then, using the truth table, classify each proposition as a tautology, a contingency, or a contradiction. -(I ⊃ ∼I) ⊃ [I ⊃ (I ⊃ ∼I) ]