Solved

The Solution of the Eigenvalue Problem y+λy=0,y(0)=0,y(1)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ^ { \prime } ( 1 ) = 0

Question 1

Multiple Choice

The solution of the eigenvalue problem y+λy=0,y(0) =0,y(1) =0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ^ { \prime } ( 1 ) = 0 is


A) λ=(n1/2) π,y=cos((n1/2) πx) +sin((n1/2) πx) ,n=1,2,3,\lambda = ( n - 1 / 2 ) \pi , y = \cos ( ( n - 1 / 2 ) \pi x ) + \sin ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
B) λ=(n1/2) π,y=cos((n1/2) πx) ,n=1,2,3,\lambda = ( n - 1 / 2 ) \pi , y = \cos ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
C) λ=(n1/2) π,y=sin((n1/2) πx) ,n=1,2,3,\lambda = ( n - 1 / 2 ) \pi , y = \sin ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
D) λ=(n1/2) 2π2,y=cos((n1/2) πx) ,n=1,2,3,\lambda = ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } , y = \cos ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
E) λ=(n1/2) 2π2,y=sin((n1/2) πx) ,n=1,2,3,\lambda = ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } , y = \sin ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents