Solved

Graph the Quadratic Function s=14t2t1s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1

Question 4

Multiple Choice

Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts. s=14t2t1s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1


A) vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.  Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts.  s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1  A)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.   B)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.   C)  vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.   D)  vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept:  \pm 2  ; s-intercept: 1.   E)  vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept:  \pm \sqrt { 8 }  ;s-intercept: 2.
B) vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.  Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts.  s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1  A)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.   B)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.   C)  vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.   D)  vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept:  \pm 2  ; s-intercept: 1.   E)  vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept:  \pm \sqrt { 8 }  ;s-intercept: 2.
C) vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.  Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts.  s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1  A)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.   B)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.   C)  vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.   D)  vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept:  \pm 2  ; s-intercept: 1.   E)  vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept:  \pm \sqrt { 8 }  ;s-intercept: 2.
D) vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept: ±2\pm 2 ; s-intercept: 1.  Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts.  s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1  A)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.   B)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.   C)  vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.   D)  vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept:  \pm 2  ; s-intercept: 1.   E)  vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept:  \pm \sqrt { 8 }  ;s-intercept: 2.
E) vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept: ±8\pm \sqrt { 8 } ;s-intercept: 2.  Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts.  s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1  A)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.   B)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.   C)  vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.   D)  vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept:  \pm 2  ; s-intercept: 1.   E)  vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept:  \pm \sqrt { 8 }  ;s-intercept: 2.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents