Solved

Solve the Problem 256 cm2256 \mathrm {~cm} ^ { 2 } Let

Question 443

Multiple Choice

Solve the problem.
-Consider all rectangles with an area of 256 cm2256 \mathrm {~cm} ^ { 2 } . Let xx be the length of one side of such a rectangle. Express the perimeter as a function of xx and determine the dimensions of the rectangle that has the least perimeter.


A) P(x) =2x+512x;4 cm×64 cm\mathrm { P } ( \mathrm { x } ) = 2 \mathrm { x } + \frac { 512 } { \mathrm { x } } ; 4 \mathrm {~cm} \times 64 \mathrm {~cm}
B) P(x) =x+256x;16 cm×16 cm\mathrm { P } ( \mathrm { x } ) = \mathrm { x } + \frac { 256 } { \mathrm { x } } ; 16 \mathrm {~cm} \times 16 \mathrm {~cm}
C) P(x) =256x;8 cm×32 cm\mathrm { P } ( \mathrm { x } ) = 256 \mathrm { x } ; 8 \mathrm {~cm} \times 32 \mathrm {~cm}
D) P(x) =2x+512x;16 cm×16 cm\mathrm { P } ( \mathrm { x } ) = 2 \mathrm { x } + \frac { 512 } { \mathrm { x } } ; 16 \mathrm {~cm} \times 16 \mathrm {~cm}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents