Solved

Solve the Problem N(t)=0.5t+10006t+5,t8N ( t ) = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8

Question 438

Multiple Choice

Solve the problem.
-The function N(t) =0.5t+10006t+5,t8N ( t ) = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8
gives the body concentration N(t) \mathrm { N } ( \mathrm { t } ) , in parts per million, of a certain dosage of medication after time tt , in hours.
Graph the function on the interval [8,) [ 8 , \infty ) and complete the following:
N(t) \mathrm { N } ( \mathrm { t } ) \rightarrow \quad as tx\mathrm { t } \rightarrow \mathrm { x } _ { \text {. } }


A)
 Solve the problem. -The function  N ( t )  = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8  gives the body concentration  \mathrm { N } ( \mathrm { t } )  , in parts per million, of a certain dosage of medication after time  t , in hours. Graph the function on the interval  [ 8 , \infty )   and complete the following:  \mathrm { N } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \mathrm { x } _ { \text {. } }   A)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty    B)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.083  as  \mathrm { t } \rightarrow \infty .  C)     \mathrm { N } ( \mathrm { t } )  \rightarrow 1  as  \mathrm { t } \rightarrow\infty    D)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.071  as  \mathrm { t } \rightarrow \infty ,
N(t) 0\mathrm { N } ( \mathrm { t } ) \rightarrow 0 as t\mathrm { t } \rightarrow \infty
B)
 Solve the problem. -The function  N ( t )  = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8  gives the body concentration  \mathrm { N } ( \mathrm { t } )  , in parts per million, of a certain dosage of medication after time  t , in hours. Graph the function on the interval  [ 8 , \infty )   and complete the following:  \mathrm { N } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \mathrm { x } _ { \text {. } }   A)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty    B)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.083  as  \mathrm { t } \rightarrow \infty .  C)     \mathrm { N } ( \mathrm { t } )  \rightarrow 1  as  \mathrm { t } \rightarrow\infty    D)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.071  as  \mathrm { t } \rightarrow \infty ,
N(t) 0.083\mathrm { N } ( \mathrm { t } ) \rightarrow 0.083 as t.\mathrm { t } \rightarrow \infty .
C)
 Solve the problem. -The function  N ( t )  = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8  gives the body concentration  \mathrm { N } ( \mathrm { t } )  , in parts per million, of a certain dosage of medication after time  t , in hours. Graph the function on the interval  [ 8 , \infty )   and complete the following:  \mathrm { N } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \mathrm { x } _ { \text {. } }   A)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty    B)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.083  as  \mathrm { t } \rightarrow \infty .  C)     \mathrm { N } ( \mathrm { t } )  \rightarrow 1  as  \mathrm { t } \rightarrow\infty    D)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.071  as  \mathrm { t } \rightarrow \infty ,
N(t) 1\mathrm { N } ( \mathrm { t } ) \rightarrow 1 as t\mathrm { t } \rightarrow\infty
D)
 Solve the problem. -The function  N ( t )  = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8  gives the body concentration  \mathrm { N } ( \mathrm { t } )  , in parts per million, of a certain dosage of medication after time  t , in hours. Graph the function on the interval  [ 8 , \infty )   and complete the following:  \mathrm { N } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \mathrm { x } _ { \text {. } }   A)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty    B)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.083  as  \mathrm { t } \rightarrow \infty .  C)     \mathrm { N } ( \mathrm { t } )  \rightarrow 1  as  \mathrm { t } \rightarrow\infty    D)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.071  as  \mathrm { t } \rightarrow \infty ,
N(t) 0.071\mathrm { N } ( \mathrm { t } ) \rightarrow 0.071 as t\mathrm { t } \rightarrow \infty ,

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents