Solved

Solve the Problem B) C) D)

Question 359

Multiple Choice

Solve the problem.
-Let D be the smaller cap cut from a solid ball of radius 6 units by a plane 2 units from the center of the sphere. Set up the triple integral for the volume of D in rectangular coordinates.


A) 323232x232x2236x2y2dzdydx\int _ { - \sqrt { 32 } } ^ { \sqrt { 32 } } \int _ { - \sqrt { 32 - x ^ { 2 } } } ^ { \sqrt { 32 - x ^ { 2 } } } \int _ { 2 } ^ { \sqrt { 36 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
B) 323232x232x264x2y2dzdydx\int _ { - \sqrt { 32 } } ^ { \sqrt { 32 } } \int _ { - \sqrt { 32 - x ^ { 2 } } } ^ { \sqrt { 32 - x ^ { 2 } } } \int _ { 6 } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
C) 404032x232x2236x2y2dzdydx\int _ { - \sqrt { 40 } } ^ { \sqrt { 40 } } \int _ { - \sqrt { 32 - x ^ { 2 } } } ^ { \sqrt { 32 - x ^ { 2 } } } \int _ { 2 } ^ { \sqrt { 36 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
D) 404032x232x264x2y2dzdydx\int _ { - \sqrt { 40 } } ^ { \sqrt { 40 } } \int _ { - \sqrt { 32 - x ^ { 2 } } } ^ { \sqrt { 32 - x ^ { 2 } } } \int _ { 6 } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } d z d y d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents