Solved

Solve the Problem DD Be the Region Bounded Below by The xyx y

Question 287

Multiple Choice

Solve the problem.
-Let DD be the region bounded below by the xyx y -plane, above by the sphere x2+y2+z2=100x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 100 , and on the sides by the cylinder x2+y2=81x ^ { 2 } + y ^ { 2 } = 81 . Set up the triple integral in cylindrical coordinates that gives the volume of DD using the order of integration drdzdθ\mathrm { dr } \mathrm { dz } \mathrm { d } \theta .


A) 02π019010rdrdzdθ+02π199081z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 19 } } \int _ { 0 } ^ { 10 } \mathrm { rdrdzd \theta } + \int _ { 0 } ^ { 2 \pi } \int _ { \sqrt { 19 } } ^ { 9 } \int _ { 0 } ^ { \sqrt { 81 - z ^ { 2 } } } \mathrm { rdrdzd \theta }
B) 02π01909rdrdzdθ+02π19100100z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 19 } } \int _ { 0 } ^ { 9 } \mathrm { rdrdzd \theta } + \int _ { 0 } ^ { 2 \pi } \int _ { \sqrt { 19 } } ^ { 10 } \int _ { 0 } ^ { \sqrt { 100 - \mathrm { z } ^ { 2 } } } \mathrm { rdr } \mathrm { dz } d \theta
C) 02π01909rdrdzdθ+02π1910081z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 19 } } \int _ { 0 } ^ { 9 } r d r d z d \theta + \int _ { 0 } ^ { 2 \pi } \int _ { \sqrt { 19 } } ^ { 10 } \int _ { 0 } ^ { \sqrt { 81 - z ^ { 2 } } } r d r d z d \theta
D) 02π019010rdrdzdθ+02π1990100z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 19 } } \int _ { 0 } ^ { 10 } r d r d z d \theta + \int _ { 0 } ^ { 2 \pi } \int _ { \sqrt { 19 } } ^ { 9 } \int _ { 0 } ^ { \sqrt { 100 - z ^ { 2 } } } r d r d z d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents