Solved

Solve the Problem D\mathrm { D } Be the Region Bounded Below by The

Question 283

Multiple Choice

Solve the problem.
-Let D\mathrm { D } be the region bounded below by the xyx y -plane, above by the sphere x2+y2+z2=100x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 100 , and on the sides by the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 . Set up the triple integral in cylindrical coordinates that gives the volume of DD using the order of integration dzdθdr\mathrm { dz } \mathrm {} \mathrm { d } \theta \mathrm { dr } .


A) 01002π09r2rdzdθdr\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 9 - r ^ { 2 } } } r d z d \theta d r
B) 01002π09r2dzdθdr\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 9 - r ^ { 2 } } } d z d \theta d r
C) 0302π0100r2rdzdθdr\int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 100 - r ^ { 2 } } } r d z d \theta d r
D) 0302π0100r2dzdθdr\int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 100 - r ^ { 2 } } } d z d \theta d r

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents