Solved

Use Various Trigonometric Identities to Simplify the Expression Then Integrate sin2θcos6θdθ\int \sin ^ { 2 } \theta \cos 6 \theta d \theta

Question 114

Multiple Choice

Use various trigonometric identities to simplify the expression then integrate.
- sin2θcos6θdθ\int \sin ^ { 2 } \theta \cos 6 \theta d \theta


A) 112sin4θ14sin6θ132sin8θ+C\frac { 1 } { 12 } \sin 4 \theta - \frac { 1 } { 4 } \sin 6 \theta - \frac { 1 } { 32 } \sin 8 \theta + C
B) 112sin6θ14sin4θ132sin8θ+C\frac { 1 } { 12 } \sin 6 \theta - \frac { 1 } { 4 } \sin 4 \theta - \frac { 1 } { 32 } \sin 8 \theta + C
C) 112sin6θ14sin8θ132sin4θ+C\frac { 1 } { 12 } \sin 6 \theta - \frac { 1 } { 4 } \sin 8 \theta - \frac { 1 } { 32 } \sin 4 \theta + C
D) 12sin6θ14sin4θ18sin8θ+C\frac { 1 } { 2 } \sin 6 \theta - \frac { 1 } { 4 } \sin 4 \theta - \frac { 1 } { 8 } \sin 8 \theta + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents