Deck 4: Applications of the Derivative

Full screen (f)
exit full mode
Question
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px> , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px> . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>
B) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>
C) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>
D) no absolute extrema
Use Space or
up arrow
down arrow
to flip the card.
Question
Using Newton's method with <strong>Using Newton's method with   , determine the third iteration when approximating the root to at least six-digit accuracy of the following equation. x<sup>3</sup> + x<sup>2</sup> - 5x + 4 = 0</strong> A) -3.062500 B) -3.060647 C) -3.060691 D) -3.060992 <div style=padding-top: 35px> , determine the third iteration when approximating the root to at least six-digit accuracy of the following equation. x3 + x2 - 5x + 4 = 0

A) -3.062500
B) -3.060647
C) -3.060691
D) -3.060992
Question
Find the linear approximation, L(x), to f(x) at x = x0. <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px> , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px> . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>
B) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px> and <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>
C) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>
D) no absolute extrema
Question
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px> , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px> . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>
B) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px> and <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>
C) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema <div style=padding-top: 35px>
D) no absolute extrema
Question
Find the linear approximation at x = 0 to show that the following commonly used approximation is valid for "small" x. Find the linear approximation at x = 0 to show that the following commonly used approximation is valid for small x.  <div style=padding-top: 35px>
Question
Use linear approximation of <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)   <div style=padding-top: 35px> at <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)   <div style=padding-top: 35px> to estimate the quantity of <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)   <div style=padding-top: 35px> to the nearest ten thousandth.

A) <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Use a linear approximation to estimate <strong>Use a linear approximation to estimate  </strong> A) 0 B) 0.18 C) 0.1 D) 0.02 <div style=padding-top: 35px>

A) 0
B) 0.18
C) 0.1
D) 0.02
Question
Use a linear approximation to estimate <strong>Use a linear approximation to estimate   Note that 17.2 is near 16 which is  </strong> A) 3.23649 B) 2.03649 C) 2.0375 D) 3.08312 <div style=padding-top: 35px> Note that 17.2 is near 16 which is <strong>Use a linear approximation to estimate   Note that 17.2 is near 16 which is  </strong> A) 3.23649 B) 2.03649 C) 2.0375 D) 3.08312 <div style=padding-top: 35px>

A) 3.23649
B) 2.03649
C) 2.0375
D) 3.08312
Question
Use Newton's method with x0 = 2.6 to compute x1 and x2 without the use of a calculator.
f(x) = x3 - 3x - 5
Question
A certain company estimates that it can sell f(x)-thousand video game consoles at the price of $x as given in the table. <strong>A certain company estimates that it can sell f(x)-thousand video game consoles at the price of $x as given in the table.   Use a linear approximation to estimate the number of consoles that can be sold at $62.</strong> A) approximately 105 thousand consoles B) approximately 108 thousand consoles C) approximately 130 thousand consoles D) approximately 138 thousand consoles <div style=padding-top: 35px> Use a linear approximation to estimate the number of consoles that can be sold at $62.

A) approximately 105 thousand consoles
B) approximately 108 thousand consoles
C) approximately 130 thousand consoles
D) approximately 138 thousand consoles
Question
Find the linear approximation at x = 0 for each of f (x) = (x + 1)2 + 5, g(x) = 6 + sin(2x) and Find the linear approximation at x = 0 for each of f (x) = (x + 1)<sup>2</sup> + 5, g(x) = 6 + sin(2x) and   . Graph each function together with its linear approximation.<div style=padding-top: 35px> . Graph each function together with its linear approximation.
Question
Use Newton's method to find an approximate root of the equation <strong>Use Newton's method to find an approximate root of the equation   (accurate to six decimal places).</strong> A) 0.306232 B) 0.216232 C) 0.136232 D) 0.219565 <div style=padding-top: 35px> (accurate to six decimal places).

A) 0.306232
B) 0.216232
C) 0.136232
D) 0.219565
Question
ω\omega

-The impedance Z of a simple RL (resistive inductive) circuit is given by \omega   -The impedance Z of a simple RL (resistive inductive) circuit is given by   , where R is the resistance of the resistor, L is the inductance of the inductor, and  \omega  is the angular frequency of the applied voltage. Find a linear approximation of Z(L) for small values of L assuming all other quantities are constant. Show all of your work.<div style=padding-top: 35px>  , where R is the resistance of the resistor, L is the inductance of the inductor, and ω\omega is the angular frequency of the applied voltage. Find a linear approximation of Z(L) for small values of L assuming all other quantities are constant. Show all of your work.
Question
Find the linear approximation, L(x), to f(x) at x = x0. <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Approximate <strong>Approximate   accurate to 3 decimal places using Newton's method. State the function used.</strong> A) 2.289 using   B) 2.359 using   C) 2.219 using   D) 2.289 using   <div style=padding-top: 35px> accurate to 3 decimal places using Newton's method. State the function used.

A) 2.289 using <strong>Approximate   accurate to 3 decimal places using Newton's method. State the function used.</strong> A) 2.289 using   B) 2.359 using   C) 2.219 using   D) 2.289 using   <div style=padding-top: 35px>
B) 2.359 using <strong>Approximate   accurate to 3 decimal places using Newton's method. State the function used.</strong> A) 2.289 using   B) 2.359 using   C) 2.219 using   D) 2.289 using   <div style=padding-top: 35px>
C) 2.219 using <strong>Approximate   accurate to 3 decimal places using Newton's method. State the function used.</strong> A) 2.289 using   B) 2.359 using   C) 2.219 using   D) 2.289 using   <div style=padding-top: 35px>
D) 2.289 using <strong>Approximate   accurate to 3 decimal places using Newton's method. State the function used.</strong> A) 2.289 using   B) 2.359 using   C) 2.219 using   D) 2.289 using   <div style=padding-top: 35px>
Question
Explain why Newton's method fails for the following equation with the specified initial guess. <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. <div style=padding-top: 35px>

A) Using <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. <div style=padding-top: 35px> we see that f is not differentiable at <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. <div style=padding-top: 35px>
B) Using <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. <div style=padding-top: 35px> we obtain <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. <div style=padding-top: 35px> .
C) Using <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. <div style=padding-top: 35px> we obtain <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. <div style=padding-top: 35px> which will give <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. <div style=padding-top: 35px>
D) Using <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. <div style=padding-top: 35px> we see that f does not have any real roots.
Question
Newton's method fails for the given initial guess. Explain why the method fails and, if possible, find a root by correcting the problem. Round to four decimal places, if necessary. <strong>Newton's method fails for the given initial guess. Explain why the method fails and, if possible, find a root by correcting the problem. Round to four decimal places, if necessary.   , x<sub>0</sub> = -1</strong> A) f '(-1) = 0; -1.905, 0.105 B) f '(-1) does not exist; -1.905, 0.105 C) f (-1) = 0; 1.905, -0.105 D) f (-1) does not exist; 1.905, -0.105 <div style=padding-top: 35px> , x0 = -1

A) f '(-1) = 0; -1.905, 0.105
B) f '(-1) does not exist; -1.905, 0.105
C) f (-1) = 0; 1.905, -0.105
D) f (-1) does not exist; 1.905, -0.105
Question
Given the graph of f(x), draw in the tangent lines used in Newton's method to determine x1 and x2 after starting at x0 = 1. Given the graph of f(x), draw in the tangent lines used in Newton's method to determine x<sub>1</sub> and x<sub>2</sub> after starting at x<sub>0</sub> = 1.  <div style=padding-top: 35px>
Question
Using Newton's method, approximate the root of the following equation to at least six-digit accuracy. x3 + x2 - 3x + 5 = 0

A) -2.777778
B) -2.774551
C) -2.751101
D) -2.757031
Question
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
B) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
C) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
D) no absolute extrema
Question
Given <strong>Given   determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither <div style=padding-top: 35px> determine if the critical number <strong>Given   determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither <div style=padding-top: 35px> represents a local maximum, local minimum or neither.

A) local maximum
B) local minimum
C) neither
Question
Given <strong>Given   determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither <div style=padding-top: 35px> determine if the critical number <strong>Given   determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither <div style=padding-top: 35px> represents a local maximum, local minimum or neither.

A) local maximum
B) local minimum
C) neither
Question
Find the absolute extrema of the given function on the indicated interval. <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px> on <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px>

A) absolute maxima: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px> , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px>
B) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px> , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px>
C) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px> , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px>
D) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px> , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px>
Question
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
B) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
C) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
D) no absolute extrema
Question
Given <strong>Given   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px> , determine the critical number(s).

A) <strong>Given   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Given   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Given   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Given   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Given <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> , determine the absolute extrema on the interval <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> .

A) absolute max: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
B) absolute max: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> and <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> and <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
C) absolute max: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
D) absolute max: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
Question
Given <strong>Given   , on the interval   , determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither <div style=padding-top: 35px> , on the interval <strong>Given   , on the interval   , determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither <div style=padding-top: 35px> , determine if the critical number <strong>Given   , on the interval   , determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither <div style=padding-top: 35px> represents a local maximum, local minimum or neither.

A) local maximum
B) local minimum
C) neither
Question
Given <strong>Given   determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px> determine the critical number(s).

A) <strong>Given   determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Given   determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Given   determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Given   determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>

A) absolute max: approximately <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
B) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
C) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
D) no absolute extrema
Question
Find all critical numbers. <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <div style=padding-top: 35px>

A) <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <div style=padding-top: 35px> <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <div style=padding-top: 35px>
B) <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <div style=padding-top: 35px> , <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <div style=padding-top: 35px>
C) <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <div style=padding-top: 35px> <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <div style=padding-top: 35px>
D) <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <div style=padding-top: 35px> <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <div style=padding-top: 35px>
Question
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema <div style=padding-top: 35px> , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema <div style=padding-top: 35px> . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema <div style=padding-top: 35px>

A) absolute max: approximately <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema <div style=padding-top: 35px>
B) absolute max: approximately <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema <div style=padding-top: 35px>
C) absolute max: approximately <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema <div style=padding-top: 35px>
Absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema <div style=padding-top: 35px>
D) no absolute extrema
Question
Determine all critical numbers of <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   <div style=padding-top: 35px> .

A) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither. <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px>

A) <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px> (local maximum), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px> (neither), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px> (local minimum)
B) <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px> (local maximum), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px> (local maximum), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px> (local minimum)
C) <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px> (local maximum), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px> (local minimum)
D) <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px> (local minimum), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) <div style=padding-top: 35px> (local maximum)
Question
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
B) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
C) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
D) no absolute extrema
Question
Find the absolute extrema of the given function on the indicated interval. <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px> on <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px>

A) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px> , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px>
B) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px> , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px>
C) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px> , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px>
D) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px> , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   <div style=padding-top: 35px>
Question
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>

A) absolute max: approximately <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
B) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
C) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px> absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema <div style=padding-top: 35px>
D) no absolute extrema
Question
Determine all critical numbers of <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   <div style=padding-top: 35px> .

A) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Given <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px> , on the interval <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px> , determine the critical number(s).

A) <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find all critical numbers by hand. f (x) = x4/3 + 4x1/3 + 24x-2/3

A) -4, 0, 3
B) -4, 3
C) 0
D) -3, 0, 4
Question
Find the intervals where the function is increasing and decreasing on the specified interval. Use this information to determine all local extrema. Find the intervals where the function is increasing and decreasing on the specified interval. Use this information to determine all local extrema.   on  <div style=padding-top: 35px> on Find the intervals where the function is increasing and decreasing on the specified interval. Use this information to determine all local extrema.   on  <div style=padding-top: 35px>
Question
Determine the intervals where <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   <div style=padding-top: 35px> is concave up and concave down.

A) concave down for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   <div style=padding-top: 35px> concave up for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   <div style=padding-top: 35px>
B) concave down for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   <div style=padding-top: 35px> concave up for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   <div style=padding-top: 35px>
C) concave down for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   <div style=padding-top: 35px> cancave up for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   <div style=padding-top: 35px>
D) concave down for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   <div style=padding-top: 35px> and <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   <div style=padding-top: 35px> concave up for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   <div style=padding-top: 35px>
Question
Using a calculator or computer, estimate the absolute extrema of <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> on the interval <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> . Round answer to the nearest hundredth.

A) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
B) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
C) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
D) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
Question
Find all asymptotes and extrema and sketch a graph. Find all asymptotes and extrema and sketch a graph.  <div style=padding-top: 35px>
Question
Determine, by hand, all critical numbers of <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px> and use the First Derivative Test to classify each as a local minimum, local maximum or neither.

A) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px> local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px>
Neither: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px>
B) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px> local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px>
Neither: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px>
C) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px> local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px>
Neither: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px>
D) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px> local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px>
Neither: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   <div style=padding-top: 35px>
Question
Find all asymptotes and extrema and sketch a graph. Find all asymptotes and extrema and sketch a graph.  <div style=padding-top: 35px>
Question
A herd of ninety-nine antelope is released onto a small game reserve so that their reproductive habits can be studied. In the beginning the population of the herd increases rapidly in size but eventually slows due to a dwindling food supply. Suppose the population of antelope after t years is given by the function <strong>A herd of ninety-nine antelope is released onto a small game reserve so that their reproductive habits can be studied. In the beginning the population of the herd increases rapidly in size but eventually slows due to a dwindling food supply. Suppose the population of antelope after t years is given by the function   where   . Determine when the population begins to decline.</strong> A) 15 years B) 17 years C) 18 years D) 19 years <div style=padding-top: 35px> where <strong>A herd of ninety-nine antelope is released onto a small game reserve so that their reproductive habits can be studied. In the beginning the population of the herd increases rapidly in size but eventually slows due to a dwindling food supply. Suppose the population of antelope after t years is given by the function   where   . Determine when the population begins to decline.</strong> A) 15 years B) 17 years C) 18 years D) 19 years <div style=padding-top: 35px> . Determine when the population begins to decline.

A) 15 years
B) 17 years
C) 18 years
D) 19 years
Question
Find the x-coordinates of all extrema and sketch the graph showing global and local behavior of the function. Round answers to nearest thousandth. y = x5 - 150x3 + 460x + 9

A) local max: x = -1.017, x = 9.432 local min: x = -9.432, x = 1.017 <strong>Find the x-coordinates of all extrema and sketch the graph showing global and local behavior of the function. Round answers to nearest thousandth. y = x<sup>5</sup> - 150x<sup>3</sup> + 460x + 9</strong> A) local max: x = -1.017, x = 9.432 local min: x = -9.432, x = 1.017   B) local max: x = -9.432, x = 1.017 local min: x = -1.017, x = 9.432   C) local max: x = -1.0343 local min: x = 1.0343   D) local max: x = 1.0343 local min: x = -1.0343   <div style=padding-top: 35px>
B) local max: x = -9.432, x = 1.017 local min: x = -1.017, x = 9.432 <strong>Find the x-coordinates of all extrema and sketch the graph showing global and local behavior of the function. Round answers to nearest thousandth. y = x<sup>5</sup> - 150x<sup>3</sup> + 460x + 9</strong> A) local max: x = -1.017, x = 9.432 local min: x = -9.432, x = 1.017   B) local max: x = -9.432, x = 1.017 local min: x = -1.017, x = 9.432   C) local max: x = -1.0343 local min: x = 1.0343   D) local max: x = 1.0343 local min: x = -1.0343   <div style=padding-top: 35px>
C) local max: x = -1.0343 local min: x = 1.0343 <strong>Find the x-coordinates of all extrema and sketch the graph showing global and local behavior of the function. Round answers to nearest thousandth. y = x<sup>5</sup> - 150x<sup>3</sup> + 460x + 9</strong> A) local max: x = -1.017, x = 9.432 local min: x = -9.432, x = 1.017   B) local max: x = -9.432, x = 1.017 local min: x = -1.017, x = 9.432   C) local max: x = -1.0343 local min: x = 1.0343   D) local max: x = 1.0343 local min: x = -1.0343   <div style=padding-top: 35px>
D) local max: x = 1.0343 local min: x = -1.0343 <strong>Find the x-coordinates of all extrema and sketch the graph showing global and local behavior of the function. Round answers to nearest thousandth. y = x<sup>5</sup> - 150x<sup>3</sup> + 460x + 9</strong> A) local max: x = -1.017, x = 9.432 local min: x = -9.432, x = 1.017   B) local max: x = -9.432, x = 1.017 local min: x = -1.017, x = 9.432   C) local max: x = -1.0343 local min: x = 1.0343   D) local max: x = 1.0343 local min: x = -1.0343   <div style=padding-top: 35px>
Question
Determine, by hand, the interval(s) where <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   <div style=padding-top: 35px> is increasing and/or decreasing.

A) <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   <div style=padding-top: 35px>
B) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   <div style=padding-top: 35px>
C) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   <div style=padding-top: 35px>
D) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   <div style=padding-top: 35px>
Question
Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema. <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema <div style=padding-top: 35px>

A) decreasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema <div style=padding-top: 35px> increasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema <div style=padding-top: 35px> local maximum <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema <div style=padding-top: 35px>
B) decreasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema <div style=padding-top: 35px> increasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema <div style=padding-top: 35px> local minimum <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema <div style=padding-top: 35px>
C) decreasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema <div style=padding-top: 35px> no extrema
D) increasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema <div style=padding-top: 35px> no extrema
Question
Find the x-coordinates of all extrema and sketch the graph of Find the x-coordinates of all extrema and sketch the graph of   showing global and local behavior. Round answer to nearest thousandth.  <div style=padding-top: 35px> showing global and local behavior. Round answer to nearest thousandth. Find the x-coordinates of all extrema and sketch the graph of   showing global and local behavior. Round answer to nearest thousandth.  <div style=padding-top: 35px>
Question
Find the x-coordinates of all extrema and sketch the graph of Find the x-coordinates of all extrema and sketch the graph of   showing global and local behavior.  <div style=padding-top: 35px> showing global and local behavior. Find the x-coordinates of all extrema and sketch the graph of   showing global and local behavior.  <div style=padding-top: 35px>
Question
Find (by hand) all critical numbers and use the First Derivative Test to classify each as the location of a local maximum, local minimum or neither. y = x4/3 - 8x1/3 - 6

A) x = 0 (neither)
B) x = -2 (local maxima)
C) x = -2 (local minima)
D) x = 2 (local minima), x = 0 (neither)
Question
Using a calculator or computer, estimate the absolute extrema of <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> , on the interval <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> .

A) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
B) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
C) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
D) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px> ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   <div style=padding-top: 35px>
Question
Sketch a graph of a function with the following properties. Sketch a graph of a function with the following properties.   if   if    <div style=padding-top: 35px> if Sketch a graph of a function with the following properties.   if   if    <div style=padding-top: 35px> if Sketch a graph of a function with the following properties.   if   if    <div style=padding-top: 35px> Sketch a graph of a function with the following properties.   if   if    <div style=padding-top: 35px>
Question
Estimate critical numbers and sketch graphs showing both global and local behavior. Estimate critical numbers and sketch graphs showing both global and local behavior.  <div style=padding-top: 35px>
Question
Determine, by hand, all critical numbers of <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px> and use the First Derivative Test to classify each as a local minimum, local maximum or neither.

A) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px> local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px>
Neither at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px>
B) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px> local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px>
Neither at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px>
C) local maximum: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px> local minimum: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px>
Neither at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px>
D) local maximum: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px> local minimum: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px>
Neither at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   <div style=padding-top: 35px>
Question
Find all critical numbers of <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px> and use the First Derivative Test to classify each as a local minimum, local maximum or neither.

A) local maximum: none local minimum: none
Neither at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px>
B) local maximum at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px> local minimum at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px>
Neither at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px>
C) local maximum at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px> local minimum at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px>
Neither at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px>
D) local maximum: none local minimum at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px>
Neither at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px> and <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   <div style=padding-top: 35px>
Question
Determine, by hand, the interval(s) where <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px> is increasing and/or decreasing.

A) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px> and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px>
B) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px>
C) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px> and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px> and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px>
D) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px> and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   <div style=padding-top: 35px>
Question
Determine, by hand, the interval(s) where <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px> is increasing and/or decreasing.

A) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px>
B) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px> and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px> and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px>
C) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px> and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px> and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px>
D) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px> and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px> ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   <div style=padding-top: 35px>
Question
Using the critical numbers of Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.<div style=padding-top: 35px> , use the Second Derivative Test to determine all local extrema.
Question
Graph the function and completely discuss the graph. <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px>

A) domain: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> ; concave down: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> ; x-intercept: none <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px>
B) domain: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> ; concave down: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> x-intercept: none <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px>
C) domain: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> ; concave up: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> x-intercept: none <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px>
D) domain: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> ; concave up: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px> ; x-intercept: none <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   <div style=padding-top: 35px>
Question
Sketch the graph of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  <div style=padding-top: 35px> while answering the following questions.
a. What is the domain and range of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  <div style=padding-top: 35px> ?
b. What are the intercepts of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  <div style=padding-top: 35px> ?
c. What, if any, are the equation(s) of vertical asymptotes of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  <div style=padding-top: 35px> ?
d. What, if any, are the local min(s) and local max(s) of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  <div style=padding-top: 35px> ?
e. What, if any, are the inflection point(s) of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  <div style=padding-top: 35px> ?
f. What, if it exists, is the equation of the horizontal asymptote of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  <div style=padding-top: 35px> ? Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  <div style=padding-top: 35px>
Question
Graph the function and completely discuss the graph. Graph the function and completely discuss the graph.  <div style=padding-top: 35px>
Question
Estimate the intervals where the function shown below is concave up and/or concave down. <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>

A) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
B) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
C) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
D) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
Question
Estimate the intervals where the function shown below is concave up and/or concave down. <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>

A) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
B) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
C) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
D) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
Question
The unit price of x units of a certain product is given by <strong>The unit price of x units of a certain product is given by   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.</strong> A)   B)   C)   D)   <div style=padding-top: 35px> . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.

A) <strong>The unit price of x units of a certain product is given by   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>The unit price of x units of a certain product is given by   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>The unit price of x units of a certain product is given by   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>The unit price of x units of a certain product is given by   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Sketch the graph with the given properties. <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px> <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px> for all x, <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px> <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px> for <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px> <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px> for <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A) <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the function and completely discuss the graph. Graph the function and completely discuss the graph.  <div style=padding-top: 35px>
Question
Determine the following significant features by hand and sketch the graph of Determine the following significant features by hand and sketch the graph of   . a). intercepts b). asymptotes c). extrema d). inflection points  <div style=padding-top: 35px> .
a). intercepts
b). asymptotes
c). extrema
d). inflection points Determine the following significant features by hand and sketch the graph of   . a). intercepts b). asymptotes c). extrema d). inflection points  <div style=padding-top: 35px>
Question
Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary. <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px>

A) domain: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px> vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px> ;
Concave up: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px> ; x-intercepts: (0, 0) and (35, 0) <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px>
B) domain: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px> vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px>
X-intercepts: (0, 0) and (35, 0) <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px>
C) domain: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px> vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px>
X-intercepts: (0, 0) and (35, 0) <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px>
D) domain: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px> vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px> ;
Concave up: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px> ; x-intercepts: (0, 0) and (35, 0) <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   <div style=padding-top: 35px>
Question
Determine the intervals where <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   <div style=padding-top: 35px> is concave up and concave down. Round answers to nearest hundredth.

A) concave up for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   <div style=padding-top: 35px> concave down for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   <div style=padding-top: 35px>
B) concave down for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   <div style=padding-top: 35px> concave up for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   <div style=padding-top: 35px>
C) concave up for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   <div style=padding-top: 35px>
D) concave down for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   <div style=padding-top: 35px> concave up for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   <div style=padding-top: 35px>
Question
Determine all significant features and sketch a graph. Determine all significant features and sketch a graph.  <div style=padding-top: 35px>
Question
The total cost of producing and marketing x number of units of a certain product is given by <strong>The total cost of producing and marketing x number of units of a certain product is given by   . For what number x is the total cost a minimum? Round answer to nearest unit.</strong> A)   B)   C)   D)   <div style=padding-top: 35px> . For what number x is the total cost a minimum? Round answer to nearest unit.

A) <strong>The total cost of producing and marketing x number of units of a certain product is given by   . For what number x is the total cost a minimum? Round answer to nearest unit.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>The total cost of producing and marketing x number of units of a certain product is given by   . For what number x is the total cost a minimum? Round answer to nearest unit.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>The total cost of producing and marketing x number of units of a certain product is given by   . For what number x is the total cost a minimum? Round answer to nearest unit.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>The total cost of producing and marketing x number of units of a certain product is given by   . For what number x is the total cost a minimum? Round answer to nearest unit.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine all significant features and sketch a graph. Determine all significant features and sketch a graph.  <div style=padding-top: 35px>
Question
Estimate the intervals where the function shown below is concave up and/or concave down. <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>

A) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
B) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
C) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
D) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px> concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   <div style=padding-top: 35px>
Question
Determine all significant features and sketch a graph. Determine all significant features and sketch a graph.  <div style=padding-top: 35px>
Question
Sketch the graph of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  <div style=padding-top: 35px> while answering the following questions.
a. What is the domain and range of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  <div style=padding-top: 35px> ?
b. What are the intercepts of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  <div style=padding-top: 35px> ?
c. What, if any, are the equation(s) of vertical asymototes of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  <div style=padding-top: 35px> ?
d. What, if any, are the local min(s) and local max(s) of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  <div style=padding-top: 35px> ?
e. What, if any, are the inflection point(s) of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  <div style=padding-top: 35px> ?
f. What, if it exists, is the equation of the horizontal asymotote of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  <div style=padding-top: 35px> ? Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  <div style=padding-top: 35px>
Question
Using the critical numbers of <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px> , use the Second Derivative Test to determine all local extrema.

A) critical numbers: <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px> ; local max <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px> ; local min <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px>
B) critical numbers: <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px> ; local max <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px> ; local min <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px>
C) critical numbers: <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px> ; local max <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px> ; local min <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px>
D) critical numbers: <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px> ; local max <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px> ; local min <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   <div style=padding-top: 35px>
Question
Determine all significant features by hand and sketch the graph of Determine all significant features by hand and sketch the graph of   . a). intercepts b). asymptotes c). extrema d). inflection points  <div style=padding-top: 35px> .
a). intercepts
b). asymptotes
c). extrema
d). inflection points Determine all significant features by hand and sketch the graph of   . a). intercepts b). asymptotes c). extrema d). inflection points  <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/118
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Applications of the Derivative
1
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema
B) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema
C) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   C) absolute min:   D) no absolute extrema
D) no absolute extrema
absolute max: absolute max:
2
Using Newton's method with <strong>Using Newton's method with   , determine the third iteration when approximating the root to at least six-digit accuracy of the following equation. x<sup>3</sup> + x<sup>2</sup> - 5x + 4 = 0</strong> A) -3.062500 B) -3.060647 C) -3.060691 D) -3.060992 , determine the third iteration when approximating the root to at least six-digit accuracy of the following equation. x3 + x2 - 5x + 4 = 0

A) -3.062500
B) -3.060647
C) -3.060691
D) -3.060992
-3.060647
3
Find the linear approximation, L(x), to f(x) at x = x0. <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)

A) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)
B) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)
C) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)
D) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)

4
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema
B) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema and <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema
C) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema
D) no absolute extrema
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
5
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema
B) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema and <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema
C) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   B) absolute min:   and   C) absolute min:   D) no absolute extrema
D) no absolute extrema
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
6
Find the linear approximation at x = 0 to show that the following commonly used approximation is valid for "small" x. Find the linear approximation at x = 0 to show that the following commonly used approximation is valid for small x.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
7
Use linear approximation of <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)   at <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)   to estimate the quantity of <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)   to the nearest ten thousandth.

A) <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)
B) <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)
C) <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)
D) <strong>Use linear approximation of   at   to estimate the quantity of   to the nearest ten thousandth.</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
8
Use a linear approximation to estimate <strong>Use a linear approximation to estimate  </strong> A) 0 B) 0.18 C) 0.1 D) 0.02

A) 0
B) 0.18
C) 0.1
D) 0.02
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
9
Use a linear approximation to estimate <strong>Use a linear approximation to estimate   Note that 17.2 is near 16 which is  </strong> A) 3.23649 B) 2.03649 C) 2.0375 D) 3.08312 Note that 17.2 is near 16 which is <strong>Use a linear approximation to estimate   Note that 17.2 is near 16 which is  </strong> A) 3.23649 B) 2.03649 C) 2.0375 D) 3.08312

A) 3.23649
B) 2.03649
C) 2.0375
D) 3.08312
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
10
Use Newton's method with x0 = 2.6 to compute x1 and x2 without the use of a calculator.
f(x) = x3 - 3x - 5
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
11
A certain company estimates that it can sell f(x)-thousand video game consoles at the price of $x as given in the table. <strong>A certain company estimates that it can sell f(x)-thousand video game consoles at the price of $x as given in the table.   Use a linear approximation to estimate the number of consoles that can be sold at $62.</strong> A) approximately 105 thousand consoles B) approximately 108 thousand consoles C) approximately 130 thousand consoles D) approximately 138 thousand consoles Use a linear approximation to estimate the number of consoles that can be sold at $62.

A) approximately 105 thousand consoles
B) approximately 108 thousand consoles
C) approximately 130 thousand consoles
D) approximately 138 thousand consoles
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
12
Find the linear approximation at x = 0 for each of f (x) = (x + 1)2 + 5, g(x) = 6 + sin(2x) and Find the linear approximation at x = 0 for each of f (x) = (x + 1)<sup>2</sup> + 5, g(x) = 6 + sin(2x) and   . Graph each function together with its linear approximation. . Graph each function together with its linear approximation.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
13
Use Newton's method to find an approximate root of the equation <strong>Use Newton's method to find an approximate root of the equation   (accurate to six decimal places).</strong> A) 0.306232 B) 0.216232 C) 0.136232 D) 0.219565 (accurate to six decimal places).

A) 0.306232
B) 0.216232
C) 0.136232
D) 0.219565
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
14
ω\omega

-The impedance Z of a simple RL (resistive inductive) circuit is given by \omega   -The impedance Z of a simple RL (resistive inductive) circuit is given by   , where R is the resistance of the resistor, L is the inductance of the inductor, and  \omega  is the angular frequency of the applied voltage. Find a linear approximation of Z(L) for small values of L assuming all other quantities are constant. Show all of your work. , where R is the resistance of the resistor, L is the inductance of the inductor, and ω\omega is the angular frequency of the applied voltage. Find a linear approximation of Z(L) for small values of L assuming all other quantities are constant. Show all of your work.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
15
Find the linear approximation, L(x), to f(x) at x = x0. <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)

A) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)
B) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)
C) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)
D) <strong>Find the linear approximation, L(x), to f(x) at x = x<sub>0</sub>.  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
16
Approximate <strong>Approximate   accurate to 3 decimal places using Newton's method. State the function used.</strong> A) 2.289 using   B) 2.359 using   C) 2.219 using   D) 2.289 using   accurate to 3 decimal places using Newton's method. State the function used.

A) 2.289 using <strong>Approximate   accurate to 3 decimal places using Newton's method. State the function used.</strong> A) 2.289 using   B) 2.359 using   C) 2.219 using   D) 2.289 using
B) 2.359 using <strong>Approximate   accurate to 3 decimal places using Newton's method. State the function used.</strong> A) 2.289 using   B) 2.359 using   C) 2.219 using   D) 2.289 using
C) 2.219 using <strong>Approximate   accurate to 3 decimal places using Newton's method. State the function used.</strong> A) 2.289 using   B) 2.359 using   C) 2.219 using   D) 2.289 using
D) 2.289 using <strong>Approximate   accurate to 3 decimal places using Newton's method. State the function used.</strong> A) 2.289 using   B) 2.359 using   C) 2.219 using   D) 2.289 using
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
17
Explain why Newton's method fails for the following equation with the specified initial guess. <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots.

A) Using <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. we see that f is not differentiable at <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots.
B) Using <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. we obtain <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. .
C) Using <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. we obtain <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. which will give <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots.
D) Using <strong>Explain why Newton's method fails for the following equation with the specified initial guess.  </strong> A) Using   we see that f is not differentiable at   B) Using   we obtain   . C) Using   we obtain   which will give   D) Using   we see that f does not have any real roots. we see that f does not have any real roots.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
18
Newton's method fails for the given initial guess. Explain why the method fails and, if possible, find a root by correcting the problem. Round to four decimal places, if necessary. <strong>Newton's method fails for the given initial guess. Explain why the method fails and, if possible, find a root by correcting the problem. Round to four decimal places, if necessary.   , x<sub>0</sub> = -1</strong> A) f '(-1) = 0; -1.905, 0.105 B) f '(-1) does not exist; -1.905, 0.105 C) f (-1) = 0; 1.905, -0.105 D) f (-1) does not exist; 1.905, -0.105 , x0 = -1

A) f '(-1) = 0; -1.905, 0.105
B) f '(-1) does not exist; -1.905, 0.105
C) f (-1) = 0; 1.905, -0.105
D) f (-1) does not exist; 1.905, -0.105
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
19
Given the graph of f(x), draw in the tangent lines used in Newton's method to determine x1 and x2 after starting at x0 = 1. Given the graph of f(x), draw in the tangent lines used in Newton's method to determine x<sub>1</sub> and x<sub>2</sub> after starting at x<sub>0</sub> = 1.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
20
Using Newton's method, approximate the root of the following equation to at least six-digit accuracy. x3 + x2 - 3x + 5 = 0

A) -2.777778
B) -2.774551
C) -2.751101
D) -2.757031
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
21
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
B) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
C) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
D) no absolute extrema
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
22
Given <strong>Given   determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither determine if the critical number <strong>Given   determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither represents a local maximum, local minimum or neither.

A) local maximum
B) local minimum
C) neither
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
23
Given <strong>Given   determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither determine if the critical number <strong>Given   determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither represents a local maximum, local minimum or neither.

A) local maximum
B) local minimum
C) neither
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
24
Find the absolute extrema of the given function on the indicated interval. <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   on <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:

A) absolute maxima: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:
B) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:
C) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:
D) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maxima:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
25
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
B) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
C) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
D) no absolute extrema
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
26
Given <strong>Given   , determine the critical number(s).</strong> A)   B)   C)   D)   , determine the critical number(s).

A) <strong>Given   , determine the critical number(s).</strong> A)   B)   C)   D)
B) <strong>Given   , determine the critical number(s).</strong> A)   B)   C)   D)
C) <strong>Given   , determine the critical number(s).</strong> A)   B)   C)   D)
D) <strong>Given   , determine the critical number(s).</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
27
Given <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   , determine the absolute extrema on the interval <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   .

A) absolute max: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
B) absolute max: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   and <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   and <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
C) absolute max: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
D) absolute max: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Given   , determine the absolute extrema on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   and   ; absolute min:   and   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
28
Given <strong>Given   , on the interval   , determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither , on the interval <strong>Given   , on the interval   , determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither , determine if the critical number <strong>Given   , on the interval   , determine if the critical number   represents a local maximum, local minimum or neither.</strong> A) local maximum B) local minimum C) neither represents a local maximum, local minimum or neither.

A) local maximum
B) local minimum
C) neither
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
29
Given <strong>Given   determine the critical number(s).</strong> A)   B)   C)   D)   determine the critical number(s).

A) <strong>Given   determine the critical number(s).</strong> A)   B)   C)   D)
B) <strong>Given   determine the critical number(s).</strong> A)   B)   C)   D)
C) <strong>Given   determine the critical number(s).</strong> A)   B)   C)   D)
D) <strong>Given   determine the critical number(s).</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
30
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema

A) absolute max: approximately <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
B) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
C) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   absolute min:   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
D) no absolute extrema
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
31
Find all critical numbers. <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)

A) <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)
B) <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     , <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)
C) <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)
D) <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)     <strong>Find all critical numbers.  </strong> A)     B)   ,   C)     D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
32
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema

A) absolute max: approximately <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema
B) absolute max: approximately <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema
C) absolute max: approximately <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema
Absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max: approximately   absolute min:   C) absolute max: approximately   absolute min:   Absolute min:   D) no absolute extrema
D) no absolute extrema
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
33
Determine all critical numbers of <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   .

A) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)
B) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)
C) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)
D) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
34
Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither. <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum)

A) <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) (local maximum), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) (neither), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) (local minimum)
B) <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) (local maximum), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) (local maximum), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) (local minimum)
C) <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) (local maximum), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) (local minimum)
D) <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) (local minimum), <strong>Find all critical numbers. Then use a graph to determine whether the critical numbers represent a local maximum, local minimum, or neither.  </strong> A)   (local maximum),   (neither),   (local minimum) B)   (local maximum),   (local maximum),   (local minimum) C)   (local maximum),   (local minimum) D)   (local minimum),   (local maximum) (local maximum)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
35
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema

A) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
B) absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
C) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max:   absolute min:   B) absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
D) no absolute extrema
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
36
Find the absolute extrema of the given function on the indicated interval. <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   on <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:

A) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:
B) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:
C) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:
D) absolute maximum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:   , absolute minimum: <strong>Find the absolute extrema of the given function on the indicated interval.   on  </strong> A) absolute maximum:   , absolute minimum:   B) absolute maximum:   , absolute minimum:   C) absolute maximum:   , absolute minimum:   D) absolute maximum:   , absolute minimum:
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
37
Given the graph of <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema , locate the absolute extrema (if they exist) on the interval <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema . <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema

A) absolute max: approximately <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
B) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
C) absolute max: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema absolute min: <strong>Given the graph of   , locate the absolute extrema (if they exist) on the interval   .  </strong> A) absolute max: approximately   B) absolute max:   absolute min:   C) absolute max:   absolute min:   D) no absolute extrema
D) no absolute extrema
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
38
Determine all critical numbers of <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)   .

A) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)
B) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)
C) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)
D) <strong>Determine all critical numbers of   .</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
39
Given <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)   , on the interval <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)   , determine the critical number(s).

A) <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)
B) <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)
C) <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)
D) <strong>Given   , on the interval   , determine the critical number(s).</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
40
Find all critical numbers by hand. f (x) = x4/3 + 4x1/3 + 24x-2/3

A) -4, 0, 3
B) -4, 3
C) 0
D) -3, 0, 4
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
41
Find the intervals where the function is increasing and decreasing on the specified interval. Use this information to determine all local extrema. Find the intervals where the function is increasing and decreasing on the specified interval. Use this information to determine all local extrema.   on  on Find the intervals where the function is increasing and decreasing on the specified interval. Use this information to determine all local extrema.   on
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
42
Determine the intervals where <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   is concave up and concave down.

A) concave down for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   concave up for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for
B) concave down for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   concave up for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for
C) concave down for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   cancave up for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for
D) concave down for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   and <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for   concave up for <strong>Determine the intervals where   is concave up and concave down.</strong> A) concave down for   concave up for   B) concave down for   concave up for   C) concave down for   cancave up for   D) concave down for   and   concave up for
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
43
Using a calculator or computer, estimate the absolute extrema of <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   on the interval <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   . Round answer to the nearest hundredth.

A) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
B) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
C) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
D) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   on the interval   . Round answer to the nearest hundredth.</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
44
Find all asymptotes and extrema and sketch a graph. Find all asymptotes and extrema and sketch a graph.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
45
Determine, by hand, all critical numbers of <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.

A) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:
Neither: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:
B) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:
Neither: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:
C) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:
Neither: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:
D) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:   local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:
Neither: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither:   B) local maximum at   local minimum at   Neither:   C) local maximum at   local minimum at   Neither:   D) local maximum at   local minimum at   Neither:
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
46
Find all asymptotes and extrema and sketch a graph. Find all asymptotes and extrema and sketch a graph.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
47
A herd of ninety-nine antelope is released onto a small game reserve so that their reproductive habits can be studied. In the beginning the population of the herd increases rapidly in size but eventually slows due to a dwindling food supply. Suppose the population of antelope after t years is given by the function <strong>A herd of ninety-nine antelope is released onto a small game reserve so that their reproductive habits can be studied. In the beginning the population of the herd increases rapidly in size but eventually slows due to a dwindling food supply. Suppose the population of antelope after t years is given by the function   where   . Determine when the population begins to decline.</strong> A) 15 years B) 17 years C) 18 years D) 19 years where <strong>A herd of ninety-nine antelope is released onto a small game reserve so that their reproductive habits can be studied. In the beginning the population of the herd increases rapidly in size but eventually slows due to a dwindling food supply. Suppose the population of antelope after t years is given by the function   where   . Determine when the population begins to decline.</strong> A) 15 years B) 17 years C) 18 years D) 19 years . Determine when the population begins to decline.

A) 15 years
B) 17 years
C) 18 years
D) 19 years
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
48
Find the x-coordinates of all extrema and sketch the graph showing global and local behavior of the function. Round answers to nearest thousandth. y = x5 - 150x3 + 460x + 9

A) local max: x = -1.017, x = 9.432 local min: x = -9.432, x = 1.017 <strong>Find the x-coordinates of all extrema and sketch the graph showing global and local behavior of the function. Round answers to nearest thousandth. y = x<sup>5</sup> - 150x<sup>3</sup> + 460x + 9</strong> A) local max: x = -1.017, x = 9.432 local min: x = -9.432, x = 1.017   B) local max: x = -9.432, x = 1.017 local min: x = -1.017, x = 9.432   C) local max: x = -1.0343 local min: x = 1.0343   D) local max: x = 1.0343 local min: x = -1.0343
B) local max: x = -9.432, x = 1.017 local min: x = -1.017, x = 9.432 <strong>Find the x-coordinates of all extrema and sketch the graph showing global and local behavior of the function. Round answers to nearest thousandth. y = x<sup>5</sup> - 150x<sup>3</sup> + 460x + 9</strong> A) local max: x = -1.017, x = 9.432 local min: x = -9.432, x = 1.017   B) local max: x = -9.432, x = 1.017 local min: x = -1.017, x = 9.432   C) local max: x = -1.0343 local min: x = 1.0343   D) local max: x = 1.0343 local min: x = -1.0343
C) local max: x = -1.0343 local min: x = 1.0343 <strong>Find the x-coordinates of all extrema and sketch the graph showing global and local behavior of the function. Round answers to nearest thousandth. y = x<sup>5</sup> - 150x<sup>3</sup> + 460x + 9</strong> A) local max: x = -1.017, x = 9.432 local min: x = -9.432, x = 1.017   B) local max: x = -9.432, x = 1.017 local min: x = -1.017, x = 9.432   C) local max: x = -1.0343 local min: x = 1.0343   D) local max: x = 1.0343 local min: x = -1.0343
D) local max: x = 1.0343 local min: x = -1.0343 <strong>Find the x-coordinates of all extrema and sketch the graph showing global and local behavior of the function. Round answers to nearest thousandth. y = x<sup>5</sup> - 150x<sup>3</sup> + 460x + 9</strong> A) local max: x = -1.017, x = 9.432 local min: x = -9.432, x = 1.017   B) local max: x = -9.432, x = 1.017 local min: x = -1.017, x = 9.432   C) local max: x = -1.0343 local min: x = 1.0343   D) local max: x = 1.0343 local min: x = -1.0343
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
49
Determine, by hand, the interval(s) where <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   is increasing and/or decreasing.

A) <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing
B) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing
C) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing
D) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A)   B) increasing   ; decreasing   C) increasing   ; decreasing   D) increasing   ; decreasing
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
50
Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema. <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema

A) decreasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema increasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema local maximum <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema
B) decreasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema increasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema local minimum <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema
C) decreasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema no extrema
D) increasing: <strong>Find the intervals where the function is increasing and decreasing. Use this information to determine all local extrema.  </strong> A) decreasing:   increasing:   local maximum   B) decreasing:   increasing:   local minimum   C) decreasing:   no extrema D) increasing:   no extrema no extrema
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
51
Find the x-coordinates of all extrema and sketch the graph of Find the x-coordinates of all extrema and sketch the graph of   showing global and local behavior. Round answer to nearest thousandth.  showing global and local behavior. Round answer to nearest thousandth. Find the x-coordinates of all extrema and sketch the graph of   showing global and local behavior. Round answer to nearest thousandth.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
52
Find the x-coordinates of all extrema and sketch the graph of Find the x-coordinates of all extrema and sketch the graph of   showing global and local behavior.  showing global and local behavior. Find the x-coordinates of all extrema and sketch the graph of   showing global and local behavior.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
53
Find (by hand) all critical numbers and use the First Derivative Test to classify each as the location of a local maximum, local minimum or neither. y = x4/3 - 8x1/3 - 6

A) x = 0 (neither)
B) x = -2 (local maxima)
C) x = -2 (local minima)
D) x = 2 (local minima), x = 0 (neither)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
54
Using a calculator or computer, estimate the absolute extrema of <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   , on the interval <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   .

A) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
B) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
C) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
D) absolute max: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:   ; absolute min: <strong>Using a calculator or computer, estimate the absolute extrema of   , on the interval   .</strong> A) absolute max:   ; absolute min:   B) absolute max:   ; absolute min:   C) absolute max:   ; absolute min:   D) absolute max:   ; absolute min:
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
55
Sketch a graph of a function with the following properties. Sketch a graph of a function with the following properties.   if   if    if Sketch a graph of a function with the following properties.   if   if    if Sketch a graph of a function with the following properties.   if   if    Sketch a graph of a function with the following properties.   if   if
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
56
Estimate critical numbers and sketch graphs showing both global and local behavior. Estimate critical numbers and sketch graphs showing both global and local behavior.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
57
Determine, by hand, all critical numbers of <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.

A) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at
Neither at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at
B) local maximum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   local minimum at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at
Neither at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at
C) local maximum: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   local minimum: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at
Neither at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at
D) local maximum: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at   local minimum: <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at
Neither at <strong>Determine, by hand, all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum at   local minimum at   Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum:   local minimum:   Neither at   D) local maximum:   local minimum:   Neither at
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
58
Find all critical numbers of <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.

A) local maximum: none local minimum: none
Neither at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and
B) local maximum at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   local minimum at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and
Neither at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and
C) local maximum at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   local minimum at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and
Neither at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and
D) local maximum: none local minimum at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and
Neither at <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and   and <strong>Find all critical numbers of   and use the First Derivative Test to classify each as a local minimum, local maximum or neither.</strong> A) local maximum: none local minimum: none Neither at   B) local maximum at   local minimum at   Neither at   C) local maximum at   local minimum at   Neither at   D) local maximum: none local minimum at   Neither at   and
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
59
Determine, by hand, the interval(s) where <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   is increasing and/or decreasing.

A) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and
B) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and
C) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and
D) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and   and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   and   ; decreasing   B) increasing   ; decreasing   C) increasing   and   ; decreasing   and   D) increasing   ; decreasing   and
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
60
Determine, by hand, the interval(s) where <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   is increasing and/or decreasing.

A) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing
B) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing
C) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing
D) increasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   and <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing   ; decreasing <strong>Determine, by hand, the interval(s) where   is increasing and/or decreasing.</strong> A) increasing   ; decreasing   B) increasing   and   ; decreasing   and   C) increasing   and   ; decreasing   and   D) increasing   and   ; decreasing
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
61
Using the critical numbers of Using the critical numbers of   , use the Second Derivative Test to determine all local extrema. , use the Second Derivative Test to determine all local extrema.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
62
Graph the function and completely discuss the graph. <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none

A) domain: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   ; concave down: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   ; x-intercept: none <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none
B) domain: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   ; concave down: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   x-intercept: none <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none
C) domain: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   ; concave up: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   x-intercept: none <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none
D) domain: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   ; concave up: <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none   ; x-intercept: none <strong>Graph the function and completely discuss the graph.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   ; x-intercept: none   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave down:   x-intercept: none   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   x-intercept: none   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema:   ; concave up:   ; x-intercept: none
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
63
Sketch the graph of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  while answering the following questions.
a. What is the domain and range of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  ?
b. What are the intercepts of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  ?
c. What, if any, are the equation(s) of vertical asymptotes of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  ?
d. What, if any, are the local min(s) and local max(s) of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  ?
e. What, if any, are the inflection point(s) of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  ?
f. What, if it exists, is the equation of the horizontal asymptote of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?  ? Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymptotes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymptote of   ?
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
64
Graph the function and completely discuss the graph. Graph the function and completely discuss the graph.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
65
Estimate the intervals where the function shown below is concave up and/or concave down. <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for

A) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
B) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
C) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
D) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
66
Estimate the intervals where the function shown below is concave up and/or concave down. <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for

A) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
B) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
C) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
D) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
67
The unit price of x units of a certain product is given by <strong>The unit price of x units of a certain product is given by   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.</strong> A)   B)   C)   D)   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.

A) <strong>The unit price of x units of a certain product is given by   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.</strong> A)   B)   C)   D)
B) <strong>The unit price of x units of a certain product is given by   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.</strong> A)   B)   C)   D)
C) <strong>The unit price of x units of a certain product is given by   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.</strong> A)   B)   C)   D)
D) <strong>The unit price of x units of a certain product is given by   . What is the maximum possible revenue when selling x units? Round answer to nearest dollar.</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
68
Sketch the graph with the given properties. <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   for all x, <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   for <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)   for <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)

A) <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)
B) <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)
C) <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)
D) <strong>Sketch the graph with the given properties.     for all x,     for     for  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
69
Graph the function and completely discuss the graph. Graph the function and completely discuss the graph.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
70
Determine the following significant features by hand and sketch the graph of Determine the following significant features by hand and sketch the graph of   . a). intercepts b). asymptotes c). extrema d). inflection points  .
a). intercepts
b). asymptotes
c). extrema
d). inflection points Determine the following significant features by hand and sketch the graph of   . a). intercepts b). asymptotes c). extrema d). inflection points
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
71
Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary. <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)

A) domain: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   ;
Concave up: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   ; x-intercepts: (0, 0) and (35, 0) <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)
B) domain: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)
X-intercepts: (0, 0) and (35, 0) <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)
C) domain: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)
X-intercepts: (0, 0) and (35, 0) <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)
D) domain: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   ;
Concave up: <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   ; x-intercepts: (0, 0) and (35, 0) <strong>Graph the function and completely discuss the graph. Round answers to three decimals places, if necessary.  </strong> A) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)   B) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: none; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   C) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave up:   X-intercepts: (0, 0) and (35, 0)   D) domain:   vertical asymptotes: none; horizontal asymptotes: none; vertical tangents: x = 0; local extrema: (0, 0), (14, -121.985); concave down:   ; Concave up:   ; x-intercepts: (0, 0) and (35, 0)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
72
Determine the intervals where <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   is concave up and concave down. Round answers to nearest hundredth.

A) concave up for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   concave down for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for
B) concave down for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   concave up for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for
C) concave up for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for
D) concave down for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for   concave up for <strong>Determine the intervals where   is concave up and concave down. Round answers to nearest hundredth.</strong> A) concave up for   concave down for   B) concave down for   concave up for   C) concave up for   D) concave down for   concave up for
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
73
Determine all significant features and sketch a graph. Determine all significant features and sketch a graph.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
74
The total cost of producing and marketing x number of units of a certain product is given by <strong>The total cost of producing and marketing x number of units of a certain product is given by   . For what number x is the total cost a minimum? Round answer to nearest unit.</strong> A)   B)   C)   D)   . For what number x is the total cost a minimum? Round answer to nearest unit.

A) <strong>The total cost of producing and marketing x number of units of a certain product is given by   . For what number x is the total cost a minimum? Round answer to nearest unit.</strong> A)   B)   C)   D)
B) <strong>The total cost of producing and marketing x number of units of a certain product is given by   . For what number x is the total cost a minimum? Round answer to nearest unit.</strong> A)   B)   C)   D)
C) <strong>The total cost of producing and marketing x number of units of a certain product is given by   . For what number x is the total cost a minimum? Round answer to nearest unit.</strong> A)   B)   C)   D)
D) <strong>The total cost of producing and marketing x number of units of a certain product is given by   . For what number x is the total cost a minimum? Round answer to nearest unit.</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
75
Determine all significant features and sketch a graph. Determine all significant features and sketch a graph.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
76
Estimate the intervals where the function shown below is concave up and/or concave down. <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for

A) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
B) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
C) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
D) concave up for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for   concave down for <strong>Estimate the intervals where the function shown below is concave up and/or concave down.  </strong> A) concave up for   concave down for   B) concave up for   concave down for   C) concave up for   concave down for   D) concave up for   concave down for
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
77
Determine all significant features and sketch a graph. Determine all significant features and sketch a graph.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
78
Sketch the graph of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  while answering the following questions.
a. What is the domain and range of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  ?
b. What are the intercepts of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  ?
c. What, if any, are the equation(s) of vertical asymototes of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  ?
d. What, if any, are the local min(s) and local max(s) of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  ?
e. What, if any, are the inflection point(s) of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  ?
f. What, if it exists, is the equation of the horizontal asymotote of Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?  ? Sketch the graph of   while answering the following questions. a. What is the domain and range of   ? b. What are the intercepts of   ? c. What, if any, are the equation(s) of vertical asymototes of   ? d. What, if any, are the local min(s) and local max(s) of   ? e. What, if any, are the inflection point(s) of   ? f. What, if it exists, is the equation of the horizontal asymotote of   ?
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
79
Using the critical numbers of <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   , use the Second Derivative Test to determine all local extrema.

A) critical numbers: <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   ; local max <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   ; local min <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min
B) critical numbers: <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   ; local max <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   ; local min <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min
C) critical numbers: <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   ; local max <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   ; local min <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min
D) critical numbers: <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   ; local max <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min   ; local min <strong>Using the critical numbers of   , use the Second Derivative Test to determine all local extrema.</strong> A) critical numbers:   ; local max   ; local min   B) critical numbers:   ; local max   ; local min   C) critical numbers:   ; local max   ; local min   D) critical numbers:   ; local max   ; local min
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
80
Determine all significant features by hand and sketch the graph of Determine all significant features by hand and sketch the graph of   . a). intercepts b). asymptotes c). extrema d). inflection points  .
a). intercepts
b). asymptotes
c). extrema
d). inflection points Determine all significant features by hand and sketch the graph of   . a). intercepts b). asymptotes c). extrema d). inflection points
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 118 flashcards in this deck.