Deck 12: Boundary-Value Problems in Rectangular Coordinates

Full screen (f)
exit full mode
Question
The general solution of y+n2n2y=0,y(0)=0,y(1)=0,n=1,2,3y ^ { \prime \prime } + n ^ { 2 } n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0 , n = 1,2,3 \ldots is

A) y=0y = 0
B) y=csin(nπx)y = c \cdot \sin ( n \pi x )
C) y=ccos(nπx)y = c \cdot \cos ( n \pi x )
D) c(en+xen+x)c \left( e ^ { n + x } - e ^ { - n + x } \right)
E) c(en+x+en+x)c \left( e ^ { n + x } + e ^ { - n + x } \right)
Use Space or
up arrow
down arrow
to flip the card.
Question
The solution of the eigenvalue problem from the previous problem is

A) λ=nπ/L,X(x)=sin(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
B) λ=nπ/L,X(x)=cos(nπx/L),n=0,1,2,\lambda = n \pi / L , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
C) λ=(nπ/L),X(x)=sin(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) , X ( x ) = \sin ( n \pi x / L ) , n = 0,1,2 , \ldots
D) λ=(nπ/L)2,X(x)=sin(nπx/L),n=1,2,3,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
E) λ=(nπ/L)2,X(x)=cos(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
Question
The wave equation for a vibrating string is derived using the assumptions Select all that apply.

A) the string is perfectly flexible.
B) the displacements may be large.
C) the tension acts perpendicular to the string.
D) the tension is large compared with gravity.
E) the string is homogeneous.
Question
The differential equation 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 is

A) first order, linear, homogeneous
B) first order, linear, non-homogeneous
C) second order, nonlinear
D) second order, linear, homogeneous
E) second order, linear, non-homogeneous
Question
The differential equation 2ux2ut=u\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = u is Select all that apply.

A) nonlinear
B) linear
C) hyperbolic
D) elliptic
E) parabolic
Question
In the previous three problems, the solution of the original problem is

A) u(x,t)=n1cncos((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=20Lf(x)cos((n1/2)πx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( ( n - 1 / 2 ) \pi x / L ) d x / L
B) u(x,t)=n1cnsin((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=20Lf(x)sin((n1/2)πx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( ( n - 1 / 2 ) \pi x / L ) d x / L
C) u(x,t)=n1cncos((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=0Lf(x)cos((n1/2)πx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( ( n - 1 / 2 ) \pi x / L ) d x
D) u(x,t)=n=0cnsin((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=20Lf(x)sin((n1/2)πx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( ( n - 1 / 2 ) \pi x / L ) d x / L
E) u(x,t)=n0cnsin((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n - 0 } ^ { \infty } c _ { n } \sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=0Lf(x)sin((n1/2)πx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \sin ( ( n - 1 / 2 ) \pi x / L ) d x
Question
The solution of the eigenvalue problem from the previous problem is

A) λ=nπ/L,X(x)=sin(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
B) λ=nπ/L,X(x)=cos(nπx/L),n=0,1,2,\lambda = n \pi / L , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
C) λ=(n1/2)π/L,X(x)=sin((n1/2)πx/L),n=1,2,3,\lambda = ( n - 1 / 2 ) \pi / L , X ( x ) = \sin ( ( n - 1 / 2 ) \pi x / L ) , n = 1,2,3 , \ldots
D) λ=((n1/2)π/L)2,X(x)=sin((n1/2)πx/L),n=1,2,3,\lambda = ( ( n - 1 / 2 ) \pi / L ) ^ { 2 } , X ( x ) = \sin ( ( n - 1 / 2 ) \pi x / L ) , n = 1,2,3 , \ldots
E) λ=((n1/2)π/L)2,X(x)=cos((n1/2)πx/L),n=1,2,3,\lambda = ( ( n - 1 / 2 ) \pi / L ) ^ { 2 } , X ( x ) = \cos ( ( n - 1 / 2 ) \pi x / L ) , n = 1,2,3 , \ldots
Question
In the previous three problems, the solution of the original problem is

A) u(x,t)=n=1cnsin(nπx/L)e(nπ/L)tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) t } , where cn=0Lf(x)cos(nπx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x
B) u(x,t)=n=0cncos(nπx/L)cos(nπt/L)u ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) \cos ( n \pi t /L ) , where c0=0Lf(x)dx/L,cn=20Lf(x)cos(nπx/L)dx/Lc _ { 0 } = \int _ { 0 } ^ { L } f ( x ) d x / L , c _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / L
C) u(x,t)=n=1cnsin(nπx/L)sin(nπt/L)u ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \sin ( n \pi t / L ) , where cn=20Lf(x)cos(nπx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / L
D) u(x,t)=n=1cnsin(nπx/L)enxt/Lu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - nxt / L } , where cn=20Lf(x)sin(nπx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / L
E) u(x,t)=n=0cncos(nπx/L)enxt/Lu ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) e ^ { - n x t / L } , where cn=0Lf(x)cos(nπx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x
Question
The differential equation 2ux2+2uxy+2uy2=u\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial x \partial y } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = u is Select all that apply.

A) linear
B) nonlinear
C) hyperbolic
D) elliptic
E) parabolic
Question
Consider the equation uxxut=0u _ { xx } - u _ { t } = 0 with conditions u(0,t)=0,ux=(L,t)=0,u(x,0)=f(x)u ( 0 , t ) = 0 , u _ { x } = ( L , t ) = 0 , u ( x , 0 ) = f ( x ) . When separating variables with u(x,t)=X(x)T(t)u ( x , t ) = X ( x ) T ( t ) , the resulting problems for X,TX , T are

A) X+λX=0,X(0)=0,X(L)=0,TλT=0,T(0)=f(x)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime } - \lambda T = 0 , T ( 0 ) = f ( x )
B) X+λX=0,X(0)=0,X(L)=0,T+λT=0,T(0)=f(x)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime } + \lambda T = 0 , T ( 0 ) = f ( x )
C) XλX=0,X(0)=0,X(L)=0,T+λT=0X ^ { \prime \prime } - \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime } + \lambda T = 0
D) X+λX=0,X(0)=0,X(L)=0,TλT=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime } - \lambda T = 0
E) X+λX=0,X(0)=0,X(L)=0,T+λT=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime } + \lambda T = 0
Question
Consider the equation uxxutt=0u _ { xx } - u _ { t t } = 0 with conditions dudx(0,t)=0,dudx=(L,t)=0,u(x,0)=f(x),dudt(0)=0\frac { d u } { d x } ( 0 , t ) = 0 , \frac { d u } { d x } = ( L , t ) = 0 , u ( x , 0 ) = f ( x ) , \frac { d u } { d t } ( 0 ) = 0 . When separating variables with u(x,t)=X(x)T(t)u ( x , t ) = X ( x ) T ( t ) , the resulting problems for X,TX , T are

A) X+λX=0,X(0)=0,X(L)=0,T+λT=0,T(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ( 0 ) = 0
B) XλX=0,X(0)=0,X(L)=0,T+λT=0,T(0)=0X ^ { \prime \prime } - \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
C) X+λX=0,X(0)=0,X(L)=0,T+λT=0,T(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
D) X+λX=0,X(0)=0,X(L)=0,TλT=0,T(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime \prime } - \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
E) X+λX=0,X(0)=0,X(L)=0,T+λT=0,T(0)=f(x)X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ( 0 ) = f ( x )
Question
In the previous two problems, the product solutions are

A) sin((n1/2)πx/L)e(n1/2)2π2t/L2\sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } t / L ^ { 2 } }
B) cos((n1/2)πx/L)e(n1/2)2π2t/L2\cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } t / L ^ { 2 } }
C) sin((n1/2)πx/L)e(n1/2)/L\sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) / L }
D) sin((n1/2)πx/L)e(n1/2)2x2t/L2\sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } }
E) cos((n1/2)πx/L)e(n1/2)2π2t/L2\cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } t / L ^ { 2 } }
Question
The solution of the previous three problems is n=1cnXn(x)eλnkt\sum _ { n = 1 } ^ { \infty } c _ { n } X _ { n } ( x ) e ^ { - \lambda _ { n } k t } , where XnX _ { n } and λn\lambda _ { n } are given in the previous problem and

A) cn=0Lf(x)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) d x
B) cn=0Lf(x)Xn(x)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x
C) cn=0Lf(x)Xn(x)dx/0LXn(x)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x / \int _ { 0 } ^ { L } X _ { n } ( x ) d x
D) cn=0LXn2(x)dx/0Lf(x)Xn(x)dxc _ { n } = \int _ { 0 } ^ { L } X _ { n } ^ { 2 } ( x ) d x / \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x
E) cn=0Lf(x)Xn(x)dx/0LXn2(x)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x / \int _ { 0 } ^ { L } X _ { n } ^ { 2 } ( x ) d x
Question
After separating variables in the previous problem, the eigenvalue problem becomes

A) X+λX=0,X(0)=0,X(L)=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0
B) X+λX=0,X(0)=0,X(L)=hX(L)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = - h X ( L )
C) X+λX=0,X(0)=0,X(L)=hX(0)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = - h X ^ { \prime } ( 0 )
D) X+λX=0,X(0)=0,X(L)=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0
E) X+λX=0,X(0)=0,X(L)=hX(L)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = h X ( L )
Question
In the previous two problems, the product solutions are

A) sin(nπx/L)sin(nπ/L)\sin ( n \pi x / L ) \sin ( n \pi / L )
B) sin(nπx/L)cos(nπ/L)\sin ( n \pi x / L ) \cos ( n \pi / L )
C) cos(nπx/L)cos(nπ/L)\cos ( n \pi x / L ) \cos ( n \pi / L )
D) sin(nπx/L)enx/L\sin ( n \pi x / L ) e ^ { n x / L }
E) cos(nπx/L)ent/L\cos ( n \pi x / L ) e ^ { - n t / L }
Question
The solution of yn2n2y=0,y(0)=0,y(1)=0,n=1,2,3y ^ { \prime \prime } - n ^ { 2 } n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0 , n = 1,2,3 \ldots is

A) y=0y = 0
B) y=csin(nπx)y = c \cdot \sin ( n \pi x )
C) y=ccos(nπx)y = c \cdot \cos ( n \pi x )
D) c(enxtenxt)c \left( e ^ { n xt } - e ^ { - nxt } \right)
E) c(enxt+enxt)c \left( e ^ { n xt } + e ^ { - nxt } \right)
Question
When u(x,y)=X(x)Y(y)u ( x , y ) = X ( x ) Y ( y ) is substituted into the equation uxx+uyy=0u _ { xx } + u _ { y y } = 0 , the resulting equations for XX and YY are

A) X+λX=0,Y+λY=0X ^ { \prime } + \lambda X = 0 , Y ^ { \prime } + \lambda Y = 0
B) X+λX=0,YλY=0X ^ { \prime } + \lambda X = 0 , Y ^ { \prime } - \lambda Y = 0
C) X+λX=0,Y+λY=0X ^ { \prime \prime } + \lambda X = 0 , Y ^ { \prime \prime } + \lambda Y = 0
D) X+λX=0,YλY=0X ^ { \prime \prime } + \lambda X = 0 , Y ^ { \prime \prime } - \lambda Y = 0
E) XλX=0,Y+λY=0X ^ { \prime \prime } - \lambda X = 0 , Y ^ { \prime \prime } + \lambda Y = 0
Question
The solution of the eigenvalue problem in the previous problem is

A) λ=((n1/2)π/L)2,X=sin((n1/2)πx/L)\lambda = ( ( n - 1 / 2 ) \pi / L ) ^ { 2 } , X = \sin ( ( n - 1 / 2 ) \pi x / L )
B) λ/h=tan(λL),X=sin(λx)\sqrt { \lambda } / h = \tan ( \sqrt { \lambda } L ) , X = \sin ( \sqrt { \lambda } x )
C) λ=(nπ/L)2,X=sin(nπx/L)\lambda = ( n \pi / L ) ^ { 2 } , X = \sin ( n \pi x / L )
D) λ/h=tan(λL),X=sin(λx)\sqrt { \lambda } / h = - \tan ( \sqrt { \lambda } L ) , X = \sin ( \sqrt { \lambda } x )
E) λh=tan(λL),X=sin(λx)\sqrt { \lambda } h = - \tan ( \sqrt { \lambda } L ) , X = \sin ( \sqrt { \lambda } x )
Question
The solution of y+λy=0,y(0)=0,y(π)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 if λ=0\lambda = 0 is

A) y=sinxy = \sin x
B) y=cosxy = \cos x
C) y=0y = 0
D) y=ax+by = a x + b
E) y=xπy = x - \pi
Question
The model describing the temperature in a rod where the temperature at the left end is zero and where there is heat transfer from the right boundary into the external medium is

A) k2ux2=2ut2,u(0,t)=0,ux=(L,t)=hu(L,t),h>0,u(x,0)=f(x)k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = - h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
B) k2ux2=2ut2,u(0,t)=0,ux=(L,t)=hu(L,t),h>0,u(x,0)=f(x)k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
C) k2ux2=ut,u(0,t)=0,ux=(L,t)=hu(L,t),h>0,u(x,0)=f(x)k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = - h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
D) k2ux2=ut,u(0,t)=0,ux=(L,t)=hu(L,t),h>0,u(x,0)=f(x)k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
E) k2ux2+2ut2=0,u(0,t)=0,ux=(L,t)=hu(L,t),h>0,u(x,0)=f(x)k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = - h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
Question
Consider the equation ux+uyy=0u _ { x } + u _ { y y } = 0 with conditions u(0,y)=0,u=(L,y)=0,u(x,0)=f(x),u(x,H)=0u ( 0 , y ) = 0 , u = ( L , y ) = 0 , u ( x , 0 ) = f ( x ) , u ( x , H ) = 0 . When separating variables with u(x,y)=X(x)Y(y)u ( x , y ) = X ( x ) Y ( y ) , the resulting problems for X,YX , Y are

A) X+λX=0,X(0)=0,X(L)=0,Y+λY=0,Y(H)=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( H ) = 0
B) X+λX=0,X(0)=0,X(L)=0,YλY=0,Y(H)=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( H ) = 0
C) X+λX=0,X(0)=0,X(L)=0,YλY=0,Y(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0
D) XλX=0,X(0)=0,X(L)=0,YλY=0,Y(H)=f(0)X ^ { \prime \prime } - \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( H ) = f ( 0 )
E) X+λX=0,X(0)=0,X(L)=0,Y+λY=0,Y(0)=f(x)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = f ( x )
Question
In the previous problem, the eigenfunction expansion if xetx e ^ { t } is

A) etn1(1)n2Lcos(nπx/L)/(nπ)e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 L \cos ( n \pi x / L ) / ( n \pi )
B) etn1(1)n2Lsin(nπx/L)/(n2π2)e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 L \sin ( n \pi x / L ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
C) etn1(1)n2Lcos(nπx/L)/(n2π2)e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 L \cos ( n \pi x / L ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
D) etn1(1)n+12Lcos(nπx/L)/(nπ)e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 L \cos ( n \pi x / L ) / ( n \pi )
E) etn1(1)n+12Lsin(nπx/L)/(nπ)e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 L \sin ( n \pi x / L ) / ( n \pi )
Question
When u(x,y)=X(x)Y(y)u ( x , y ) = X ( x ) Y ( y ) is substituted into the equation uxuyy=0u _ { x } - u _ { y y } = 0 , the resulting equations for XX and YY are

A) X+λX=0,Y+λY=0X ^ { \prime \prime } + \lambda X = 0 , Y ^ { \prime \prime } + \lambda Y = 0
B) X+λX=0,YλY=0X ^ { \prime \prime } + \lambda X = 0 , Y ^ { \prime \prime } - \lambda Y = 0
C) XλX=0,Y+λY=0X ^ { \prime \prime } - \lambda X = 0 , Y ^ { \prime \prime } + \lambda Y = 0
D) X+λX=0,Y+λY=0X ^ { \prime } + \lambda X = 0 , Y ^ { \prime } + \lambda Y = 0
E) X+λX=0,YλY=0X ^ { \prime } + \lambda X = 0 , Y ^ { \prime } - \lambda Y = 0
Question
The solution of the eigenvalue problem from the previous problem is

A) λ=nπ/L,X(x)=sin(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
B) λ=nπ/L,X(x)=cos(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \cos ( n \pi x / L ) , n = 1,2,3 , \ldots
C) λ=(nπ/L)2,X(x)=sin(nπx/L),n=1,2,3,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
D) λ=(nπ/L)2,X(x)=cos(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
E) λ=(nπ/L),X(x)=sin(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) , X ( x ) = \sin ( n \pi x / L ) , n = 0,1,2 , \ldots
Question
The solution of the eigenvalue problem from the previous problem is

A) λ=nπ/L,X(x)=sin(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
B) λ=nπ/L,X(x)=cos(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \cos ( n \pi x / L ) , n = 1,2,3 , \ldots
C) λ=(nπ/L)2,X(x)=sin(nπx/L),n=1,2,3,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
D) λ=(nπ/L)2,X(x)=cos(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
E) λ=(nπ/L),X(x)=sin(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) , X ( x ) = \sin ( n \pi x / L ) , n = 0,1,2 , \ldots
Question
The solution of yn2y=0,y(0)=0,y(π)=0,n=1,2,3y ^ { \prime \prime } - n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 , n = 1,2,3 \ldots is

A) y=0y = 0
B) y=csin(nx)y = c \cdot \sin ( n x )
C) y=ccos(nx)y = c \cdot \cos ( n x )
D) y=c(enxenx)y = c \left( e ^ { n x } - e ^ { - n x } \right)
E) y=c(enx+enx)y = c \left( e ^ { n x } + e ^ { - n x } \right)
Question
The differential equation 2ux22uy2=sinu\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = \sin u is Select all that apply.

A) linear
B) nonlinear
C) hyperbolic
D) elliptic
E) parabolic
Question
In the previous three problems, the solution of the original problem is

A) u(x,t)=n1cnsin(nπx/L)sinh(nπ(yH)/L)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \sinh ( n \pi ( y - H ) / L ) , where cn=0Lf(x)cos(nπx/L)dx/sinh(nπH/L)c _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / \sinh ( - n \pi H / L )
B) u(x,t)=n1cnsin(nπx/L)sinh(nπ(yH)/L)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \sinh ( n \pi ( y - H ) / L ) , where cx=20Lf(x)sin(nπx/L)dx/(Lsinh(nπH/L))c _ { x } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / ( L \sinh ( - n \pi H / L ) )
C) u(x,t)=n1cnsin(nπx/L)cosh(nπ(yH)/L)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \cosh ( n \pi ( y - H ) / L ) , where cn=20Lf(x)cos(nπx/L)dx/(Lsinh(nπH/L))c _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / ( L \sinh ( - n \pi H / L ) )
D) u(x,t)=n1cnsin(nπx/L)cosh((nπ/L)2(yH))u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \cosh \left( ( n \pi / L ) ^ { 2 } ( y - H ) \right) , where cx=20Lf(x)sin(nπx/L)dx/(Lsinh(nπH/L))c _ { x } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / ( L \sinh ( - n \pi H / L ) )
E) u(x,t)=n=0cncos(nπx/L)sinh((nπ/L)2(yH))u ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) \sinh \left( ( n \pi / L ) ^ { 2 } ( y - H ) \right) , where cn=0Lf(x)cos(nπx/L)dx/sinh(nπH/L)c _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / \sinh ( - n \pi H / L )
Question
In the previous two problems, the product solutions are

A) sin(nπx/L)sinh(nπ(yH)/L)\sin ( n \pi x / L ) \sinh ( n \pi ( y - H ) / L )
B) cos(nπx/L)sinh(nπ(yH)/L)\cos ( n \pi x / L ) \sinh ( - n \pi ( y - H ) / L )
C) cos(nπx/L)cosh((nπ/L)2(yH))\cos ( n \pi x / L ) \cosh \left( ( n \pi / L ) ^ { 2 } ( y - H ) \right)
D) sin(nπx/L)cosh((nπ/L)2(yH))\sin ( n \pi x / L ) \cosh \left( - ( n \pi / L ) ^ { 2 } ( y - H ) \right)
E) cos(nπx/L)cosh(nπ(yH)/L)\cos ( n \pi x / L ) \cosh ( - n \pi ( y - H ) / L )
Question
The differential equation 2ux2+2uy2=u\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = u is

A) first order, linear, homogeneous
B) first order, linear, non-homogeneous
C) second order, nonlinear
D) second order, linear, homogeneous
E) second order, linear, non-homogeneous
Question
In the problem 2ux2+xet=ut,u(0,t)=0,u(L,t)=0,u(x,0)=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + x e ^ { t } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( L , t ) = 0 , u ( x , 0 ) = 0 , the eigenvalues and eigenfunctions of the underlying homogeneous problem are

A) λ=n2,X=sin(nx)\lambda = n ^ { 2 } , X = \sin ( n x )
B) λ=n2,X=cos(nx)\lambda = n ^ { 2 } , X = \cos ( n x )
C) λ=n2π2/L2,X=sin(nπx/L)\lambda = n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } , X = \sin ( n \pi x / L )
D) λ=n2π2/L2,X=cos(nπx/L)\lambda = n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } , X = \cos ( n \pi x / L )
E) λ=n2π2,X=sin(nπx)\lambda = n ^ { 2 } \pi ^ { 2 } , X = \sin ( n \pi x )
Question
The quantity of heat in an element of a rod of mass mm is proportional to Select all that apply.

A) mass
B) thermal conductivity
C) specific heat
D) thermal diffusivity
E) temperature
Question
In the previous two problems, the solution for uu takes the form

A) u(x,t)=n1un(t)sin(nπx/L)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \sin ( n \pi x / L )
B) u(x,t)=n=1un(t)cos(nπx)u ( x , t ) = \sum _ { n = 1 } ^ { \infty } u _ { n } ( t ) \cos ( n \pi x )
C) u(x,t)=n1un(t)sin(n2π2x2/L2)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \sin \left( n ^ { 2 } \pi ^ { 2 } x ^ { 2 } / L ^ { 2 } \right)
D) u(x,t)=n1un(t)cos(n2π2x2/L2)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \cos \left( n ^ { 2 } \pi ^ { 2 } x ^ { 2 } / L ^ { 2 } \right)
E) u(x,t)=n1un(t)sin(nπx)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \sin ( n \pi x )
Question
In the previous two problems, the product solutions are

A) sin(nπx/L)enx/L\sin ( n \pi x / L ) e ^ { n x / L }
B) sin(nπx/L)enx/L\sin ( n \pi x / L ) e ^ { - n x / L }
C) cos(nπx/L)e(nπ/D)2t\cos ( n \pi x / L ) e ^ { ( n \pi / D ) ^ { 2 } t }
D) sin(nπx/L)e(nπ/L)2t\sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t }
E) cos(nπx/L)ent/L\cos ( n \pi x / L ) e ^ { - n t / L }
Question
Consider the equation umut=0u _ { m } - u _ { t } = 0 with conditions u(0,t)=0,u=(L,t)=0,u(x,0)=f(x)u ( 0 , t ) = 0 , u = ( L , t ) = 0 , u ( x , 0 ) = f ( x ) . When separating variables with u(x,t)=X(x)T(t)u ( x , t ) = X ( x ) T ( t ) , the resulting problems for X,TX , T are

A) X+λX=0,X(0)=0,X(L)=0,Tt+λT=0,T(0)=f(0)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { t } + \lambda T = 0 , T ( 0 ) = f ( 0 )
B) X+λX=0,X(0)=0,X(L)=0,Tt+λT=0,T(0)=f(x)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { t } + \lambda T = 0 , T ( 0 ) = f ( x )
C) XλX=0,X(0)=0,X(L)=0,T+λT=0X ^ { \prime \prime } - \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { \prime } + \lambda T = 0
D) X+λX=0,X(0)=0,X(L)=0,TλT=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { \prime } - \lambda T = 0
E) X+λX=0,X(0)=0,X(L)=0,T+λT=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { \prime } + \lambda T = 0
Question
In the previous three problems, the solution of the original problem is

A) u(x,t)=n=1cnsin(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=0Lf(x)cos(nπx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x
B) u(x,t)=n=1cncos(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=0Lf(x)sin(nπx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x
C) u(x,t)=n=1cnsin(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=20Lf(x)cos(nπx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / L
D) u(x,t)=n=1cnsin(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=20Lf(x)sin(nπx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / L
E) u(x,t)=n=0cncos(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cx=20Lf(x)cos(nπx/L)dxc _ { x } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x
Question
The general solution of y+n2y=0,y(0)=0,y(π)=0,n=1,2,3y ^ { \prime \prime } + n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 , n = 1,2,3 \ldots is

A) y=0y = 0
B) y=csin(nx)y = c \cdot \sin ( n x )
C) y=ccos(nx)y = c \cdot \cos ( n x )
D) y=c(enxenx)y = c \left( e ^ { n x } - e ^ { - n x } \right)
E) y=c(enx+enx)y = c \left( e ^ { n x } + e ^ { - n x } \right)
Question
The solution of y+λy=0,y(0)=0,y(π)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 if λ=0\lambda = 0 is

A) y=ax+by = a x + b
B) y=xπy = x - \pi
C) y=0y = 0
D) y=sinxy = \sin x
E) y=cosxy = \cos x
Question
In the previous three problems, the solution for u(t)u ( t ) is

A) un(t)=(1)n2L(eten2a2t/L2)/(nπ(1+nπ/L))u _ { n } ( t ) = ( - 1 ) ^ { n } 2 L \left( e ^ { t } - e ^ { - n ^ { 2 } a ^ { 2 } t / L ^ { 2 } } \right) / ( n \pi ( 1 + n \pi / L ) )
B) ux(t)=(1)n2L(et+en2x2t/L2)/(nπ(1+n2π2/L2))u _ { x } ( t ) = ( - 1 ) ^ { n } 2 L \left( e ^ { t } + e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
C) ux(t)=(1)n+12L(et+en2x2t/L2)/(nπ(1+n2π2/L2))u _ { x } ( t ) = ( - 1 ) ^ { n + 1 } 2 L \left( e ^ { t } + e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
D) ux(t)=(1)n+12L(eten2x2t/L2)/(nπ(1+n2π2/L2))u _ { x } ( t ) = ( - 1 ) ^ { n + 1 } 2 L \left( e ^ { t } - e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
E) un(t)=2L(eten2x2t/L2)/(nπ(1+n2π2/L2))u _ { n } ( t ) = 2 L \left( e ^ { t } - e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
Question
The differential equation 2ux2+2uy2=u\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = u is Select all that apply.

A) linear
B) nonlinear
C) hyperbolic
D) elliptic
E) parabolic
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: Boundary-Value Problems in Rectangular Coordinates
1
The general solution of y+n2n2y=0,y(0)=0,y(1)=0,n=1,2,3y ^ { \prime \prime } + n ^ { 2 } n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0 , n = 1,2,3 \ldots is

A) y=0y = 0
B) y=csin(nπx)y = c \cdot \sin ( n \pi x )
C) y=ccos(nπx)y = c \cdot \cos ( n \pi x )
D) c(en+xen+x)c \left( e ^ { n + x } - e ^ { - n + x } \right)
E) c(en+x+en+x)c \left( e ^ { n + x } + e ^ { - n + x } \right)
y=csin(nπx)y = c \cdot \sin ( n \pi x )
2
The solution of the eigenvalue problem from the previous problem is

A) λ=nπ/L,X(x)=sin(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
B) λ=nπ/L,X(x)=cos(nπx/L),n=0,1,2,\lambda = n \pi / L , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
C) λ=(nπ/L),X(x)=sin(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) , X ( x ) = \sin ( n \pi x / L ) , n = 0,1,2 , \ldots
D) λ=(nπ/L)2,X(x)=sin(nπx/L),n=1,2,3,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
E) λ=(nπ/L)2,X(x)=cos(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
λ=(nπ/L)2,X(x)=cos(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
3
The wave equation for a vibrating string is derived using the assumptions Select all that apply.

A) the string is perfectly flexible.
B) the displacements may be large.
C) the tension acts perpendicular to the string.
D) the tension is large compared with gravity.
E) the string is homogeneous.
A, D, E
4
The differential equation 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 is

A) first order, linear, homogeneous
B) first order, linear, non-homogeneous
C) second order, nonlinear
D) second order, linear, homogeneous
E) second order, linear, non-homogeneous
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
5
The differential equation 2ux2ut=u\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = u is Select all that apply.

A) nonlinear
B) linear
C) hyperbolic
D) elliptic
E) parabolic
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
6
In the previous three problems, the solution of the original problem is

A) u(x,t)=n1cncos((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=20Lf(x)cos((n1/2)πx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( ( n - 1 / 2 ) \pi x / L ) d x / L
B) u(x,t)=n1cnsin((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=20Lf(x)sin((n1/2)πx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( ( n - 1 / 2 ) \pi x / L ) d x / L
C) u(x,t)=n1cncos((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=0Lf(x)cos((n1/2)πx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( ( n - 1 / 2 ) \pi x / L ) d x
D) u(x,t)=n=0cnsin((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=20Lf(x)sin((n1/2)πx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( ( n - 1 / 2 ) \pi x / L ) d x / L
E) u(x,t)=n0cnsin((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n - 0 } ^ { \infty } c _ { n } \sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=0Lf(x)sin((n1/2)πx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \sin ( ( n - 1 / 2 ) \pi x / L ) d x
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
7
The solution of the eigenvalue problem from the previous problem is

A) λ=nπ/L,X(x)=sin(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
B) λ=nπ/L,X(x)=cos(nπx/L),n=0,1,2,\lambda = n \pi / L , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
C) λ=(n1/2)π/L,X(x)=sin((n1/2)πx/L),n=1,2,3,\lambda = ( n - 1 / 2 ) \pi / L , X ( x ) = \sin ( ( n - 1 / 2 ) \pi x / L ) , n = 1,2,3 , \ldots
D) λ=((n1/2)π/L)2,X(x)=sin((n1/2)πx/L),n=1,2,3,\lambda = ( ( n - 1 / 2 ) \pi / L ) ^ { 2 } , X ( x ) = \sin ( ( n - 1 / 2 ) \pi x / L ) , n = 1,2,3 , \ldots
E) λ=((n1/2)π/L)2,X(x)=cos((n1/2)πx/L),n=1,2,3,\lambda = ( ( n - 1 / 2 ) \pi / L ) ^ { 2 } , X ( x ) = \cos ( ( n - 1 / 2 ) \pi x / L ) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
8
In the previous three problems, the solution of the original problem is

A) u(x,t)=n=1cnsin(nπx/L)e(nπ/L)tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) t } , where cn=0Lf(x)cos(nπx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x
B) u(x,t)=n=0cncos(nπx/L)cos(nπt/L)u ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) \cos ( n \pi t /L ) , where c0=0Lf(x)dx/L,cn=20Lf(x)cos(nπx/L)dx/Lc _ { 0 } = \int _ { 0 } ^ { L } f ( x ) d x / L , c _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / L
C) u(x,t)=n=1cnsin(nπx/L)sin(nπt/L)u ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \sin ( n \pi t / L ) , where cn=20Lf(x)cos(nπx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / L
D) u(x,t)=n=1cnsin(nπx/L)enxt/Lu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - nxt / L } , where cn=20Lf(x)sin(nπx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / L
E) u(x,t)=n=0cncos(nπx/L)enxt/Lu ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) e ^ { - n x t / L } , where cn=0Lf(x)cos(nπx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
9
The differential equation 2ux2+2uxy+2uy2=u\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial x \partial y } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = u is Select all that apply.

A) linear
B) nonlinear
C) hyperbolic
D) elliptic
E) parabolic
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
10
Consider the equation uxxut=0u _ { xx } - u _ { t } = 0 with conditions u(0,t)=0,ux=(L,t)=0,u(x,0)=f(x)u ( 0 , t ) = 0 , u _ { x } = ( L , t ) = 0 , u ( x , 0 ) = f ( x ) . When separating variables with u(x,t)=X(x)T(t)u ( x , t ) = X ( x ) T ( t ) , the resulting problems for X,TX , T are

A) X+λX=0,X(0)=0,X(L)=0,TλT=0,T(0)=f(x)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime } - \lambda T = 0 , T ( 0 ) = f ( x )
B) X+λX=0,X(0)=0,X(L)=0,T+λT=0,T(0)=f(x)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime } + \lambda T = 0 , T ( 0 ) = f ( x )
C) XλX=0,X(0)=0,X(L)=0,T+λT=0X ^ { \prime \prime } - \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime } + \lambda T = 0
D) X+λX=0,X(0)=0,X(L)=0,TλT=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime } - \lambda T = 0
E) X+λX=0,X(0)=0,X(L)=0,T+λT=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime } + \lambda T = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
11
Consider the equation uxxutt=0u _ { xx } - u _ { t t } = 0 with conditions dudx(0,t)=0,dudx=(L,t)=0,u(x,0)=f(x),dudt(0)=0\frac { d u } { d x } ( 0 , t ) = 0 , \frac { d u } { d x } = ( L , t ) = 0 , u ( x , 0 ) = f ( x ) , \frac { d u } { d t } ( 0 ) = 0 . When separating variables with u(x,t)=X(x)T(t)u ( x , t ) = X ( x ) T ( t ) , the resulting problems for X,TX , T are

A) X+λX=0,X(0)=0,X(L)=0,T+λT=0,T(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ( 0 ) = 0
B) XλX=0,X(0)=0,X(L)=0,T+λT=0,T(0)=0X ^ { \prime \prime } - \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
C) X+λX=0,X(0)=0,X(L)=0,T+λT=0,T(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
D) X+λX=0,X(0)=0,X(L)=0,TλT=0,T(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime \prime } - \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
E) X+λX=0,X(0)=0,X(L)=0,T+λT=0,T(0)=f(x)X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( L ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ( 0 ) = f ( x )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
12
In the previous two problems, the product solutions are

A) sin((n1/2)πx/L)e(n1/2)2π2t/L2\sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } t / L ^ { 2 } }
B) cos((n1/2)πx/L)e(n1/2)2π2t/L2\cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } t / L ^ { 2 } }
C) sin((n1/2)πx/L)e(n1/2)/L\sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) / L }
D) sin((n1/2)πx/L)e(n1/2)2x2t/L2\sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } }
E) cos((n1/2)πx/L)e(n1/2)2π2t/L2\cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } t / L ^ { 2 } }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
13
The solution of the previous three problems is n=1cnXn(x)eλnkt\sum _ { n = 1 } ^ { \infty } c _ { n } X _ { n } ( x ) e ^ { - \lambda _ { n } k t } , where XnX _ { n } and λn\lambda _ { n } are given in the previous problem and

A) cn=0Lf(x)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) d x
B) cn=0Lf(x)Xn(x)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x
C) cn=0Lf(x)Xn(x)dx/0LXn(x)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x / \int _ { 0 } ^ { L } X _ { n } ( x ) d x
D) cn=0LXn2(x)dx/0Lf(x)Xn(x)dxc _ { n } = \int _ { 0 } ^ { L } X _ { n } ^ { 2 } ( x ) d x / \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x
E) cn=0Lf(x)Xn(x)dx/0LXn2(x)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x / \int _ { 0 } ^ { L } X _ { n } ^ { 2 } ( x ) d x
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
14
After separating variables in the previous problem, the eigenvalue problem becomes

A) X+λX=0,X(0)=0,X(L)=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0
B) X+λX=0,X(0)=0,X(L)=hX(L)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = - h X ( L )
C) X+λX=0,X(0)=0,X(L)=hX(0)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = - h X ^ { \prime } ( 0 )
D) X+λX=0,X(0)=0,X(L)=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = 0
E) X+λX=0,X(0)=0,X(L)=hX(L)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ^ { \prime } ( L ) = h X ( L )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
15
In the previous two problems, the product solutions are

A) sin(nπx/L)sin(nπ/L)\sin ( n \pi x / L ) \sin ( n \pi / L )
B) sin(nπx/L)cos(nπ/L)\sin ( n \pi x / L ) \cos ( n \pi / L )
C) cos(nπx/L)cos(nπ/L)\cos ( n \pi x / L ) \cos ( n \pi / L )
D) sin(nπx/L)enx/L\sin ( n \pi x / L ) e ^ { n x / L }
E) cos(nπx/L)ent/L\cos ( n \pi x / L ) e ^ { - n t / L }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
16
The solution of yn2n2y=0,y(0)=0,y(1)=0,n=1,2,3y ^ { \prime \prime } - n ^ { 2 } n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0 , n = 1,2,3 \ldots is

A) y=0y = 0
B) y=csin(nπx)y = c \cdot \sin ( n \pi x )
C) y=ccos(nπx)y = c \cdot \cos ( n \pi x )
D) c(enxtenxt)c \left( e ^ { n xt } - e ^ { - nxt } \right)
E) c(enxt+enxt)c \left( e ^ { n xt } + e ^ { - nxt } \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
17
When u(x,y)=X(x)Y(y)u ( x , y ) = X ( x ) Y ( y ) is substituted into the equation uxx+uyy=0u _ { xx } + u _ { y y } = 0 , the resulting equations for XX and YY are

A) X+λX=0,Y+λY=0X ^ { \prime } + \lambda X = 0 , Y ^ { \prime } + \lambda Y = 0
B) X+λX=0,YλY=0X ^ { \prime } + \lambda X = 0 , Y ^ { \prime } - \lambda Y = 0
C) X+λX=0,Y+λY=0X ^ { \prime \prime } + \lambda X = 0 , Y ^ { \prime \prime } + \lambda Y = 0
D) X+λX=0,YλY=0X ^ { \prime \prime } + \lambda X = 0 , Y ^ { \prime \prime } - \lambda Y = 0
E) XλX=0,Y+λY=0X ^ { \prime \prime } - \lambda X = 0 , Y ^ { \prime \prime } + \lambda Y = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
18
The solution of the eigenvalue problem in the previous problem is

A) λ=((n1/2)π/L)2,X=sin((n1/2)πx/L)\lambda = ( ( n - 1 / 2 ) \pi / L ) ^ { 2 } , X = \sin ( ( n - 1 / 2 ) \pi x / L )
B) λ/h=tan(λL),X=sin(λx)\sqrt { \lambda } / h = \tan ( \sqrt { \lambda } L ) , X = \sin ( \sqrt { \lambda } x )
C) λ=(nπ/L)2,X=sin(nπx/L)\lambda = ( n \pi / L ) ^ { 2 } , X = \sin ( n \pi x / L )
D) λ/h=tan(λL),X=sin(λx)\sqrt { \lambda } / h = - \tan ( \sqrt { \lambda } L ) , X = \sin ( \sqrt { \lambda } x )
E) λh=tan(λL),X=sin(λx)\sqrt { \lambda } h = - \tan ( \sqrt { \lambda } L ) , X = \sin ( \sqrt { \lambda } x )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
19
The solution of y+λy=0,y(0)=0,y(π)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 if λ=0\lambda = 0 is

A) y=sinxy = \sin x
B) y=cosxy = \cos x
C) y=0y = 0
D) y=ax+by = a x + b
E) y=xπy = x - \pi
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
20
The model describing the temperature in a rod where the temperature at the left end is zero and where there is heat transfer from the right boundary into the external medium is

A) k2ux2=2ut2,u(0,t)=0,ux=(L,t)=hu(L,t),h>0,u(x,0)=f(x)k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = - h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
B) k2ux2=2ut2,u(0,t)=0,ux=(L,t)=hu(L,t),h>0,u(x,0)=f(x)k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
C) k2ux2=ut,u(0,t)=0,ux=(L,t)=hu(L,t),h>0,u(x,0)=f(x)k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = - h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
D) k2ux2=ut,u(0,t)=0,ux=(L,t)=hu(L,t),h>0,u(x,0)=f(x)k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
E) k2ux2+2ut2=0,u(0,t)=0,ux=(L,t)=hu(L,t),h>0,u(x,0)=f(x)k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = - h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
21
Consider the equation ux+uyy=0u _ { x } + u _ { y y } = 0 with conditions u(0,y)=0,u=(L,y)=0,u(x,0)=f(x),u(x,H)=0u ( 0 , y ) = 0 , u = ( L , y ) = 0 , u ( x , 0 ) = f ( x ) , u ( x , H ) = 0 . When separating variables with u(x,y)=X(x)Y(y)u ( x , y ) = X ( x ) Y ( y ) , the resulting problems for X,YX , Y are

A) X+λX=0,X(0)=0,X(L)=0,Y+λY=0,Y(H)=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( H ) = 0
B) X+λX=0,X(0)=0,X(L)=0,YλY=0,Y(H)=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( H ) = 0
C) X+λX=0,X(0)=0,X(L)=0,YλY=0,Y(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0
D) XλX=0,X(0)=0,X(L)=0,YλY=0,Y(H)=f(0)X ^ { \prime \prime } - \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( H ) = f ( 0 )
E) X+λX=0,X(0)=0,X(L)=0,Y+λY=0,Y(0)=f(x)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = f ( x )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
22
In the previous problem, the eigenfunction expansion if xetx e ^ { t } is

A) etn1(1)n2Lcos(nπx/L)/(nπ)e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 L \cos ( n \pi x / L ) / ( n \pi )
B) etn1(1)n2Lsin(nπx/L)/(n2π2)e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 L \sin ( n \pi x / L ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
C) etn1(1)n2Lcos(nπx/L)/(n2π2)e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 L \cos ( n \pi x / L ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
D) etn1(1)n+12Lcos(nπx/L)/(nπ)e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 L \cos ( n \pi x / L ) / ( n \pi )
E) etn1(1)n+12Lsin(nπx/L)/(nπ)e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 L \sin ( n \pi x / L ) / ( n \pi )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
23
When u(x,y)=X(x)Y(y)u ( x , y ) = X ( x ) Y ( y ) is substituted into the equation uxuyy=0u _ { x } - u _ { y y } = 0 , the resulting equations for XX and YY are

A) X+λX=0,Y+λY=0X ^ { \prime \prime } + \lambda X = 0 , Y ^ { \prime \prime } + \lambda Y = 0
B) X+λX=0,YλY=0X ^ { \prime \prime } + \lambda X = 0 , Y ^ { \prime \prime } - \lambda Y = 0
C) XλX=0,Y+λY=0X ^ { \prime \prime } - \lambda X = 0 , Y ^ { \prime \prime } + \lambda Y = 0
D) X+λX=0,Y+λY=0X ^ { \prime } + \lambda X = 0 , Y ^ { \prime } + \lambda Y = 0
E) X+λX=0,YλY=0X ^ { \prime } + \lambda X = 0 , Y ^ { \prime } - \lambda Y = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
24
The solution of the eigenvalue problem from the previous problem is

A) λ=nπ/L,X(x)=sin(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
B) λ=nπ/L,X(x)=cos(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \cos ( n \pi x / L ) , n = 1,2,3 , \ldots
C) λ=(nπ/L)2,X(x)=sin(nπx/L),n=1,2,3,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
D) λ=(nπ/L)2,X(x)=cos(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
E) λ=(nπ/L),X(x)=sin(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) , X ( x ) = \sin ( n \pi x / L ) , n = 0,1,2 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
25
The solution of the eigenvalue problem from the previous problem is

A) λ=nπ/L,X(x)=sin(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
B) λ=nπ/L,X(x)=cos(nπx/L),n=1,2,3,\lambda = n \pi / L , X ( x ) = \cos ( n \pi x / L ) , n = 1,2,3 , \ldots
C) λ=(nπ/L)2,X(x)=sin(nπx/L),n=1,2,3,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \sin ( n \pi x / L ) , n = 1,2,3 , \ldots
D) λ=(nπ/L)2,X(x)=cos(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) ^ { 2 } , X ( x ) = \cos ( n \pi x / L ) , n = 0,1,2 , \ldots
E) λ=(nπ/L),X(x)=sin(nπx/L),n=0,1,2,\lambda = ( n \pi / L ) , X ( x ) = \sin ( n \pi x / L ) , n = 0,1,2 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
26
The solution of yn2y=0,y(0)=0,y(π)=0,n=1,2,3y ^ { \prime \prime } - n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 , n = 1,2,3 \ldots is

A) y=0y = 0
B) y=csin(nx)y = c \cdot \sin ( n x )
C) y=ccos(nx)y = c \cdot \cos ( n x )
D) y=c(enxenx)y = c \left( e ^ { n x } - e ^ { - n x } \right)
E) y=c(enx+enx)y = c \left( e ^ { n x } + e ^ { - n x } \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
27
The differential equation 2ux22uy2=sinu\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = \sin u is Select all that apply.

A) linear
B) nonlinear
C) hyperbolic
D) elliptic
E) parabolic
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
28
In the previous three problems, the solution of the original problem is

A) u(x,t)=n1cnsin(nπx/L)sinh(nπ(yH)/L)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \sinh ( n \pi ( y - H ) / L ) , where cn=0Lf(x)cos(nπx/L)dx/sinh(nπH/L)c _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / \sinh ( - n \pi H / L )
B) u(x,t)=n1cnsin(nπx/L)sinh(nπ(yH)/L)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \sinh ( n \pi ( y - H ) / L ) , where cx=20Lf(x)sin(nπx/L)dx/(Lsinh(nπH/L))c _ { x } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / ( L \sinh ( - n \pi H / L ) )
C) u(x,t)=n1cnsin(nπx/L)cosh(nπ(yH)/L)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \cosh ( n \pi ( y - H ) / L ) , where cn=20Lf(x)cos(nπx/L)dx/(Lsinh(nπH/L))c _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / ( L \sinh ( - n \pi H / L ) )
D) u(x,t)=n1cnsin(nπx/L)cosh((nπ/L)2(yH))u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \cosh \left( ( n \pi / L ) ^ { 2 } ( y - H ) \right) , where cx=20Lf(x)sin(nπx/L)dx/(Lsinh(nπH/L))c _ { x } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / ( L \sinh ( - n \pi H / L ) )
E) u(x,t)=n=0cncos(nπx/L)sinh((nπ/L)2(yH))u ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) \sinh \left( ( n \pi / L ) ^ { 2 } ( y - H ) \right) , where cn=0Lf(x)cos(nπx/L)dx/sinh(nπH/L)c _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / \sinh ( - n \pi H / L )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
29
In the previous two problems, the product solutions are

A) sin(nπx/L)sinh(nπ(yH)/L)\sin ( n \pi x / L ) \sinh ( n \pi ( y - H ) / L )
B) cos(nπx/L)sinh(nπ(yH)/L)\cos ( n \pi x / L ) \sinh ( - n \pi ( y - H ) / L )
C) cos(nπx/L)cosh((nπ/L)2(yH))\cos ( n \pi x / L ) \cosh \left( ( n \pi / L ) ^ { 2 } ( y - H ) \right)
D) sin(nπx/L)cosh((nπ/L)2(yH))\sin ( n \pi x / L ) \cosh \left( - ( n \pi / L ) ^ { 2 } ( y - H ) \right)
E) cos(nπx/L)cosh(nπ(yH)/L)\cos ( n \pi x / L ) \cosh ( - n \pi ( y - H ) / L )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
30
The differential equation 2ux2+2uy2=u\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = u is

A) first order, linear, homogeneous
B) first order, linear, non-homogeneous
C) second order, nonlinear
D) second order, linear, homogeneous
E) second order, linear, non-homogeneous
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
31
In the problem 2ux2+xet=ut,u(0,t)=0,u(L,t)=0,u(x,0)=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + x e ^ { t } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( L , t ) = 0 , u ( x , 0 ) = 0 , the eigenvalues and eigenfunctions of the underlying homogeneous problem are

A) λ=n2,X=sin(nx)\lambda = n ^ { 2 } , X = \sin ( n x )
B) λ=n2,X=cos(nx)\lambda = n ^ { 2 } , X = \cos ( n x )
C) λ=n2π2/L2,X=sin(nπx/L)\lambda = n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } , X = \sin ( n \pi x / L )
D) λ=n2π2/L2,X=cos(nπx/L)\lambda = n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } , X = \cos ( n \pi x / L )
E) λ=n2π2,X=sin(nπx)\lambda = n ^ { 2 } \pi ^ { 2 } , X = \sin ( n \pi x )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
32
The quantity of heat in an element of a rod of mass mm is proportional to Select all that apply.

A) mass
B) thermal conductivity
C) specific heat
D) thermal diffusivity
E) temperature
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
33
In the previous two problems, the solution for uu takes the form

A) u(x,t)=n1un(t)sin(nπx/L)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \sin ( n \pi x / L )
B) u(x,t)=n=1un(t)cos(nπx)u ( x , t ) = \sum _ { n = 1 } ^ { \infty } u _ { n } ( t ) \cos ( n \pi x )
C) u(x,t)=n1un(t)sin(n2π2x2/L2)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \sin \left( n ^ { 2 } \pi ^ { 2 } x ^ { 2 } / L ^ { 2 } \right)
D) u(x,t)=n1un(t)cos(n2π2x2/L2)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \cos \left( n ^ { 2 } \pi ^ { 2 } x ^ { 2 } / L ^ { 2 } \right)
E) u(x,t)=n1un(t)sin(nπx)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \sin ( n \pi x )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
34
In the previous two problems, the product solutions are

A) sin(nπx/L)enx/L\sin ( n \pi x / L ) e ^ { n x / L }
B) sin(nπx/L)enx/L\sin ( n \pi x / L ) e ^ { - n x / L }
C) cos(nπx/L)e(nπ/D)2t\cos ( n \pi x / L ) e ^ { ( n \pi / D ) ^ { 2 } t }
D) sin(nπx/L)e(nπ/L)2t\sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t }
E) cos(nπx/L)ent/L\cos ( n \pi x / L ) e ^ { - n t / L }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
35
Consider the equation umut=0u _ { m } - u _ { t } = 0 with conditions u(0,t)=0,u=(L,t)=0,u(x,0)=f(x)u ( 0 , t ) = 0 , u = ( L , t ) = 0 , u ( x , 0 ) = f ( x ) . When separating variables with u(x,t)=X(x)T(t)u ( x , t ) = X ( x ) T ( t ) , the resulting problems for X,TX , T are

A) X+λX=0,X(0)=0,X(L)=0,Tt+λT=0,T(0)=f(0)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { t } + \lambda T = 0 , T ( 0 ) = f ( 0 )
B) X+λX=0,X(0)=0,X(L)=0,Tt+λT=0,T(0)=f(x)X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { t } + \lambda T = 0 , T ( 0 ) = f ( x )
C) XλX=0,X(0)=0,X(L)=0,T+λT=0X ^ { \prime \prime } - \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { \prime } + \lambda T = 0
D) X+λX=0,X(0)=0,X(L)=0,TλT=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { \prime } - \lambda T = 0
E) X+λX=0,X(0)=0,X(L)=0,T+λT=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { \prime } + \lambda T = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
36
In the previous three problems, the solution of the original problem is

A) u(x,t)=n=1cnsin(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=0Lf(x)cos(nπx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x
B) u(x,t)=n=1cncos(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=0Lf(x)sin(nπx/L)dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x
C) u(x,t)=n=1cnsin(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=20Lf(x)cos(nπx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / L
D) u(x,t)=n=1cnsin(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cn=20Lf(x)sin(nπx/L)dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / L
E) u(x,t)=n=0cncos(nπx/L)e(nπ/L)2tu ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) e ^ { - ( n \pi / L ) ^ { 2 } t } , where cx=20Lf(x)cos(nπx/L)dxc _ { x } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
37
The general solution of y+n2y=0,y(0)=0,y(π)=0,n=1,2,3y ^ { \prime \prime } + n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 , n = 1,2,3 \ldots is

A) y=0y = 0
B) y=csin(nx)y = c \cdot \sin ( n x )
C) y=ccos(nx)y = c \cdot \cos ( n x )
D) y=c(enxenx)y = c \left( e ^ { n x } - e ^ { - n x } \right)
E) y=c(enx+enx)y = c \left( e ^ { n x } + e ^ { - n x } \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
38
The solution of y+λy=0,y(0)=0,y(π)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 if λ=0\lambda = 0 is

A) y=ax+by = a x + b
B) y=xπy = x - \pi
C) y=0y = 0
D) y=sinxy = \sin x
E) y=cosxy = \cos x
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
39
In the previous three problems, the solution for u(t)u ( t ) is

A) un(t)=(1)n2L(eten2a2t/L2)/(nπ(1+nπ/L))u _ { n } ( t ) = ( - 1 ) ^ { n } 2 L \left( e ^ { t } - e ^ { - n ^ { 2 } a ^ { 2 } t / L ^ { 2 } } \right) / ( n \pi ( 1 + n \pi / L ) )
B) ux(t)=(1)n2L(et+en2x2t/L2)/(nπ(1+n2π2/L2))u _ { x } ( t ) = ( - 1 ) ^ { n } 2 L \left( e ^ { t } + e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
C) ux(t)=(1)n+12L(et+en2x2t/L2)/(nπ(1+n2π2/L2))u _ { x } ( t ) = ( - 1 ) ^ { n + 1 } 2 L \left( e ^ { t } + e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
D) ux(t)=(1)n+12L(eten2x2t/L2)/(nπ(1+n2π2/L2))u _ { x } ( t ) = ( - 1 ) ^ { n + 1 } 2 L \left( e ^ { t } - e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
E) un(t)=2L(eten2x2t/L2)/(nπ(1+n2π2/L2))u _ { n } ( t ) = 2 L \left( e ^ { t } - e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
40
The differential equation 2ux2+2uy2=u\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = u is Select all that apply.

A) linear
B) nonlinear
C) hyperbolic
D) elliptic
E) parabolic
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 40 flashcards in this deck.