Deck 56: The Binomial Theorem

Full screen (f)
exit full mode
Question
Evaluate using Pascal's Triangle.​ (87)\left( \frac { 8 } { 7 } \right)

A)8
B)6
C)10
D)9
E)7
Use Space or
up arrow
down arrow
to flip the card.
Question
Evaluate using Pascal's Triangle.​ 12C4{ } _ { 12 } C _ { 4 }

A)496
B)495
C)497
D)494
E)493
Question
Use the Binomial Theorem to expand and simplify the expression.​ (2x5y)5( 2 x - 5 y ) ^ { 5 }

A) 32x5400x4y2000x3y25000x2y36250xy4312532 x ^ { 5 } - 400 x ^ { 4 } y - 2000 x ^ { 3 } y ^ { 2 } - 5000 x ^ { 2 } y ^ { 3 } - 6250 x y ^ { 4 } - 3125
B) 32x5400x4y+2000x3y2+5000x2y3+6250xy4+312532 x ^ { 5 } - 400 x ^ { 4 } y + 2000 x ^ { 3 } y ^ { 2 } + 5000 x ^ { 2 } y ^ { 3 } + 6250 x y ^ { 4 } + 3125
C) 32x5+400x4y+2000x3y25000x2y3+6250xy4312532 x ^ { 5 } + 400 x ^ { 4 } y + 2000 x ^ { 3 } y ^ { 2 } - 5000 x ^ { 2 } y ^ { 3 } + 6250 x y ^ { 4 } - 3125
D) 32x5400x4y+2000x3y25000x2y3+6250xy4312532 x ^ { 5 } - 400 x ^ { 4 } y + 2000 x ^ { 3 } y ^ { 2 } - 5000 x ^ { 2 } y ^ { 3 } + 6250 x y ^ { 4 } - 3125
E) 32x5+400x4y+2000x3y25000x2y3+6250xy4+312532 x ^ { 5 } + 400 x ^ { 4 } y + 2000 x ^ { 3 } y ^ { 2 } - 5000 x ^ { 2 } y ^ { 3 } + 6250 x y ^ { 4 } + 3125
Question
Calculate the binomial coefficient.​ 6C4{ } _ { 6 } C _ { 4 }

A)16
B)15
C)17
D)14
E)13
Question
Use the Binomial Theorem to expand and simplify the expression.​ (y3)5( y - 3 ) ^ { 5 }

A) y515y4+90y3270y2+405y243y ^ { 5 } - 15 y ^ { 4 } + 90 y ^ { 3 } - 270 y ^ { 2 } + 405 y - 243
B) y515y490y3270y2+405y243y ^ { 5 } - 15 y ^ { 4 } - 90 y ^ { 3 } - 270 y ^ { 2 } + 405 y - 243
C) y5+15y490y3+270y2405y+243y ^ { 5 } + 15 y ^ { 4 } - 90 y ^ { 3 } + 270 y ^ { 2 } - 405 y + 243
D) y515y4+90y3270y2405y243y ^ { 5 } - 15 y ^ { 4 } + 90 y ^ { 3 } - 270 y ^ { 2 } - 405 y - 243
E) y515y490y3270y2405y243y ^ { 5 } - 15 y ^ { 4 } - 90 y ^ { 3 } - 270 y ^ { 2 } - 405 y - 243
Question
Calculate the binomial coefficient.​ 29C29{ } _ { 29 } C _ { 29 }

A)0
B)4
C)1
D)3
E)2
Question
Calculate the binomial coefficient.​ 18C0{ } _ { 18 } C _ { 0 }

A)2
B)3
C)1
D)4
E)0
Question
Calculate the binomial coefficient.​ (128)\left( \frac { 12 } { 8 } \right)

A)496
B)493
C)498
D)497
E)495
Question
Calculate the binomial coefficient.​ 7C4{}_7 C _ { 4 }

A)33
B)37
C)34
D)36
E)35
Question
Use the Binomial Theorem to expand and simplify the expression.​ (y3)3( y - 3 ) ^ { 3 }

A) y3+9y2+27y+27y ^ { 3 } + 9 y ^ { 2 } + 27 y + 27
B) y39y2+27y27y ^ { 3 } - 9 y ^ { 2 } + 27 y - 27
C) y39y227y27y ^ { 3 } - 9 y ^ { 2 } - 27 y - 27
D) y3+9y2+27y27y ^ { 3 } + 9 y ^ { 2 } + 27 y - 27
E) y3+9y29y+27y ^ { 3 } + 9 y ^ { 2 } - 9 y + 27
Question
Expand the binomial by using Pascal's Triangle to determine the coefficients.​ (2ts)5( 2 t - s ) ^ { 5 }

A) 32t580t4s+80t3s240t2s3+10ts4s532 t ^ { 5 } - 80 t ^ { 4 } s + 80 t ^ { 3 } s ^ { 2 } - 40 t ^ { 2 } s ^ { 3 } + 10 t s ^ { 4 } - s ^ { 5 }
B) 32t5+80t4s+80t3s240t2s3+10ts4s532 t ^ { 5 } + 80 t ^ { 4 } s + 80 t ^ { 3 } s ^ { 2 } - 40 t ^ { 2 } s ^ { 3 } + 10 t s ^ { 4 } - s ^ { 5 }
C) 32t580t4s80t3s240t2s3+10ts4s532 t ^ { 5 } - 80 t ^ { 4 } s - 80 t ^ { 3 } s ^ { 2 } - 40 t ^ { 2 } s ^ { 3 } + 10 t s ^ { 4 } - s ^ { 5 }
D) 32t580t4s+80t3s2+40t2s3+10ts4+s532 t ^ { 5 } - 80 t ^ { 4 } s + 80 t ^ { 3 } s ^ { 2 } + 40 t ^ { 2 } s ^ { 3 } + 10 t s ^ { 4 } + s ^ { 5 }
E) 32t5+80t4s80t3s2+40t2s310ts4+s532 t ^ { 5 } + 80 t ^ { 4 } s - 80 t ^ { 3 } s ^ { 2 } + 40 t ^ { 2 } s ^ { 3 } - 10 t s ^ { 4 } + s ^ { 5 }
Question
Evaluate using Pascal's Triangle.​ (85)\left( \frac { 8 } { 5 } \right)

A)54
B)58
C)56
D)55
E)57
Question
Use the Binomial Theorem to expand and simplify the expression.​ (r+5s)6( r + 5 s ) ^ { 6 }

A) r6+30sr5+375s2r4+2500s3r3+9375s4r2+18750s5r15625s6r ^ { 6 } + 30 s r ^ { 5 } + 375 s ^ { 2 } r ^ { 4 } + 2500 s ^ { 3 } r ^ { 3 } + 9375 s ^ { 4 } r ^ { 2 } + 18750 s ^ { 5 } r - 15625 s ^ { 6 }
B) r630sr5+375s2r4+2500s3r3+9375s4r2+18750s5r+15625s6r ^ { 6 } - 30 s r ^ { 5 } + 375 s ^ { 2 } r ^ { 4 } + 2500 s ^ { 3 } r ^ { 3 } + 9375 s ^ { 4 } r ^ { 2 } + 18750 s ^ { 5 } r + 15625 s ^ { 6 }
C) r6+30sr5+375s2r42500s3r3+9375s4r2+18750s5r+15625s6r ^ { 6 } + 30 s r ^ { 5 } + 375 s ^ { 2 } r ^ { 4 } - 2500 s ^ { 3 } r ^ { 3 } + 9375 s ^ { 4 } r ^ { 2 } + 18750 s ^ { 5 } r + 15625 s ^ { 6 }
D) r630sr5375s2r42500s3r39375s4r218750s5r15625s6r ^ { 6 } - 30 s r ^ { 5 } - 375 s ^ { 2 } r ^ { 4 } - 2500 s ^ { 3 } r ^ { 3 } - 9375 s ^ { 4 } r ^ { 2 } - 18750 s ^ { 5 } r - 15625 s ^ { 6 }
E) r6+30sr5+375s2r4+2500s3r3+9375s4r2+18750s5r+15625s6r ^ { 6 } + 30 s r ^ { 5 } + 375 s ^ { 2 } r ^ { 4 } + 2500 s ^ { 3 } r ^ { 3 } + 9375 s ^ { 4 } r ^ { 2 } + 18750 s ^ { 5 } r + 15625 s ^ { 6 }
Question
Use the Binomial Theorem to expand and simplify the expression.​ (a+7)5( a + 7 ) ^ { 5 }

A) a5+35a4+490a3+343a2+12005a+16807a ^ { 5 } + 35 a ^ { 4 } + 490 a ^ { 3 } + 343 a ^ { 2 } + 12005 a + 16807
B) a5+35a4490a3+3430a2+12005a+16807a ^ { 5 } + 35 a ^ { 4 } - 490 a ^ { 3 } + 3430 a ^ { 2 } + 12005 a + 16807
C) a5+35a4+490a3+3430a2+12005a+16807a ^ { 5 } + 35 a ^ { 4 } + 490 a ^ { 3 } + 3430 a ^ { 2 } + 12005 a + 16807
D) a5+35a4+490a3+3430a2+2401a+16807a ^ { 5 } + 35 a ^ { 4 } + 490 a ^ { 3 } + 3430 a ^ { 2 } + 2401 a + 16807
E) a5+343a4+2401a3+49a2+12005a+16807a ^ { 5 } + 343 a ^ { 4 } + 2401 a ^ { 3 } + 49 a ^ { 2 } + 12005 a + 16807
Question
Use the Binomial Theorem to expand and simplify the expression.​ (7a+b)3( 7 a + b ) ^ { 3 }

A) 343a3147a2b+21ab2+b3343 a ^ { 3 } - 147 a ^ { 2 } b + 21 a b ^ { 2 } + b ^ { 3 }
B) a3+147a2b+21ab2+b3a ^ { 3 } + 147 a ^ { 2 } b + 21 a b ^ { 2 } + b ^ { 3 }
C) 343a3+147a2b21ab2+b3343 a ^ { 3 } + 147 a ^ { 2 } b - 21 a b ^ { 2 } + b ^ { 3 }
D) 343a3+147a2b+21ab2b3343 a ^ { 3 } + 147 a ^ { 2 } b + 21 a b ^ { 2 } - b ^ { 3 }
E) 343a3+147a2b+21ab2+b3343 a ^ { 3 } + 147 a ^ { 2 } b + 21 a b ^ { 2 } + b ^ { 3 }
Question
Use the Binomial Theorem to expand and simplify the expression.​ 2(x5)4+5(x5)22 ( x - 5 ) ^ { 4 } + 5 ( x - 5 ) ^ { 2 }

A) 2x440x3+305x21050x+13752 x ^ { 4 } - 40 x ^ { 3 } + 305 x ^ { 2 } - 1050 x + 1375
B) 2x4+40x3+305x21050x+13752 x ^ { 4 } + 40 x ^ { 3 } + 305 x ^ { 2 } - 1050 x + 1375
C) 2x440x3305x21050x+13752 x ^ { 4 } - 40 x ^ { 3 } - 305 x ^ { 2 } - 1050 x + 1375
D) 2x440x3+305x21050x13752 x ^ { 4 } - 40 x ^ { 3 } + 305 x ^ { 2 } - 1050 x - 1375
E) 2x440x3305x21050x13752 x ^ { 4 } - 40 x ^ { 3 } - 305 x ^ { 2 } - 1050 x - 1375
Question
Use the Binomial Theorem to expand and simplify the expression.​ (x+6)4( x + 6 ) ^ { 4 }

A) x424x3+216x2+864x+1296x ^ { 4 } - 24 x ^ { 3 } + 216 x ^ { 2 } + 864 x + 1296
B) x424x3216x2+864x+1296x ^ { 4 } - 24 x ^ { 3 } - 216 x ^ { 2 } + 864 x + 1296
C) x424x3+216x2+864x1296x ^ { 4 } - 24 x ^ { 3 } + 216 x ^ { 2 } + 864 x - 1296
D) x4+36x3216x2+864x1296x ^ { 4 } + 36 x ^ { 3 } - 216 x ^ { 2 } + 864 x - 1296
E) x4+24x3+216x2+864x+1296x ^ { 4 } + 24 x ^ { 3 } + 216 x ^ { 2 } + 864 x + 1296
Question
Use the Binomial Theorem to expand and simplify the expression.​ (x+5)6( x + 5 ) ^ { 6 }

A) x6+30x5+500x4+2500x3+9375x2+15625x+625x ^ { 6 } + 30 x ^ { 5 } + 500 x ^ { 4 } + 2500 x ^ { 3 } + 9375 x ^ { 2 } + 15625 x + 625
B) x6+500x5+375x4+3125x3+9375x2+18750x+15625x ^ { 6 } + 500 x ^ { 5 } + 375 x ^ { 4 } + 3125 x ^ { 3 } + 9375 x ^ { 2 } + 18750 x + 15625
C) x6+30x5+375x4+2500x3+9375x2+18750x+15625x ^ { 6 } + 30 x ^ { 5 } + 375 x ^ { 4 } + 2500 x ^ { 3 } + 9375 x ^ { 2 } + 18750 x + 15625
D) x6+30x5+375x4+2500x3+9375x218750x+625x ^ { 6 } + 30 x ^ { 5 } + 375 x ^ { 4 } + 2500 x ^ { 3 } + 9375 x ^ { 2 } - 18750 x + 625
E) x6+30x5+25x4+3125x3+9375x2+18750x+15625x ^ { 6 } + 30 x ^ { 5 } + 25 x ^ { 4 } + 3125 x ^ { 3 } + 9375 x ^ { 2 } + 18750 x + 15625
Question
Use the Binomial Theorem to expand and simplify the expression.​ (2x+y)3( 2 x + y ) ^ { 3 }

A) 8x312x2y+6xy2+y38 x ^ { 3 } - 12 x ^ { 2 } y + 6 x y ^ { 2 } + y ^ { 3 }
B) 8x3+12x2y6xy2+y38 x ^ { 3 } + 12 x ^ { 2 } y - 6 x y ^ { 2 } + y ^ { 3 }
C) x3+12x2y+6xy2+y3x ^ { 3 } + 12 x ^ { 2 } y + 6 x y ^ { 2 } + y ^ { 3 }
D) 8x3+12x2y+6xy2+y38 x ^ { 3 } + 12 x ^ { 2 } y + 6 x y ^ { 2 } + y ^ { 3 }
E) 8x3+12x2y+6xy2y38 x ^ { 3 } + 12 x ^ { 2 } y + 6 x y ^ { 2 } - y ^ { 3 }
Question
Use the Binomial Theorem to expand and simplify the expression.​ (a+8)4( a + 8 ) ^ { 4 }

A) a4+32a3+384a2+2048a+4096a ^ { 4 } + 32 a ^ { 3 } + 384 a ^ { 2 } + 2048 a + 4096
B) a432a3+384a2+2048a+4096a ^ { 4 } - 32 a ^ { 3 } + 384 a ^ { 2 } + 2048 a + 4096
C) a4+32a3+512a2+2048a+4096a ^ { 4 } + 32 a ^ { 3 } + 512 a ^ { 2 } + 2048 a + 4096
D) a4+32a3+384a2+2048a4096a ^ { 4 } + 32 a ^ { 3 } + 384 a ^ { 2 } + 2048 a - 4096
E) a4+64a3512a22048a+4096a ^ { 4 } + 64 a ^ { 3 } - 512 a ^ { 2 } - 2048 a + 4096
Question
Use the Binomial Theorem to expand and simplify the expression.​ (2t5)3( 2 \sqrt { t } - 5 ) ^ { 3 }

A) 8t3/260t+150t1/21258 t ^ { 3 / 2 } - 60 t + 150 t ^ { 1 / 2 } - 125
B) 8t3/260t+150t1/2+1258 t ^ { 3 / 2 } - 60 t + 150 t ^ { 1 / 2 } + 125
C) 8t3/260t150t1/21258 t ^ { 3 / 2 } - 60 t - 150 t ^ { 1 / 2 } - 125
D) 8t3/2+60t+150t1/2+1258 t ^ { 3 / 2 } + 60 t + 150 t ^ { 1 / 2 } + 125
E) 8t3/2+60t150t1/21258 t ^ { 3 / 2 } + 60 t - 150 t ^ { 1 / 2 } - 125
Question
Calculate the binomial coefficient: 4C3{ } _ { 4 } C _ { 3 }

A)12
B)24
C)0
D)4
E)1
Question
Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms
(x7y)10 ax8y2( x - 7 y ) ^ { 10 } ~a x ^ { 8 } y ^ { 2 }

A)2,208
B)2,204
C)2,206
D)2,205
E)2,203
Question
Find the specified nth term in the expansion of the binomial.​ (x10z)7,n=4( x - 10 z ) ^ { 7 } , n = 4

A) 35,000x3z4- 35,000 x ^ { 3 } z ^ { 4 }
B) 35,000x7z3- 35,000 x ^ { 7 } z ^ { 3 }
C) 35,000x4z3- 35,000 x ^ { 4 } z ^ { 3 }
D) 35,000x3z3- 35,000 x ^ { 3 } z ^ { 3 }
E) 35,000x4z4- 35,000 x ^ { 4 } z ^ { 4 }
Question
Use the Binomial Theorem to expand the complex number.Simplify your result.​ (3i)5( 3 - i ) ^ { 5 }

A) 405i+12405 i + 12
B) 90i+1290 i + 12
C) 316i+405316 i + 405
D) 12316i- 12 - 316 i
E) 316+12i316 + 12 i
Question
Expand the expression in the difference quotient and simplify.​ f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } Difference quotient f(x)=(x)3f ( x ) = ( x ) ^ { 3 }

A) 3x2+3xh+h2h\frac { 3 x ^ { 2 } + 3 x h + h ^ { 2 } } { h }
B) 3x23xhh23 x ^ { 2 } - 3 x h - h ^ { 2 }
C) 3x2+3xhh2h\frac { 3 x ^ { 2 } + 3 x h - h ^ { 2 } } { h }
D) 3x2+3xhh23 x ^ { 2 } + 3 x h - h ^ { 2 }
E) 3x2+3xh+h23 x ^ { 2 } + 3 x h + h ^ { 2 }
Question
Find the specified nth term in the expansion of the binomial.​ (x+y)9,n=10( x + y ) ^ { 9 } , n = 10

A) y9y ^ { 9 }
B) x9y10x ^ { 9 } y ^ { 10 }
C) xy9x y ^ { 9 }
D) x9yx ^ { 9 } y
E) y10y ^ { 10 }
Question
Find the specified nth term in the expansion of the binomial.​ (x8y)5,n=3( x - 8 y ) ^ { 5 } , n = 3

A) 640x5y3640 x ^ { 5 } y ^ { 3 }
B) 640x3y2640 x ^ { 3 } y ^ { 2 }
C) 640x2y2640 x ^ { 2 } y ^ { 2 }
D) 640x3y3640 x ^ { 3 } y ^ { 3 }
E) 640x2y3640 x ^ { 2 } y ^ { 3 }
Question
Find the specified nth term in the expansion of the binomial.​ (4a+5b)5,n=5( 4 a + 5 b ) ^ { 5 } , n = 5

A) 12,500ab412,500 a b ^ { 4 }
B) 12,500ab12,500 a b
C) 12,500a4b12,500 a ^ { 4 } b
D) 12,500a4b412,500 a ^ { 4 } b ^ { 4 }
E) 12,500a5b512,500 a ^ { 5 } b ^ { 5 }
Question
Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms
(x2+8)12ax8\left( x ^ { 2 } + 8 \right) ^ { 12 } a x ^ { 8 }

A)8,304,721,920
B)8,304,721,921
C)8,304,721,923
D)8,304,721,918
E)8,304,721,919
Question
Find the specified nth term in the expansion of the binomial.​ (5x3y)12,n=10( 5 x - 3 y ) ^ { 12 } , n = 10

A) 541,282,500yx- 541,282,500 y x
B) 541,282,500y3x3- 541,282,500 y ^ { 3 } x ^ { 3 }
C) 541,282,500y9x3- 541,282,500 y ^ { 9 } x ^ { 3 }
D) 541,282,500y9x9- 541,282,500 y ^ { 9 } x ^ { 9 }
E) 541,282,500y3x9- 541,282,500 y ^ { 3 } x ^ { 9 }
Question
Use the Binomial Theorem to expand and simplify the expression.​ (u3/5+5)5\left( u ^ { 3 / 5 } + 5 \right) ^ { 5 }

A) u3+25u12/51250u9/5250u6/5+3125u3/5+3125u ^ { 3 } + 25 u ^ { 12 / 5 } - 1250 u ^ { 9 / 5 } - 250 u ^ { 6 / 5 } + 3125 u ^ { 3 / 5 } + 3125
B) u3+250u12/5+25u9/5+1250u6/5+3125u3/5+3125u ^ { 3 } + 250 u ^ { 12 / 5 } + 25 u ^ { 9 / 5 } + 1250 u ^ { 6 / 5 } + 3125 u ^ { 3 / 5 } + 3125
C) u3+250u12/5+1250u9/5+3125u6/5+3125u3/5+3125u ^ { 3 } + 250 u ^ { 12 / 5 } + 1250 u ^ { 9 / 5 } + 3125 u ^ { 6 / 5 } + 3125 u ^ { 3 / 5 } + 3125
D) u3+25u12/5+3125u9/5+250u6/5+3125u3/5+1250u ^ { 3 } + 25 u ^ { 12 / 5 } + 3125 u ^ { 9 / 5 } + 250 u ^ { 6 / 5 } + 3125 u ^ { 3 / 5 } + 1250
E) u3+25u12/5+250u9/5+1250u6/5+3125u3/5+3125u ^ { 3 } + 25 u ^ { 12 / 5 } + 250 u ^ { 9 / 5 } + 1250 u ^ { 6 / 5 } + 3125 u ^ { 3 / 5 } + 3125
Question
Use the Binomial Theorem to expand and simplify the expression.​ (x+7)3( \sqrt { x } + 7 ) ^ { 3 }

A) x3/2+21x+147x2+343x ^ { 3 / 2 } + 21 x + 147 x ^ { 2 } + 343
B) x3/2+21x147x1/2+343x ^ { 3 / 2 } + 21 x - 147 x ^ { 1 / 2 } + 343
C) x3+21x+147x1/2+343x ^ { 3 } + 21 x + 147 x ^ { 1 / 2 } + 343
D) x3+21x2+147x+343x ^ { 3 } + 21 x ^ { 2 } + 147 x + 343
E) x3/2+21x+147x1/2+343x ^ { 3 / 2 } + 21 x + 147 x ^ { 1 / 2 } + 343
Question
Find the specified nth term in the expansion of the binomial.​ (x+y)10,n=6( x + y ) ^ { 10 } , n = 6

A)251 x5y5x ^ { 5 } y ^ { 5 }
B)254 x5y5x ^ { 5 } y ^ { 5 }
C)253 x5y5x ^ { 5 } y ^ { 5 }
D)252 x5y5x ^ { 5 } y ^ { 5 }
E)250 x5y5x ^ { 5 } y ^ { 5 }
Question
Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms
(2x5y)9 ax4y5( 2 x - 5 y ) ^ { 9 } ~a x ^ { 4 } y ^ { 5 }

A)-6,300,001
B)-6,300,002
C)-6,299,999
D)-6,300,000
E)-6,299,997
Question
Use the Binomial Theorem to expand the complex number.Simplify your result.​ (5+i)4( 5 + i ) ^ { 4 }

A) 480i476480 i - 476
B) 480i476- 480 i - 476
C) 480i+476- 480 i + 476
D) 480i+476480 i + 476
E) 480i+476i480 i + 476 i
Question
Find the coefficient a of the term in the expansion of the binomial.​ Binominal Terms
(x+7)12ax5( x + 7 ) ^ { 12 } a x ^ { 5 }

A)-407,653,785
B)-652,246,056
C)760,953,732
D)181,179,460
E)652,246,056
Question
Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms
(6xy)10 ax2y8( 6 x - y ) ^ { 10 }~ a x ^ { 2 } y ^ { 8 }

A)1,621
B)1,620
C)1,619
D)1,623
E)1,618
Question
Find the specified nth term in the expansion of the binomial.​ (4x+3y)9,n=8( 4 x + 3 y ) ^ { 9 } , n = 8

A) 1,259,712x7y21,259,712 x ^ { 7 } y ^ { 2 }
B) 1,259,712x2y71,259,712 x ^ { 2 } y ^ { 7 }
C) 1,259,712x8y91,259,712 x ^ { 8 } y ^ { 9 }
D) 1,259,712x2y21,259,712 x ^ { 2 } y ^ { 2 }
E) 1,259,712x7y71,259,712 x ^ { 7 } y ^ { 7 }
Question
Expand the binomial by using Pascal's Triangle to determine the coefficients.​ (x+2y)5( x + 2 y ) ^ { 5 }

A) x5+10x4y+40x3y280x2y3+80xy4+32y5x ^ { 5 } + 10 x ^ { 4 } y + 40 x ^ { 3 } y ^ { 2 } - 80 x ^ { 2 } y ^ { 3 } + 80 x y ^ { 4 } + 32 y ^ { 5 }
B) x510x4y+40x3y2+80x2y3+80xy4+32y5x ^ { 5 } - 10 x ^ { 4 } y + 40 x ^ { 3 } y ^ { 2 } + 80 x ^ { 2 } y ^ { 3 } + 80 x y ^ { 4 } + 32 y ^ { 5 }
C) x5+10x4y+40x3y2+80x2y380xy432y5x ^ { 5 } + 10 x ^ { 4 } y + 40 x ^ { 3 } y ^ { 2 } + 80 x ^ { 2 } y ^ { 3 } - 80 x y ^ { 4 } - 32 y ^ { 5 }
D) x5+10x4y+40x3y2+80x2y3+80xy4+32y5x ^ { 5 } + 10 x ^ { 4 } y + 40 x ^ { 3 } y ^ { 2 } + 80 x ^ { 2 } y ^ { 3 } + 80 x y ^ { 4 } + 32 y ^ { 5 }
E) x5+10x4y40x3y280x2y380xy4+32y5x ^ { 5 } + 10 x ^ { 4 } y - 40 x ^ { 3 } y ^ { 2 } - 80 x ^ { 2 } y ^ { 3 } - 80 x y ^ { 4 } + 32 y ^ { 5 }
Question
Use the Binomial Theorem to expand and simplify the expression. (4x+5y)4( 4 x + 5 y ) ^ { 4 }

A) 256x4+1280x3y+2400x2y2+2000xy3+625y4256 x ^ { 4 } + 1280 x ^ { 3 } y + 2400 x ^ { 2 } y ^ { 2 } + 2000 x y ^ { 3 } + 625 y ^ { 4 }
B) 256x4+1280x3y+2400x2y2+2000xy3y4256 x ^ { 4 } + 1280 x ^ { 3 } y + 2400 x ^ { 2 } y ^ { 2 } + 2000 x y ^ { 3 } - y ^ { 4 }
C) 256x4+320x3y+2400x2y2+2000xy3+625y4256 x ^ { 4 } + 320 x ^ { 3 } y + 2400 x ^ { 2 } y ^ { 2 } + 2000 x y ^ { 3 } + 625 y ^ { 4 }
D) 256x4+500x3y+2400x2y2+2000xy3625y4256 x ^ { 4 } + 500 x ^ { 3 } y + 2400 x ^ { 2 } y ^ { 2 } + 2000 x y ^ { 3 } - 625 y ^ { 4 }
E) x4+1280x3y+2400x2y2+2000xy3+y4x ^ { 4 } + 1280 x ^ { 3 } y + 2400 x ^ { 2 } y ^ { 2 } + 2000 x y ^ { 3 } + y ^ { 4 }
Question
Use the Binomial Theorem to expand and simplify the expression. (x3/4+1)4\left( x ^ { 3 / 4 } + 1 \right) ^ { 4 }

A) x3+1x ^ { 3 } + 1
B) x3+4x9/7+6x3/2+4x3/4+1x ^ { 3 } + 4 x ^ { 9 / 7 } + 6 x ^ { 3 / 2 } + 4 x ^ { 3 / 4 } + 1
C) x3+4x9/4+6x3/2+4x3/4+1x ^ { 3 } + 4 x ^ { 9 / 4 } + 6 x ^ { 3 / 2 } + 4 x ^ { 3 / 4 } + 1
D) x3+4x9/4+6x3/2+4x3/41- x ^ { 3 } + 4 x ^ { 9 / 4 } + 6 x ^ { 3 / 2 } + 4 x ^ { 3 / 4 } - 1
E) x3+4x2+6x+1x ^ { 3 } + 4 x ^ { 2 } + 6 x + 1
Question
Use the Binomial Theorem to expand and simplify the expression. (x3/4+5)4\left( x ^ { 3 / 4 } + 5 \right) ^ { 4 }

A) x3+625x ^ { 3 } + 625
B) x3+20x9/4+150x+500x3/4+625x ^ { 3 } + 20 x ^ { 9 / 4 } + 150 x + 500 x ^ { 3 / 4 } + 625
C) x3+20x9/5+150x3/2+500x3/4+625x ^ { 3 } + 20 x ^ { 9 / 5 } + 150 x ^ { 3 / 2 } + 500 x ^ { 3 / 4 } + 625
D) x3+20x9/4+150x3/2+500x3/4+625x ^ { 3 } + 20 x ^ { 9 / 4 } + 150 x ^ { 3 / 2 } + 500 x ^ { 3 / 4 } + 625
E) x3+20x9/4+150x3/2+500x+625- x ^ { 3 } + 20 x ^ { 9 / 4 } + 150 x ^ { 3 / 2 } + 500 x + 625
Question
Use the Binomial Theorem to expand and simplify the expression. (r+2)5( r + 2 ) ^ { 5 }

A) r5+10r4+8r3+80r2+80r+32r ^ { 5 } + 10 r ^ { 4 } + 8 r ^ { 3 } + 80 r ^ { 2 } + 80 r + 32
B) r5+10r4+36r3+80r2+80r+32r ^ { 5 } + 10 r ^ { 4 } + 36 r ^ { 3 } + 80 r ^ { 2 } + 80 r + 32
C) r5+10r4+40r3+80r2+80r+32r ^ { 5 } + 10 r ^ { 4 } + 40 r ^ { 3 } + 80 r ^ { 2 } + 80 r + 32
D) r5+10r4+40r3+80r2+72r+36r ^ { 5 } + 10 r ^ { 4 } + 40 r ^ { 3 } + 80 r ^ { 2 } + 72 r + 36
E) r5+10r4+40r3+80r2+60r+120r ^ { 5 } + 10 r ^ { 4 } + 40 r ^ { 3 } + 80 r ^ { 2 } + 60 r + 120
Question
Use the binomial theorem to expand the binomial.​ (c+y)4( c + y ) ^ { 4 }

A) c4+4c3y+6c2y2+4cy3+y4c ^ { 4 } + 4 c ^ { 3 } y + 6 c ^ { 2 } y ^ { 2 } + 4 c y ^ { 3 } + y ^ { 4 }
B) c4+y4c ^ { 4 } + y ^ { 4 }
C) c4+c3y+c2y2+cy3+y4c ^ { 4 } + c ^ { 3 } y + c ^ { 2 } y ^ { 2 } + c y ^ { 3 } + y ^ { 4 }
D) c4+6c3y+6c2y2+4cy3+y4c ^ { 4 } + 6 c ^ { 3 } y + 6 c ^ { 2 } y ^ { 2 } + 4 c y ^ { 3 } + y ^ { 4 }
E) c4+3c3y+3cy3+y4c ^ { 4 } + 3 c ^ { 3 } y + 3 c y ^ { 3 } + y ^ { 4 }
Question
Use the binomial theorem to expand the binomial.​ (zy)4( z - y ) ^ { 4 }

A) z44z3y+6z2y24zy3+y4z ^ { 4 } - 4 z ^ { 3 } y + 6 z ^ { 2 } y ^ { 2 } - 4 z y ^ { 3 } + y ^ { 4 }
B) z44z3y+4z2y24zy3+y4z ^ { 4 } - 4 z ^ { 3 } y + 4 z ^ { 2 } y ^ { 2 } - 4 z y ^ { 3 } + y ^ { 4 }
C) z43z3y3zy3+y4z ^ { 4 } - 3 z ^ { 3 } y - 3 z y ^ { 3 } + y ^ { 4 }
D) z4y4z ^ { 4 } - y ^ { 4 }
E) z4+4z3y+6z2y2+4zy3+y4z ^ { 4 } + 4 z ^ { 3 } y + 6 z ^ { 2 } y ^ { 2 } + 4 z y ^ { 3 } + y ^ { 4 }
Question
Calculate the binomial coefficient: (62)\left( \begin{array} { l } 6 \\2\end{array} \right)

A)30
B)1
C)12
D)0
E)15
Question
Find the specified nth term in the expansion of the binomial.(Write the expansion in descending powers of x. ) (5x2y)6,n=3( 5 x - 2 y ) ^ { 6 } , n = 3

A) 20x2y320 x ^ { 2 } y ^ { 3 }
B) 5x2y45 x ^ { 2 } y ^ { 4 }
C) 2500x2y42500 x ^ { 2 } y ^ { 4 }
D) 20x2y420 x ^ { 2 } y ^ { 4 }
E) 5x4y25 x ^ { 4 } y ^ { 2 }
Question
​Use the Binominal Theorem to expand the complex number.Simplify your result.​ (46i)4( 4 - 6 i ) ^ { 4 }

A)​ 256+1536i+3456+3456i31296- 256 + 1536 i + 3456 + 3456 i ^ { 3 } - 1296
B)​ 256+1536i3456+3456i3+1296256 + 1536 i - 3456 + 3456 i ^ { 3 } + 1296
C)​ 2561536i+34563456i31296- 256 - 1536 i + 3456 - 3456 i ^ { 3 } - 1296
D)​ 2561536i34563456i3+1296256 - 1536 i - 3456 - 3456 i ^ { 3 } + 1296
E)​ 12963456i34561536i3+2561296 - 3456 i - 3456 - 1536 i ^ { 3 } + 256
Question
Find the coefficient a of the term in the expansion of the binomial. Binomial Term (2x5y)8( 2 x - 5 y ) ^ { 8 } ax3y5a x ^ { 3 } y ^ { 5 }

A) a=224000a = - 224000
B) a=336a = 336
C) a=40a = 40
D) a=8a = 8
E) a=390,625a = 390,625
Question
Find the specified nth term in the expansion of the binomial.(Write the expansion in descending powers of x. ) (x4y)12,n=3( x - 4 y ) ^ { 12 } , n = 3

A) 1,056x9y21,056 x ^ { 9 } y ^ { 2 }
B) 1,320x10y21,320 x ^ { 10 } y ^ { 2 }
C) 1,056x10y21,056 x ^ { 10 } y ^ { 2 }
D) 1,056y21,056 y ^ { 2 }
E) 220x1y2220 x ^ { 1 } y ^ { 2 }
Question
Find the coefficient a of the term in the expansion of the binomial. Binomial Term (x3y)9( x - 3 y ) ^ { 9 } ax5y4a x ^ { 5 } y ^ { 4 }

A)a = 13
B)a = 10206
C)a = 45
D)a = -19683
E)a = 3024
Question
Use the Binomial Theorem to expand and simplify the expression. (4x+3y)4( 4 x + 3 y ) ^ { 4 }

A) 256x4+768x3y+864x2y2+432xy3+81y4256 x ^ { 4 } + 768 x ^ { 3 } y + 864 x ^ { 2 } y ^ { 2 } + 432 x y ^ { 3 } + 81 y ^ { 4 }
B) 256x4+4x3y+864x2y2+432xy3+y4256 x ^ { 4 } + 4 x ^ { 3 } y + 864 x ^ { 2 } y ^ { 2 } + 432 x y ^ { 3 } + y ^ { 4 }
C) 256x4+108x3y+864x2y2+432xy3+81y4256 x ^ { 4 } + 108 x ^ { 3 } y + 864 x ^ { 2 } y ^ { 2 } + 432 x y ^ { 3 } + 81 y ^ { 4 }
D) x4+768x3y+864x2y2+432xy3+81y4x ^ { 4 } + 768 x ^ { 3 } y + 864 x ^ { 2 } y ^ { 2 } + 432 x y ^ { 3 } + 81 y ^ { 4 }
E) 256x4+768x3y+864x2y2+4xy3+81y4256 x ^ { 4 } + 768 x ^ { 3 } y + 864 x ^ { 2 } y ^ { 2 } + 4 x y ^ { 3 } + 81 y ^ { 4 }
Question
The probability that a basketball player will make a given free throw is 610\frac { 6 } { 10 } .To find the probability that the player makes exactly 8 out of her next 10 free throws,evaluate the term 10C8(610)8(410)2{ } _ { 10 } C _ { 8 } \left( \frac { 6 } { 10 } \right) ^ { 8 } \left( \frac { 4 } { 10 } \right) ^ { 2 } in the expansion of (610+410)10\left( \frac { 6 } { 10 } + \frac { 4 } { 10 } \right) ^ { 10 } .Round to four decimal places.

A)0.2721
B)0.0106
C)0.0047
D)0.7558
E)0.1209
Question
Evaluate using Pascal's triangle.​ (65)\left( \begin{array} { l } 6 \\5\end{array} \right)

A) (65)=720\left( \begin{array} { l } 6 \\5\end{array} \right) = 720
B) (65)=21\left( \begin{array} { l } 6 \\5\end{array} \right) = 21
C) (65)=56\left( \begin{array} { l } 6 \\5\end{array} \right) = 56
D) (65)=1\left( \begin{array} { l } 6 \\5\end{array} \right) = 1
E) (65)=6\left( \begin{array} { l } 6 \\5\end{array} \right) = 6
Question
Evaluate using Pascal's triangle.​ 7C4{ } _ { 7 } C _ { 4 }

A) 7C4=840{ } _ { 7 } C _ { 4 } = 840
B) 7C4=70{ } _ { 7 } C _ { 4 } = 70
C) 7C4=126{ } _ { 7 } C _ { 4 } = 126
D) 7C4=15{ } _ { 7 } C _ { 4 } = 15
E) 7C4=35{ } _ { 7 } C _ { 4 } = 35
Question
​Use the Binominal Theorem to expand the complex number.Simplify your result.​ (32i)4( 3 - 2 i ) ^ { 4 }

A)​ 135+344i- 135 + 344 i
B)​ 151+344i- 151 + 344 i
C)​ 13588i- 135 - 88 i
D)​ 15188i- 151 - 88 i
E)​ 31388i313 - 88 i
Question
Calculate the binomial coefficient: 11C8{ } _ { 11 } C _ { 8 }

A)6652800
B)88
C)165
D)1
E)0
Question
Use the binomial theorem to expand the binomial.​ (z2+b)4\left( \frac { z } { 2 } + b \right) ^ { 4 }

A) z4+z3b+z2b2+zb3+b4z ^ { 4 } + z ^ { 3 } b + z ^ { 2 } b ^ { 2 } + z b ^ { 3 } + b ^ { 4 }
B) 18z4+12z3b+32z2b2+2zb3+b4\frac { 1 } { 8 } z ^ { 4 } + \frac { 1 } { 2 } z ^ { 3 } b + \frac { 3 } { 2 } z ^ { 2 } b ^ { 2 } + 2 z b ^ { 3 } + b ^ { 4 }
C) 12z4+b4\frac { 1 } { 2 } z ^ { 4 } + b ^ { 4 }
D) 116z4+18z3b+14z2b2+12zb3+b4\frac { 1 } { 16 } z ^ { 4 } + \frac { 1 } { 8 } z ^ { 3 } b + \frac { 1 } { 4 } z ^ { 2 } b ^ { 2 } + \frac { 1 } { 2 } z b ^ { 3 } + b ^ { 4 }
E) 116z4+12z3b+32z2b2+2zb3+b4\frac { 1 } { 16 } z ^ { 4 } + \frac { 1 } { 2 } z ^ { 3 } b + \frac { 3 } { 2 } z ^ { 2 } b ^ { 2 } + 2 z b ^ { 3 } + b ^ { 4 }
Question
Calculate the binomial coefficient: (116)\left( \begin{array} { c } 11 \\6\end{array} \right)

A)332640
B)66
C)462
D)1
E)0
Question
Evaluate using Pascal's triangle.Show your work. Evaluate using Pascal's triangle.Show your work.  <div style=padding-top: 35px>
Question
Use the binomial theorem to expand the binomial.​ Use the binomial theorem to expand the binomial.​  <div style=padding-top: 35px>
Question
Expand the binomial by using Pascal's triangle to determine the coefficients.Show your work. Expand the binomial by using Pascal's triangle to determine the coefficients.Show your work.  <div style=padding-top: 35px>
Question
Find the 3rd term in the binomial expansion.​ Find the 3rd term in the binomial expansion.​  <div style=padding-top: 35px>
Question
Evaluate using Pascal's triangle.Show your work. Evaluate using Pascal's triangle.Show your work.  <div style=padding-top: 35px>
Question
The probability that a basketball player will make a given free throw is 710\frac { 7 } { 10 } .To find the probability that the player makes exactly 7 out of her next 10 free throws,evaluate the term 10C7(710)7(310)3{ } _ { 10 } C _ { 7 } \left( \frac { 7 } { 10 } \right) ^ { 7 } \left( \frac { 3 } { 10 } \right) ^ { 3 } in the expansion of (710+310)10\left( \frac { 7 } { 10 } + \frac { 3 } { 10 } \right) ^ { 10 } .Round to four decimal places.

A)0.0090
B)3.3897
C)0.0007
D)0.2668
E)9.8825
Question
Use the binomial theorem to expand the binomial.​ Use the binomial theorem to expand the binomial.​  <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/67
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 56: The Binomial Theorem
1
Evaluate using Pascal's Triangle.​ (87)\left( \frac { 8 } { 7 } \right)

A)8
B)6
C)10
D)9
E)7
8
2
Evaluate using Pascal's Triangle.​ 12C4{ } _ { 12 } C _ { 4 }

A)496
B)495
C)497
D)494
E)493
495
3
Use the Binomial Theorem to expand and simplify the expression.​ (2x5y)5( 2 x - 5 y ) ^ { 5 }

A) 32x5400x4y2000x3y25000x2y36250xy4312532 x ^ { 5 } - 400 x ^ { 4 } y - 2000 x ^ { 3 } y ^ { 2 } - 5000 x ^ { 2 } y ^ { 3 } - 6250 x y ^ { 4 } - 3125
B) 32x5400x4y+2000x3y2+5000x2y3+6250xy4+312532 x ^ { 5 } - 400 x ^ { 4 } y + 2000 x ^ { 3 } y ^ { 2 } + 5000 x ^ { 2 } y ^ { 3 } + 6250 x y ^ { 4 } + 3125
C) 32x5+400x4y+2000x3y25000x2y3+6250xy4312532 x ^ { 5 } + 400 x ^ { 4 } y + 2000 x ^ { 3 } y ^ { 2 } - 5000 x ^ { 2 } y ^ { 3 } + 6250 x y ^ { 4 } - 3125
D) 32x5400x4y+2000x3y25000x2y3+6250xy4312532 x ^ { 5 } - 400 x ^ { 4 } y + 2000 x ^ { 3 } y ^ { 2 } - 5000 x ^ { 2 } y ^ { 3 } + 6250 x y ^ { 4 } - 3125
E) 32x5+400x4y+2000x3y25000x2y3+6250xy4+312532 x ^ { 5 } + 400 x ^ { 4 } y + 2000 x ^ { 3 } y ^ { 2 } - 5000 x ^ { 2 } y ^ { 3 } + 6250 x y ^ { 4 } + 3125
32x5400x4y+2000x3y25000x2y3+6250xy4312532 x ^ { 5 } - 400 x ^ { 4 } y + 2000 x ^ { 3 } y ^ { 2 } - 5000 x ^ { 2 } y ^ { 3 } + 6250 x y ^ { 4 } - 3125
4
Calculate the binomial coefficient.​ 6C4{ } _ { 6 } C _ { 4 }

A)16
B)15
C)17
D)14
E)13
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
5
Use the Binomial Theorem to expand and simplify the expression.​ (y3)5( y - 3 ) ^ { 5 }

A) y515y4+90y3270y2+405y243y ^ { 5 } - 15 y ^ { 4 } + 90 y ^ { 3 } - 270 y ^ { 2 } + 405 y - 243
B) y515y490y3270y2+405y243y ^ { 5 } - 15 y ^ { 4 } - 90 y ^ { 3 } - 270 y ^ { 2 } + 405 y - 243
C) y5+15y490y3+270y2405y+243y ^ { 5 } + 15 y ^ { 4 } - 90 y ^ { 3 } + 270 y ^ { 2 } - 405 y + 243
D) y515y4+90y3270y2405y243y ^ { 5 } - 15 y ^ { 4 } + 90 y ^ { 3 } - 270 y ^ { 2 } - 405 y - 243
E) y515y490y3270y2405y243y ^ { 5 } - 15 y ^ { 4 } - 90 y ^ { 3 } - 270 y ^ { 2 } - 405 y - 243
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
6
Calculate the binomial coefficient.​ 29C29{ } _ { 29 } C _ { 29 }

A)0
B)4
C)1
D)3
E)2
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
7
Calculate the binomial coefficient.​ 18C0{ } _ { 18 } C _ { 0 }

A)2
B)3
C)1
D)4
E)0
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
8
Calculate the binomial coefficient.​ (128)\left( \frac { 12 } { 8 } \right)

A)496
B)493
C)498
D)497
E)495
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
9
Calculate the binomial coefficient.​ 7C4{}_7 C _ { 4 }

A)33
B)37
C)34
D)36
E)35
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
10
Use the Binomial Theorem to expand and simplify the expression.​ (y3)3( y - 3 ) ^ { 3 }

A) y3+9y2+27y+27y ^ { 3 } + 9 y ^ { 2 } + 27 y + 27
B) y39y2+27y27y ^ { 3 } - 9 y ^ { 2 } + 27 y - 27
C) y39y227y27y ^ { 3 } - 9 y ^ { 2 } - 27 y - 27
D) y3+9y2+27y27y ^ { 3 } + 9 y ^ { 2 } + 27 y - 27
E) y3+9y29y+27y ^ { 3 } + 9 y ^ { 2 } - 9 y + 27
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
11
Expand the binomial by using Pascal's Triangle to determine the coefficients.​ (2ts)5( 2 t - s ) ^ { 5 }

A) 32t580t4s+80t3s240t2s3+10ts4s532 t ^ { 5 } - 80 t ^ { 4 } s + 80 t ^ { 3 } s ^ { 2 } - 40 t ^ { 2 } s ^ { 3 } + 10 t s ^ { 4 } - s ^ { 5 }
B) 32t5+80t4s+80t3s240t2s3+10ts4s532 t ^ { 5 } + 80 t ^ { 4 } s + 80 t ^ { 3 } s ^ { 2 } - 40 t ^ { 2 } s ^ { 3 } + 10 t s ^ { 4 } - s ^ { 5 }
C) 32t580t4s80t3s240t2s3+10ts4s532 t ^ { 5 } - 80 t ^ { 4 } s - 80 t ^ { 3 } s ^ { 2 } - 40 t ^ { 2 } s ^ { 3 } + 10 t s ^ { 4 } - s ^ { 5 }
D) 32t580t4s+80t3s2+40t2s3+10ts4+s532 t ^ { 5 } - 80 t ^ { 4 } s + 80 t ^ { 3 } s ^ { 2 } + 40 t ^ { 2 } s ^ { 3 } + 10 t s ^ { 4 } + s ^ { 5 }
E) 32t5+80t4s80t3s2+40t2s310ts4+s532 t ^ { 5 } + 80 t ^ { 4 } s - 80 t ^ { 3 } s ^ { 2 } + 40 t ^ { 2 } s ^ { 3 } - 10 t s ^ { 4 } + s ^ { 5 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
12
Evaluate using Pascal's Triangle.​ (85)\left( \frac { 8 } { 5 } \right)

A)54
B)58
C)56
D)55
E)57
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
13
Use the Binomial Theorem to expand and simplify the expression.​ (r+5s)6( r + 5 s ) ^ { 6 }

A) r6+30sr5+375s2r4+2500s3r3+9375s4r2+18750s5r15625s6r ^ { 6 } + 30 s r ^ { 5 } + 375 s ^ { 2 } r ^ { 4 } + 2500 s ^ { 3 } r ^ { 3 } + 9375 s ^ { 4 } r ^ { 2 } + 18750 s ^ { 5 } r - 15625 s ^ { 6 }
B) r630sr5+375s2r4+2500s3r3+9375s4r2+18750s5r+15625s6r ^ { 6 } - 30 s r ^ { 5 } + 375 s ^ { 2 } r ^ { 4 } + 2500 s ^ { 3 } r ^ { 3 } + 9375 s ^ { 4 } r ^ { 2 } + 18750 s ^ { 5 } r + 15625 s ^ { 6 }
C) r6+30sr5+375s2r42500s3r3+9375s4r2+18750s5r+15625s6r ^ { 6 } + 30 s r ^ { 5 } + 375 s ^ { 2 } r ^ { 4 } - 2500 s ^ { 3 } r ^ { 3 } + 9375 s ^ { 4 } r ^ { 2 } + 18750 s ^ { 5 } r + 15625 s ^ { 6 }
D) r630sr5375s2r42500s3r39375s4r218750s5r15625s6r ^ { 6 } - 30 s r ^ { 5 } - 375 s ^ { 2 } r ^ { 4 } - 2500 s ^ { 3 } r ^ { 3 } - 9375 s ^ { 4 } r ^ { 2 } - 18750 s ^ { 5 } r - 15625 s ^ { 6 }
E) r6+30sr5+375s2r4+2500s3r3+9375s4r2+18750s5r+15625s6r ^ { 6 } + 30 s r ^ { 5 } + 375 s ^ { 2 } r ^ { 4 } + 2500 s ^ { 3 } r ^ { 3 } + 9375 s ^ { 4 } r ^ { 2 } + 18750 s ^ { 5 } r + 15625 s ^ { 6 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
14
Use the Binomial Theorem to expand and simplify the expression.​ (a+7)5( a + 7 ) ^ { 5 }

A) a5+35a4+490a3+343a2+12005a+16807a ^ { 5 } + 35 a ^ { 4 } + 490 a ^ { 3 } + 343 a ^ { 2 } + 12005 a + 16807
B) a5+35a4490a3+3430a2+12005a+16807a ^ { 5 } + 35 a ^ { 4 } - 490 a ^ { 3 } + 3430 a ^ { 2 } + 12005 a + 16807
C) a5+35a4+490a3+3430a2+12005a+16807a ^ { 5 } + 35 a ^ { 4 } + 490 a ^ { 3 } + 3430 a ^ { 2 } + 12005 a + 16807
D) a5+35a4+490a3+3430a2+2401a+16807a ^ { 5 } + 35 a ^ { 4 } + 490 a ^ { 3 } + 3430 a ^ { 2 } + 2401 a + 16807
E) a5+343a4+2401a3+49a2+12005a+16807a ^ { 5 } + 343 a ^ { 4 } + 2401 a ^ { 3 } + 49 a ^ { 2 } + 12005 a + 16807
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
15
Use the Binomial Theorem to expand and simplify the expression.​ (7a+b)3( 7 a + b ) ^ { 3 }

A) 343a3147a2b+21ab2+b3343 a ^ { 3 } - 147 a ^ { 2 } b + 21 a b ^ { 2 } + b ^ { 3 }
B) a3+147a2b+21ab2+b3a ^ { 3 } + 147 a ^ { 2 } b + 21 a b ^ { 2 } + b ^ { 3 }
C) 343a3+147a2b21ab2+b3343 a ^ { 3 } + 147 a ^ { 2 } b - 21 a b ^ { 2 } + b ^ { 3 }
D) 343a3+147a2b+21ab2b3343 a ^ { 3 } + 147 a ^ { 2 } b + 21 a b ^ { 2 } - b ^ { 3 }
E) 343a3+147a2b+21ab2+b3343 a ^ { 3 } + 147 a ^ { 2 } b + 21 a b ^ { 2 } + b ^ { 3 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
16
Use the Binomial Theorem to expand and simplify the expression.​ 2(x5)4+5(x5)22 ( x - 5 ) ^ { 4 } + 5 ( x - 5 ) ^ { 2 }

A) 2x440x3+305x21050x+13752 x ^ { 4 } - 40 x ^ { 3 } + 305 x ^ { 2 } - 1050 x + 1375
B) 2x4+40x3+305x21050x+13752 x ^ { 4 } + 40 x ^ { 3 } + 305 x ^ { 2 } - 1050 x + 1375
C) 2x440x3305x21050x+13752 x ^ { 4 } - 40 x ^ { 3 } - 305 x ^ { 2 } - 1050 x + 1375
D) 2x440x3+305x21050x13752 x ^ { 4 } - 40 x ^ { 3 } + 305 x ^ { 2 } - 1050 x - 1375
E) 2x440x3305x21050x13752 x ^ { 4 } - 40 x ^ { 3 } - 305 x ^ { 2 } - 1050 x - 1375
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
17
Use the Binomial Theorem to expand and simplify the expression.​ (x+6)4( x + 6 ) ^ { 4 }

A) x424x3+216x2+864x+1296x ^ { 4 } - 24 x ^ { 3 } + 216 x ^ { 2 } + 864 x + 1296
B) x424x3216x2+864x+1296x ^ { 4 } - 24 x ^ { 3 } - 216 x ^ { 2 } + 864 x + 1296
C) x424x3+216x2+864x1296x ^ { 4 } - 24 x ^ { 3 } + 216 x ^ { 2 } + 864 x - 1296
D) x4+36x3216x2+864x1296x ^ { 4 } + 36 x ^ { 3 } - 216 x ^ { 2 } + 864 x - 1296
E) x4+24x3+216x2+864x+1296x ^ { 4 } + 24 x ^ { 3 } + 216 x ^ { 2 } + 864 x + 1296
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
18
Use the Binomial Theorem to expand and simplify the expression.​ (x+5)6( x + 5 ) ^ { 6 }

A) x6+30x5+500x4+2500x3+9375x2+15625x+625x ^ { 6 } + 30 x ^ { 5 } + 500 x ^ { 4 } + 2500 x ^ { 3 } + 9375 x ^ { 2 } + 15625 x + 625
B) x6+500x5+375x4+3125x3+9375x2+18750x+15625x ^ { 6 } + 500 x ^ { 5 } + 375 x ^ { 4 } + 3125 x ^ { 3 } + 9375 x ^ { 2 } + 18750 x + 15625
C) x6+30x5+375x4+2500x3+9375x2+18750x+15625x ^ { 6 } + 30 x ^ { 5 } + 375 x ^ { 4 } + 2500 x ^ { 3 } + 9375 x ^ { 2 } + 18750 x + 15625
D) x6+30x5+375x4+2500x3+9375x218750x+625x ^ { 6 } + 30 x ^ { 5 } + 375 x ^ { 4 } + 2500 x ^ { 3 } + 9375 x ^ { 2 } - 18750 x + 625
E) x6+30x5+25x4+3125x3+9375x2+18750x+15625x ^ { 6 } + 30 x ^ { 5 } + 25 x ^ { 4 } + 3125 x ^ { 3 } + 9375 x ^ { 2 } + 18750 x + 15625
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
19
Use the Binomial Theorem to expand and simplify the expression.​ (2x+y)3( 2 x + y ) ^ { 3 }

A) 8x312x2y+6xy2+y38 x ^ { 3 } - 12 x ^ { 2 } y + 6 x y ^ { 2 } + y ^ { 3 }
B) 8x3+12x2y6xy2+y38 x ^ { 3 } + 12 x ^ { 2 } y - 6 x y ^ { 2 } + y ^ { 3 }
C) x3+12x2y+6xy2+y3x ^ { 3 } + 12 x ^ { 2 } y + 6 x y ^ { 2 } + y ^ { 3 }
D) 8x3+12x2y+6xy2+y38 x ^ { 3 } + 12 x ^ { 2 } y + 6 x y ^ { 2 } + y ^ { 3 }
E) 8x3+12x2y+6xy2y38 x ^ { 3 } + 12 x ^ { 2 } y + 6 x y ^ { 2 } - y ^ { 3 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
20
Use the Binomial Theorem to expand and simplify the expression.​ (a+8)4( a + 8 ) ^ { 4 }

A) a4+32a3+384a2+2048a+4096a ^ { 4 } + 32 a ^ { 3 } + 384 a ^ { 2 } + 2048 a + 4096
B) a432a3+384a2+2048a+4096a ^ { 4 } - 32 a ^ { 3 } + 384 a ^ { 2 } + 2048 a + 4096
C) a4+32a3+512a2+2048a+4096a ^ { 4 } + 32 a ^ { 3 } + 512 a ^ { 2 } + 2048 a + 4096
D) a4+32a3+384a2+2048a4096a ^ { 4 } + 32 a ^ { 3 } + 384 a ^ { 2 } + 2048 a - 4096
E) a4+64a3512a22048a+4096a ^ { 4 } + 64 a ^ { 3 } - 512 a ^ { 2 } - 2048 a + 4096
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
21
Use the Binomial Theorem to expand and simplify the expression.​ (2t5)3( 2 \sqrt { t } - 5 ) ^ { 3 }

A) 8t3/260t+150t1/21258 t ^ { 3 / 2 } - 60 t + 150 t ^ { 1 / 2 } - 125
B) 8t3/260t+150t1/2+1258 t ^ { 3 / 2 } - 60 t + 150 t ^ { 1 / 2 } + 125
C) 8t3/260t150t1/21258 t ^ { 3 / 2 } - 60 t - 150 t ^ { 1 / 2 } - 125
D) 8t3/2+60t+150t1/2+1258 t ^ { 3 / 2 } + 60 t + 150 t ^ { 1 / 2 } + 125
E) 8t3/2+60t150t1/21258 t ^ { 3 / 2 } + 60 t - 150 t ^ { 1 / 2 } - 125
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
22
Calculate the binomial coefficient: 4C3{ } _ { 4 } C _ { 3 }

A)12
B)24
C)0
D)4
E)1
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
23
Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms
(x7y)10 ax8y2( x - 7 y ) ^ { 10 } ~a x ^ { 8 } y ^ { 2 }

A)2,208
B)2,204
C)2,206
D)2,205
E)2,203
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
24
Find the specified nth term in the expansion of the binomial.​ (x10z)7,n=4( x - 10 z ) ^ { 7 } , n = 4

A) 35,000x3z4- 35,000 x ^ { 3 } z ^ { 4 }
B) 35,000x7z3- 35,000 x ^ { 7 } z ^ { 3 }
C) 35,000x4z3- 35,000 x ^ { 4 } z ^ { 3 }
D) 35,000x3z3- 35,000 x ^ { 3 } z ^ { 3 }
E) 35,000x4z4- 35,000 x ^ { 4 } z ^ { 4 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
25
Use the Binomial Theorem to expand the complex number.Simplify your result.​ (3i)5( 3 - i ) ^ { 5 }

A) 405i+12405 i + 12
B) 90i+1290 i + 12
C) 316i+405316 i + 405
D) 12316i- 12 - 316 i
E) 316+12i316 + 12 i
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
26
Expand the expression in the difference quotient and simplify.​ f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } Difference quotient f(x)=(x)3f ( x ) = ( x ) ^ { 3 }

A) 3x2+3xh+h2h\frac { 3 x ^ { 2 } + 3 x h + h ^ { 2 } } { h }
B) 3x23xhh23 x ^ { 2 } - 3 x h - h ^ { 2 }
C) 3x2+3xhh2h\frac { 3 x ^ { 2 } + 3 x h - h ^ { 2 } } { h }
D) 3x2+3xhh23 x ^ { 2 } + 3 x h - h ^ { 2 }
E) 3x2+3xh+h23 x ^ { 2 } + 3 x h + h ^ { 2 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
27
Find the specified nth term in the expansion of the binomial.​ (x+y)9,n=10( x + y ) ^ { 9 } , n = 10

A) y9y ^ { 9 }
B) x9y10x ^ { 9 } y ^ { 10 }
C) xy9x y ^ { 9 }
D) x9yx ^ { 9 } y
E) y10y ^ { 10 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
28
Find the specified nth term in the expansion of the binomial.​ (x8y)5,n=3( x - 8 y ) ^ { 5 } , n = 3

A) 640x5y3640 x ^ { 5 } y ^ { 3 }
B) 640x3y2640 x ^ { 3 } y ^ { 2 }
C) 640x2y2640 x ^ { 2 } y ^ { 2 }
D) 640x3y3640 x ^ { 3 } y ^ { 3 }
E) 640x2y3640 x ^ { 2 } y ^ { 3 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
29
Find the specified nth term in the expansion of the binomial.​ (4a+5b)5,n=5( 4 a + 5 b ) ^ { 5 } , n = 5

A) 12,500ab412,500 a b ^ { 4 }
B) 12,500ab12,500 a b
C) 12,500a4b12,500 a ^ { 4 } b
D) 12,500a4b412,500 a ^ { 4 } b ^ { 4 }
E) 12,500a5b512,500 a ^ { 5 } b ^ { 5 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
30
Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms
(x2+8)12ax8\left( x ^ { 2 } + 8 \right) ^ { 12 } a x ^ { 8 }

A)8,304,721,920
B)8,304,721,921
C)8,304,721,923
D)8,304,721,918
E)8,304,721,919
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
31
Find the specified nth term in the expansion of the binomial.​ (5x3y)12,n=10( 5 x - 3 y ) ^ { 12 } , n = 10

A) 541,282,500yx- 541,282,500 y x
B) 541,282,500y3x3- 541,282,500 y ^ { 3 } x ^ { 3 }
C) 541,282,500y9x3- 541,282,500 y ^ { 9 } x ^ { 3 }
D) 541,282,500y9x9- 541,282,500 y ^ { 9 } x ^ { 9 }
E) 541,282,500y3x9- 541,282,500 y ^ { 3 } x ^ { 9 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
32
Use the Binomial Theorem to expand and simplify the expression.​ (u3/5+5)5\left( u ^ { 3 / 5 } + 5 \right) ^ { 5 }

A) u3+25u12/51250u9/5250u6/5+3125u3/5+3125u ^ { 3 } + 25 u ^ { 12 / 5 } - 1250 u ^ { 9 / 5 } - 250 u ^ { 6 / 5 } + 3125 u ^ { 3 / 5 } + 3125
B) u3+250u12/5+25u9/5+1250u6/5+3125u3/5+3125u ^ { 3 } + 250 u ^ { 12 / 5 } + 25 u ^ { 9 / 5 } + 1250 u ^ { 6 / 5 } + 3125 u ^ { 3 / 5 } + 3125
C) u3+250u12/5+1250u9/5+3125u6/5+3125u3/5+3125u ^ { 3 } + 250 u ^ { 12 / 5 } + 1250 u ^ { 9 / 5 } + 3125 u ^ { 6 / 5 } + 3125 u ^ { 3 / 5 } + 3125
D) u3+25u12/5+3125u9/5+250u6/5+3125u3/5+1250u ^ { 3 } + 25 u ^ { 12 / 5 } + 3125 u ^ { 9 / 5 } + 250 u ^ { 6 / 5 } + 3125 u ^ { 3 / 5 } + 1250
E) u3+25u12/5+250u9/5+1250u6/5+3125u3/5+3125u ^ { 3 } + 25 u ^ { 12 / 5 } + 250 u ^ { 9 / 5 } + 1250 u ^ { 6 / 5 } + 3125 u ^ { 3 / 5 } + 3125
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
33
Use the Binomial Theorem to expand and simplify the expression.​ (x+7)3( \sqrt { x } + 7 ) ^ { 3 }

A) x3/2+21x+147x2+343x ^ { 3 / 2 } + 21 x + 147 x ^ { 2 } + 343
B) x3/2+21x147x1/2+343x ^ { 3 / 2 } + 21 x - 147 x ^ { 1 / 2 } + 343
C) x3+21x+147x1/2+343x ^ { 3 } + 21 x + 147 x ^ { 1 / 2 } + 343
D) x3+21x2+147x+343x ^ { 3 } + 21 x ^ { 2 } + 147 x + 343
E) x3/2+21x+147x1/2+343x ^ { 3 / 2 } + 21 x + 147 x ^ { 1 / 2 } + 343
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
34
Find the specified nth term in the expansion of the binomial.​ (x+y)10,n=6( x + y ) ^ { 10 } , n = 6

A)251 x5y5x ^ { 5 } y ^ { 5 }
B)254 x5y5x ^ { 5 } y ^ { 5 }
C)253 x5y5x ^ { 5 } y ^ { 5 }
D)252 x5y5x ^ { 5 } y ^ { 5 }
E)250 x5y5x ^ { 5 } y ^ { 5 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
35
Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms
(2x5y)9 ax4y5( 2 x - 5 y ) ^ { 9 } ~a x ^ { 4 } y ^ { 5 }

A)-6,300,001
B)-6,300,002
C)-6,299,999
D)-6,300,000
E)-6,299,997
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
36
Use the Binomial Theorem to expand the complex number.Simplify your result.​ (5+i)4( 5 + i ) ^ { 4 }

A) 480i476480 i - 476
B) 480i476- 480 i - 476
C) 480i+476- 480 i + 476
D) 480i+476480 i + 476
E) 480i+476i480 i + 476 i
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
37
Find the coefficient a of the term in the expansion of the binomial.​ Binominal Terms
(x+7)12ax5( x + 7 ) ^ { 12 } a x ^ { 5 }

A)-407,653,785
B)-652,246,056
C)760,953,732
D)181,179,460
E)652,246,056
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
38
Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms
(6xy)10 ax2y8( 6 x - y ) ^ { 10 }~ a x ^ { 2 } y ^ { 8 }

A)1,621
B)1,620
C)1,619
D)1,623
E)1,618
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
39
Find the specified nth term in the expansion of the binomial.​ (4x+3y)9,n=8( 4 x + 3 y ) ^ { 9 } , n = 8

A) 1,259,712x7y21,259,712 x ^ { 7 } y ^ { 2 }
B) 1,259,712x2y71,259,712 x ^ { 2 } y ^ { 7 }
C) 1,259,712x8y91,259,712 x ^ { 8 } y ^ { 9 }
D) 1,259,712x2y21,259,712 x ^ { 2 } y ^ { 2 }
E) 1,259,712x7y71,259,712 x ^ { 7 } y ^ { 7 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
40
Expand the binomial by using Pascal's Triangle to determine the coefficients.​ (x+2y)5( x + 2 y ) ^ { 5 }

A) x5+10x4y+40x3y280x2y3+80xy4+32y5x ^ { 5 } + 10 x ^ { 4 } y + 40 x ^ { 3 } y ^ { 2 } - 80 x ^ { 2 } y ^ { 3 } + 80 x y ^ { 4 } + 32 y ^ { 5 }
B) x510x4y+40x3y2+80x2y3+80xy4+32y5x ^ { 5 } - 10 x ^ { 4 } y + 40 x ^ { 3 } y ^ { 2 } + 80 x ^ { 2 } y ^ { 3 } + 80 x y ^ { 4 } + 32 y ^ { 5 }
C) x5+10x4y+40x3y2+80x2y380xy432y5x ^ { 5 } + 10 x ^ { 4 } y + 40 x ^ { 3 } y ^ { 2 } + 80 x ^ { 2 } y ^ { 3 } - 80 x y ^ { 4 } - 32 y ^ { 5 }
D) x5+10x4y+40x3y2+80x2y3+80xy4+32y5x ^ { 5 } + 10 x ^ { 4 } y + 40 x ^ { 3 } y ^ { 2 } + 80 x ^ { 2 } y ^ { 3 } + 80 x y ^ { 4 } + 32 y ^ { 5 }
E) x5+10x4y40x3y280x2y380xy4+32y5x ^ { 5 } + 10 x ^ { 4 } y - 40 x ^ { 3 } y ^ { 2 } - 80 x ^ { 2 } y ^ { 3 } - 80 x y ^ { 4 } + 32 y ^ { 5 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
41
Use the Binomial Theorem to expand and simplify the expression. (4x+5y)4( 4 x + 5 y ) ^ { 4 }

A) 256x4+1280x3y+2400x2y2+2000xy3+625y4256 x ^ { 4 } + 1280 x ^ { 3 } y + 2400 x ^ { 2 } y ^ { 2 } + 2000 x y ^ { 3 } + 625 y ^ { 4 }
B) 256x4+1280x3y+2400x2y2+2000xy3y4256 x ^ { 4 } + 1280 x ^ { 3 } y + 2400 x ^ { 2 } y ^ { 2 } + 2000 x y ^ { 3 } - y ^ { 4 }
C) 256x4+320x3y+2400x2y2+2000xy3+625y4256 x ^ { 4 } + 320 x ^ { 3 } y + 2400 x ^ { 2 } y ^ { 2 } + 2000 x y ^ { 3 } + 625 y ^ { 4 }
D) 256x4+500x3y+2400x2y2+2000xy3625y4256 x ^ { 4 } + 500 x ^ { 3 } y + 2400 x ^ { 2 } y ^ { 2 } + 2000 x y ^ { 3 } - 625 y ^ { 4 }
E) x4+1280x3y+2400x2y2+2000xy3+y4x ^ { 4 } + 1280 x ^ { 3 } y + 2400 x ^ { 2 } y ^ { 2 } + 2000 x y ^ { 3 } + y ^ { 4 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
42
Use the Binomial Theorem to expand and simplify the expression. (x3/4+1)4\left( x ^ { 3 / 4 } + 1 \right) ^ { 4 }

A) x3+1x ^ { 3 } + 1
B) x3+4x9/7+6x3/2+4x3/4+1x ^ { 3 } + 4 x ^ { 9 / 7 } + 6 x ^ { 3 / 2 } + 4 x ^ { 3 / 4 } + 1
C) x3+4x9/4+6x3/2+4x3/4+1x ^ { 3 } + 4 x ^ { 9 / 4 } + 6 x ^ { 3 / 2 } + 4 x ^ { 3 / 4 } + 1
D) x3+4x9/4+6x3/2+4x3/41- x ^ { 3 } + 4 x ^ { 9 / 4 } + 6 x ^ { 3 / 2 } + 4 x ^ { 3 / 4 } - 1
E) x3+4x2+6x+1x ^ { 3 } + 4 x ^ { 2 } + 6 x + 1
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
43
Use the Binomial Theorem to expand and simplify the expression. (x3/4+5)4\left( x ^ { 3 / 4 } + 5 \right) ^ { 4 }

A) x3+625x ^ { 3 } + 625
B) x3+20x9/4+150x+500x3/4+625x ^ { 3 } + 20 x ^ { 9 / 4 } + 150 x + 500 x ^ { 3 / 4 } + 625
C) x3+20x9/5+150x3/2+500x3/4+625x ^ { 3 } + 20 x ^ { 9 / 5 } + 150 x ^ { 3 / 2 } + 500 x ^ { 3 / 4 } + 625
D) x3+20x9/4+150x3/2+500x3/4+625x ^ { 3 } + 20 x ^ { 9 / 4 } + 150 x ^ { 3 / 2 } + 500 x ^ { 3 / 4 } + 625
E) x3+20x9/4+150x3/2+500x+625- x ^ { 3 } + 20 x ^ { 9 / 4 } + 150 x ^ { 3 / 2 } + 500 x + 625
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
44
Use the Binomial Theorem to expand and simplify the expression. (r+2)5( r + 2 ) ^ { 5 }

A) r5+10r4+8r3+80r2+80r+32r ^ { 5 } + 10 r ^ { 4 } + 8 r ^ { 3 } + 80 r ^ { 2 } + 80 r + 32
B) r5+10r4+36r3+80r2+80r+32r ^ { 5 } + 10 r ^ { 4 } + 36 r ^ { 3 } + 80 r ^ { 2 } + 80 r + 32
C) r5+10r4+40r3+80r2+80r+32r ^ { 5 } + 10 r ^ { 4 } + 40 r ^ { 3 } + 80 r ^ { 2 } + 80 r + 32
D) r5+10r4+40r3+80r2+72r+36r ^ { 5 } + 10 r ^ { 4 } + 40 r ^ { 3 } + 80 r ^ { 2 } + 72 r + 36
E) r5+10r4+40r3+80r2+60r+120r ^ { 5 } + 10 r ^ { 4 } + 40 r ^ { 3 } + 80 r ^ { 2 } + 60 r + 120
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
45
Use the binomial theorem to expand the binomial.​ (c+y)4( c + y ) ^ { 4 }

A) c4+4c3y+6c2y2+4cy3+y4c ^ { 4 } + 4 c ^ { 3 } y + 6 c ^ { 2 } y ^ { 2 } + 4 c y ^ { 3 } + y ^ { 4 }
B) c4+y4c ^ { 4 } + y ^ { 4 }
C) c4+c3y+c2y2+cy3+y4c ^ { 4 } + c ^ { 3 } y + c ^ { 2 } y ^ { 2 } + c y ^ { 3 } + y ^ { 4 }
D) c4+6c3y+6c2y2+4cy3+y4c ^ { 4 } + 6 c ^ { 3 } y + 6 c ^ { 2 } y ^ { 2 } + 4 c y ^ { 3 } + y ^ { 4 }
E) c4+3c3y+3cy3+y4c ^ { 4 } + 3 c ^ { 3 } y + 3 c y ^ { 3 } + y ^ { 4 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
46
Use the binomial theorem to expand the binomial.​ (zy)4( z - y ) ^ { 4 }

A) z44z3y+6z2y24zy3+y4z ^ { 4 } - 4 z ^ { 3 } y + 6 z ^ { 2 } y ^ { 2 } - 4 z y ^ { 3 } + y ^ { 4 }
B) z44z3y+4z2y24zy3+y4z ^ { 4 } - 4 z ^ { 3 } y + 4 z ^ { 2 } y ^ { 2 } - 4 z y ^ { 3 } + y ^ { 4 }
C) z43z3y3zy3+y4z ^ { 4 } - 3 z ^ { 3 } y - 3 z y ^ { 3 } + y ^ { 4 }
D) z4y4z ^ { 4 } - y ^ { 4 }
E) z4+4z3y+6z2y2+4zy3+y4z ^ { 4 } + 4 z ^ { 3 } y + 6 z ^ { 2 } y ^ { 2 } + 4 z y ^ { 3 } + y ^ { 4 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
47
Calculate the binomial coefficient: (62)\left( \begin{array} { l } 6 \\2\end{array} \right)

A)30
B)1
C)12
D)0
E)15
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
48
Find the specified nth term in the expansion of the binomial.(Write the expansion in descending powers of x. ) (5x2y)6,n=3( 5 x - 2 y ) ^ { 6 } , n = 3

A) 20x2y320 x ^ { 2 } y ^ { 3 }
B) 5x2y45 x ^ { 2 } y ^ { 4 }
C) 2500x2y42500 x ^ { 2 } y ^ { 4 }
D) 20x2y420 x ^ { 2 } y ^ { 4 }
E) 5x4y25 x ^ { 4 } y ^ { 2 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
49
​Use the Binominal Theorem to expand the complex number.Simplify your result.​ (46i)4( 4 - 6 i ) ^ { 4 }

A)​ 256+1536i+3456+3456i31296- 256 + 1536 i + 3456 + 3456 i ^ { 3 } - 1296
B)​ 256+1536i3456+3456i3+1296256 + 1536 i - 3456 + 3456 i ^ { 3 } + 1296
C)​ 2561536i+34563456i31296- 256 - 1536 i + 3456 - 3456 i ^ { 3 } - 1296
D)​ 2561536i34563456i3+1296256 - 1536 i - 3456 - 3456 i ^ { 3 } + 1296
E)​ 12963456i34561536i3+2561296 - 3456 i - 3456 - 1536 i ^ { 3 } + 256
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
50
Find the coefficient a of the term in the expansion of the binomial. Binomial Term (2x5y)8( 2 x - 5 y ) ^ { 8 } ax3y5a x ^ { 3 } y ^ { 5 }

A) a=224000a = - 224000
B) a=336a = 336
C) a=40a = 40
D) a=8a = 8
E) a=390,625a = 390,625
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
51
Find the specified nth term in the expansion of the binomial.(Write the expansion in descending powers of x. ) (x4y)12,n=3( x - 4 y ) ^ { 12 } , n = 3

A) 1,056x9y21,056 x ^ { 9 } y ^ { 2 }
B) 1,320x10y21,320 x ^ { 10 } y ^ { 2 }
C) 1,056x10y21,056 x ^ { 10 } y ^ { 2 }
D) 1,056y21,056 y ^ { 2 }
E) 220x1y2220 x ^ { 1 } y ^ { 2 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
52
Find the coefficient a of the term in the expansion of the binomial. Binomial Term (x3y)9( x - 3 y ) ^ { 9 } ax5y4a x ^ { 5 } y ^ { 4 }

A)a = 13
B)a = 10206
C)a = 45
D)a = -19683
E)a = 3024
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
53
Use the Binomial Theorem to expand and simplify the expression. (4x+3y)4( 4 x + 3 y ) ^ { 4 }

A) 256x4+768x3y+864x2y2+432xy3+81y4256 x ^ { 4 } + 768 x ^ { 3 } y + 864 x ^ { 2 } y ^ { 2 } + 432 x y ^ { 3 } + 81 y ^ { 4 }
B) 256x4+4x3y+864x2y2+432xy3+y4256 x ^ { 4 } + 4 x ^ { 3 } y + 864 x ^ { 2 } y ^ { 2 } + 432 x y ^ { 3 } + y ^ { 4 }
C) 256x4+108x3y+864x2y2+432xy3+81y4256 x ^ { 4 } + 108 x ^ { 3 } y + 864 x ^ { 2 } y ^ { 2 } + 432 x y ^ { 3 } + 81 y ^ { 4 }
D) x4+768x3y+864x2y2+432xy3+81y4x ^ { 4 } + 768 x ^ { 3 } y + 864 x ^ { 2 } y ^ { 2 } + 432 x y ^ { 3 } + 81 y ^ { 4 }
E) 256x4+768x3y+864x2y2+4xy3+81y4256 x ^ { 4 } + 768 x ^ { 3 } y + 864 x ^ { 2 } y ^ { 2 } + 4 x y ^ { 3 } + 81 y ^ { 4 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
54
The probability that a basketball player will make a given free throw is 610\frac { 6 } { 10 } .To find the probability that the player makes exactly 8 out of her next 10 free throws,evaluate the term 10C8(610)8(410)2{ } _ { 10 } C _ { 8 } \left( \frac { 6 } { 10 } \right) ^ { 8 } \left( \frac { 4 } { 10 } \right) ^ { 2 } in the expansion of (610+410)10\left( \frac { 6 } { 10 } + \frac { 4 } { 10 } \right) ^ { 10 } .Round to four decimal places.

A)0.2721
B)0.0106
C)0.0047
D)0.7558
E)0.1209
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
55
Evaluate using Pascal's triangle.​ (65)\left( \begin{array} { l } 6 \\5\end{array} \right)

A) (65)=720\left( \begin{array} { l } 6 \\5\end{array} \right) = 720
B) (65)=21\left( \begin{array} { l } 6 \\5\end{array} \right) = 21
C) (65)=56\left( \begin{array} { l } 6 \\5\end{array} \right) = 56
D) (65)=1\left( \begin{array} { l } 6 \\5\end{array} \right) = 1
E) (65)=6\left( \begin{array} { l } 6 \\5\end{array} \right) = 6
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
56
Evaluate using Pascal's triangle.​ 7C4{ } _ { 7 } C _ { 4 }

A) 7C4=840{ } _ { 7 } C _ { 4 } = 840
B) 7C4=70{ } _ { 7 } C _ { 4 } = 70
C) 7C4=126{ } _ { 7 } C _ { 4 } = 126
D) 7C4=15{ } _ { 7 } C _ { 4 } = 15
E) 7C4=35{ } _ { 7 } C _ { 4 } = 35
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
57
​Use the Binominal Theorem to expand the complex number.Simplify your result.​ (32i)4( 3 - 2 i ) ^ { 4 }

A)​ 135+344i- 135 + 344 i
B)​ 151+344i- 151 + 344 i
C)​ 13588i- 135 - 88 i
D)​ 15188i- 151 - 88 i
E)​ 31388i313 - 88 i
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
58
Calculate the binomial coefficient: 11C8{ } _ { 11 } C _ { 8 }

A)6652800
B)88
C)165
D)1
E)0
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
59
Use the binomial theorem to expand the binomial.​ (z2+b)4\left( \frac { z } { 2 } + b \right) ^ { 4 }

A) z4+z3b+z2b2+zb3+b4z ^ { 4 } + z ^ { 3 } b + z ^ { 2 } b ^ { 2 } + z b ^ { 3 } + b ^ { 4 }
B) 18z4+12z3b+32z2b2+2zb3+b4\frac { 1 } { 8 } z ^ { 4 } + \frac { 1 } { 2 } z ^ { 3 } b + \frac { 3 } { 2 } z ^ { 2 } b ^ { 2 } + 2 z b ^ { 3 } + b ^ { 4 }
C) 12z4+b4\frac { 1 } { 2 } z ^ { 4 } + b ^ { 4 }
D) 116z4+18z3b+14z2b2+12zb3+b4\frac { 1 } { 16 } z ^ { 4 } + \frac { 1 } { 8 } z ^ { 3 } b + \frac { 1 } { 4 } z ^ { 2 } b ^ { 2 } + \frac { 1 } { 2 } z b ^ { 3 } + b ^ { 4 }
E) 116z4+12z3b+32z2b2+2zb3+b4\frac { 1 } { 16 } z ^ { 4 } + \frac { 1 } { 2 } z ^ { 3 } b + \frac { 3 } { 2 } z ^ { 2 } b ^ { 2 } + 2 z b ^ { 3 } + b ^ { 4 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
60
Calculate the binomial coefficient: (116)\left( \begin{array} { c } 11 \\6\end{array} \right)

A)332640
B)66
C)462
D)1
E)0
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
61
Evaluate using Pascal's triangle.Show your work. Evaluate using Pascal's triangle.Show your work.
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
62
Use the binomial theorem to expand the binomial.​ Use the binomial theorem to expand the binomial.​
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
63
Expand the binomial by using Pascal's triangle to determine the coefficients.Show your work. Expand the binomial by using Pascal's triangle to determine the coefficients.Show your work.
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
64
Find the 3rd term in the binomial expansion.​ Find the 3rd term in the binomial expansion.​
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
65
Evaluate using Pascal's triangle.Show your work. Evaluate using Pascal's triangle.Show your work.
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
66
The probability that a basketball player will make a given free throw is 710\frac { 7 } { 10 } .To find the probability that the player makes exactly 7 out of her next 10 free throws,evaluate the term 10C7(710)7(310)3{ } _ { 10 } C _ { 7 } \left( \frac { 7 } { 10 } \right) ^ { 7 } \left( \frac { 3 } { 10 } \right) ^ { 3 } in the expansion of (710+310)10\left( \frac { 7 } { 10 } + \frac { 3 } { 10 } \right) ^ { 10 } .Round to four decimal places.

A)0.0090
B)3.3897
C)0.0007
D)0.2668
E)9.8825
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
67
Use the binomial theorem to expand the binomial.​ Use the binomial theorem to expand the binomial.​
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 67 flashcards in this deck.