Deck 55: Mathematical Induction

Full screen (f)
exit full mode
Question
Find the sum using the formulas for the sums of powers of integers.​ n=17n5\sum _ { n = 1 } ^ { 7 } n ^ { 5 }

A)840
B)29,008
C)4,676
D)784
E)140
Use Space or
up arrow
down arrow
to flip the card.
Question
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 3,a1 = 3,a4 = 15

A)an = n2 - n + 15
B)an = n2 + n - 3
C)an = n2 - n - 3
D)an = n2 + n + ​3
E)an = n2 - n + 3
Question
Find the sum using the formulas for the sums of powers of integers.​ i=17(5i8i3)\sum _ { i = 1 } ^ { 7 } \left( 5 i - 8 i ^ { 3 } \right)

A)-784
B)-3,136
C)4,200
D)5,600
E)-6,132
Question
Find the sum using the formulas for the sums of powers of integers.​ n=12n4\sum _ { n = 1 } ^ { 2 } n ^ { 4 }

A)33
B)17
C)30
D)5
E)9
Question
Find the sum using the formulas for the sums of powers of integers.​ n=15(n2n)\sum _ { n = 1 } ^ { 5 } \left( n ^ { 2 } - n \right)

A)40
B)330
C)225
D)15
E)55
Question
Find pk + 1 for the given pk.​ pk=5(k+6)(k+5)p _ { k } = \frac { 5 } { ( k + 6 ) ( k + 5 ) }

A) pk+1=7(k+6)(k+6)p _ { k + 1 } = \frac { 7 } { ( k + 6 ) ( k + 6 ) }
B) pk+1=5(k+7)(k+7)p _ { k + 1 } = \frac { 5 } { ( k + 7 ) ( k + 7 ) }
C) pk+1=5(k+6)(k+6)p _ { k + 1 } = \frac { 5 } { ( k + 6 ) ( k + 6 ) }
D) pk+1=5(k+7)(k+6)p _ { k + 1 } = \frac { 5 } { ( k + 7 ) ( k + 6 ) }
E) pk+1=6(k+7)(k+6)p _ { k + 1 } = \frac { 6 } { ( k + 7 ) ( k + 6 ) }
Question
Find pk + 1 for the given pk .​ pk=k2(k+4)28p _ { k } = \frac { k ^ { 2 } ( k + 4 ) ^ { 2 } } { 8 }

A) pk+1=(k+1)2(k+5)28p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 5 ) ^ { 2 } } { 8 }
B) pk+1=k2(k+5)28p _ { k + 1 } = \frac { k ^ { 2 } ( k + 5 ) ^ { 2 } } { 8 }
C) pk+1=(k+1)2(k+5)29p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 5 ) ^ { 2 } } { 9 }
D) pk+1=(k+1)2(k+9)28p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 9 ) ^ { 2 } } { 8 }
E) pk+1=k2(k+9)28p _ { k + 1 } = \frac { k ^ { 2 } ( k + 9 ) ^ { 2 } } { 8 }
Question
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 8,a1 = 4,a3 = 10

A)an = 73\frac { 7 } { 3 } n2 193- \frac { 19 } { 3 } n - 8
B)an = 8n2 193- \frac { 19 } { 3 } n + 73\frac { 7 } { 3 }
C)an = 193- \frac { 19 } { 3 } n2 + 73\frac { 7 } { 3 } n - 8
D)an = 8n2 193- \frac { 19 } { 3 } n - 73\frac { 7 } { 3 }
E)an = 73\frac { 7 } { 3 } n2 193- \frac { 19 } { 3 } n + 8
Question
Find the sum using the formulas for the sums of powers of integers.​ n=122(n3n)\sum _ { n = 1 } ^ { 22 } \left( n ^ { 3 } - n \right)

A)22,770
B)3,795
C)63,756
D)256,036
E)64,009
Question
Find pk + 1 for the given pk.​ pk=k5(8k+1)p _ { k } = \frac { k } { 5 } ( 8 k + 1 )

A) pk+1=k+15(8k+5)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 5 )
B) pk+1=k+15(8k+6)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 6 )
C) pk+1=k+16(8k+6)p _ { k + 1 } = \frac { k + 1 } { 6 } ( 8 k + 6 )
D) pk+1=k+15(8k+9)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 9 )
E) pk+1=k+16(8k+9)p _ { k + 1 } = \frac { k + 1 } { 6 } ( 8 k + 9 )
Question
Find pk+1 for the given pk.? pk=k27(k+2)2p _ { k } = \frac { k ^ { 2 } } { 7 ( k + 2 ) ^ { 2 } } ?

A) pk+1=(k+1)23(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 3 ( k + 8 ) ^ { 2 } }
B) pk+1=(k+1)28(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 8 ( k + 8 ) ^ { 2 } }
C) pk+1=(k+1)28(k+3)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 8 ( k + 3 ) ^ { 2 } }
D) pk+1=(k+1)27(k+3)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 7 ( k + 3 ) ^ { 2 } }
E) pk+1=(k+1)27(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 7 ( k + 8 ) ^ { 2 } }
Question
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 4,a2 = 0,a6 = 38

A)an = -4n2 356- \frac { 35 } { 6 } n + 2312\frac { 23 } { 12 }
B)an = 2312\frac { 23 } { 12 } n2 356- \frac { 35 } { 6 } n - 4
C)​an = 4n2 356- \frac { 35 } { 6 } n + 2312\frac { 23 } { 12 }
D)​an = 356- \frac { 35 } { 6 } n2 + 2312\frac { 23 } { 12 } n - 4
E)​an = 2312\frac { 23 } { 12 } n2 356- \frac { 35 } { 6 } n + 4
Question
Find the sum using the formulas for the sums of powers of integers.​ j=111(412j+12j2)\sum _ { j = 1 } ^ { 11 } \left( 4 - \frac { 1 } { 2 } j + \frac { 1 } { 2 } j ^ { 2 } \right)

A)-264
B)264
C)-506
D)759
E)506
Question
Find the sum using the formulas for the sums of powers of integers.​ n=16n2\sum _ { n = 1 } ^ { 6 } n ^ { 2 }

A)21
B)42
C)546
D)441
E)91
Question
Find pk + 1 for the given pk.​ pk=14(k+2)p _ { k } = \frac { 1 } { 4 ( k + 2 ) }

A) pk+1=1k(k+3)p _ { k + 1 } = \frac { 1 } { k ( k + 3 ) }
B) pk+1=4(k+1)(k+2)p _ { k + 1 } = \frac { 4 } { ( k + 1 ) ( k + 2 ) }
C) pk+1=4k(k+3)p _ { k + 1 } = \frac { 4 } { k ( k + 3 ) }
D) pk+1=1(k+3)(k+2)p _ { k + 1 } = \frac { 1 } { ( k + 3 ) ( k + 2 ) }
E) pk+1=14(k+3)p _ { k + 1 } = \frac { 1 } { 4 ( k + 3 ) }
Question
Find a quadratic model for the sequence with the indicated terms. ​
A0 = -3,a2 = 2,a4 = 10

A)an = 38\frac {3 } { 8 } n2 - 74\frac { 7 } { 4 } n - 3
B)an = 3n2 + 74\frac { 7 } { 4 } n + 38\frac {3 } { 8 }
C)an = 38\frac {3 } { 8 } n2 + 74\frac { 7 } { 4 } n + 3
D)an = 38\frac {3 } { 8 } n2 + 74\frac { 7 } { 4 } n - 3
E)an = -3n2+ 74\frac { 7 } { 4 } n + 38\frac {3 } { 8 }
Question
Find the sum using the formulas for the sums of powers of integers.​ n=114n\sum _ { n = 1 } ^ { 14 } n

A)11,025
B)210
C)6,090
D)105
E)1,015
Question
Find the sum using the formulas for the sums of powers of integers.​ n=114n3\sum _ { n = 1 } ^ { 14 } n ^ { 3 }

A)6,090
B)105
C)11,025
D)1,015
E)210
Question
Find the sum using the formulas for the sums of powers of integers.​ n=116n\sum _ { n = 1 } ^ { 16 } n

A)18,496
B)8,976
C)1,496
D)272
E)136
Question
Find pk + 1 for the given pk.​ pk=6k(k+1)p _ { k } = \frac { 6 } { k ( k + 1 ) }

A) pk+1=2k(k+2)p _ { k + 1 } = \frac { 2 } { k ( k + 2 ) }
B) pk+1=6(k+1)(k+1)p _ { k + 1 } = \frac { 6 } { ( k + 1 ) ( k + 1 ) }
C) pk+1=6(k+1)(k+2)p _ { k + 1 } = \frac { 6 } { ( k + 1 ) ( k + 2 ) }
D) pk+1=6(k+2)(k+6)p _ { k + 1 } = \frac { 6 } { ( k + 2 ) ( k + 6 ) }
E) pk+1=6k(k+2)p _ { k + 1 } = \frac { 6 } { k ( k + 2 ) }
Question
Use mathematical induction to solve for all positive integers n.​ 16+34+52+70++(18n2)=?16 + 34 + 52 + 70 + \ldots + ( 18 n - 2 ) = ?

A) n(n+16)(16n+1)6\frac { n ( n + 16 ) ( 16 n + 1 ) } { 6 }
B) n2(3n+1)\frac { n } { 2 } ( 3 n + 1 )
C) n2(3n+14)\frac { n } { 2 } ( 3 n + 14 )
D) n(n+16)n ( n + 16 )
E) n(n+16)2\frac { n ( n + 16 ) } { 2 }
Question
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A​1 = 3
An = n - an - 1

A)3,-1,4,0,5,1 First differences: -9,9,-9,9
Second differences: -4,5,-4,5,-4
Linear
B)0,3,-1,4,0,5 First differences: -4,5,-4,5,-4
Second differences: -9,-9,-9,-9
Quadratic
C)3,-1,4,0,5,1 First differences: -9,-9,-9,-9
Second differences: -4,5,-4,5,-4
Neither
D)3,-1,4,-0,5,-1 First differences: -9,-9,-9,-9
Second differences: -4,5,-4,5,-4
Linear
E)3,-1,4,0,5,1 First differences: -4,5,-4,5,-4
Second differences: 9,-9,9,-9
Neither
Question
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 1
An = an - 1 + 2n

A)1,5,11,19,29,41 First differences: 4,6,8,10,12
Second differences: 2,2,2,2
Quadratic
B)1,5,11,19,29,41 First differences: 4,6,8,10,12
Second differences: -2,-2,-2,-2
Quadratic
C)1,5,11,19,29,41 First differences: 2,2,2,2
Second differences: 4,6,8,10,12
Linear
D)1,5,11,19,29,41 First differences: -2,-2,-2,2
Second differences: 4,6,8,10,12
Neither
E)1,5,11,19,29,41 First differences: -2,2,-2,2
Second differences: 4,6,8,10,12
Linear
Question
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 0
An = an - 1 + 5

A)0,5,10,15,20,25 First differences: 0,0,0,0
Second differences: 5,5,5,5,5
Quadratic
B)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: 0,0,0,0
Linear
C)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: -1,-1,-1,-1
Quadratic
D)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: 0,0,0,0
Quadratic
E)0,5,10,15,20,25 First differences: 0,0,0,0
Second differences: 5,5,5,5,5
Linear
Question
Use mathematical induction to solve for all positive integers n.​ 4+8+12+16++2n=?4 + 8 + 12 + 16 + \ldots + 2 n = ?

A) (n+3)n( n + 3 ) n
B) n(n+2)2\frac { n ( n + 2 ) } { 2 }
C) (n+2)n( n + 2 ) n
D) (n(n+2)2)2\left( \frac { n ( n + 2 ) } { 2 } \right) ^ { 2 }
E) n(n+1)(n+2)6\frac { n ( n + 1 ) ( n + 2 ) } { 6 }
Question
Find a quadratic model for the sequence with the indicated terms.​ a0=3,a2=7,a6=57a _ { 0 } = - 3 , a _ { 2 } = - 7 , a _ { 6 } = - 57

A)an = 32\frac { 3 } { 2 } n2 - 74\frac { 7 } { 4 } n - 3
B)an = -3n2 + 32\frac { 3 } { 2 } n - 74\frac { 7 } { 4 }
C)an = 74- \frac { 7 } { 4 } n2 + 32\frac { 3 } { 2 } n - 3
D)an = - 74\frac { 7 } { 4 } n2 + 32\frac { 3 } { 2 } n + 3
E)an = 3n2 + 32\frac { 3 } { 2 } n - 74\frac { 7 } { 4 }
Question
Use mathematical induction to solve for all positive integers n.​ 1+2+3+4++n=?1 + 2 + 3 + 4 + \ldots + n = ?

A) n(n+1)2\frac { n ( n + 1 ) } { 2 }
B) (n+1)2\frac { ( n + 1 ) } { 2 }
C) n2(3n+1)\frac { n } { 2 } ( 3 n + 1 )
D) n(n+1)(1n+1)6\frac { n ( n + 1 ) ( 1 n + 1 ) } { 6 }
E) n2(n+1)23\frac { n ^ { 2 } ( n + 1 ) ^ { 2 } } { 3 }
Question
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A2 = -4
An = -2an - 1

A)-4,8,-16,32,-64,128 First differences: 12,-24,48,-96,192
Second differences: -36,72,-144,288
Neither
B)0,4,8,16,32,64 First differences: 12,24,48,96,192
Second differences: -36,72,-144,288
Quadratic
C)0,4,-8,16,-32,64 First differences: -36,72,-144,288
Second differences: 12,24,48,96,192
Linear
D)0,-4,8,-16,32,-64 First differences: 12,24,48,96,192
Second differences: -36,72,-144,288
Quadratic
E)4,-8,16,-32,64,-128 First differences: -36,72,-144,288
Second differences: 12,24,48,96,192
Neither
Question
Find a formula for the sum of the first n terms of the sequence.​ 9,12,15,18,21,9,12,15,18,21 , \ldots

A) Sn=n2(3n+15)S _ { n } = \frac { n } { 2 } ( 3 n + 15 )
B) Sn=n2(3n+3)S _ { n } = \frac { n } { 2 } ( 3 n + 3 )
C) Sn=n2(3n15)S _ { n } = \frac { n } { 2 } ( - 3 n - 15 )
D) Sn=n2(3n15)S _ { n } = \frac { n } { 2 } ( 3 n - 15 )
E) Sn=n2(3n+15)S _ { n } = \frac { n } { 2 } ( - 3 n + 15 )
Question
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 3
​an = an - 1 - n

A)0,3,1,-2,-6,-11 First differences: 3,-2,-3,-4,-5
Second differences: -1,-1,-1,-1
Quadratic
B)0,3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: 1,1,1,1
Linear
C)3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: 1,1,1,1
Quadratic
D)3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: -1,-1,-1,-1
Quadratic
E)0,3,1,-2,-6,-11 First differences: 3,-2,-3,-4,-5
Second differences: 1,1,1,1
Quadratic
Question
The table shows the numbers ana _ { n } (in thousands)of residents from 2002 through 2007.  Number of residents, . Year an.200264020036552004670\begin{array} { | c | l | } \hline & \text { Number of residents, } \\&.\\{ \text { Year } }& a _ { n } \\&.\\\hline 2002 & 640 \\\hline 2003 & 655 \\\hline 2004 & 670 \\\hline\end{array} 200567020066832007699\begin{array} { | l | l | } \hline 2005 & 670 \\\hline 2006 & 683 \\\hline 2007 & 699 \\\hline\end{array}

Find the first differences of the data shown in the table.

A) 15,15,0,13,1615,15,0,13,16
B) 15,13,0,15,1615,13,0,15,16
C) 16,0,15,13,1516,0,15,13,15
D) 0,15,0,13,160,15,0,13,16
E) 13,13,15,0,1613,13,15,0,16
Question
Use mathematical induction to solve for all positive integers n. ​
A factor of (n3+7n2+6n)\left( n ^ { 3 } + 7 n ^ { 2 } + 6 n \right) is:

A)7
B)9
C)8
D)6
E)3
Question
Determine whether the statement is true or false. ​If the statement P1 is true but the true statement P6 does not imply that the statement P7 is true,then Pn is not
Necessarily true for all positive integers n.


A)False
B)True
Question
Determine whether the statement is true or false. ​A sequence with terms has n-1 second differences.

A)False
B)True
Question
Use mathematical induction to solve for all positive integers n.​ 22+27+32+37++(5n17)=?22 + 27 + 32 + 37 + \ldots + ( 5 n - 17 ) = ?

A) n2(5n+5)\frac { n } { 2 } ( 5 n + 5 )
B) n(22n+1)n ( 22 n + 1 )
C) n(n+1)22\frac { n ( n + 1 ) } { 22 }
D) n(n+22)n ( n + 22 )
E) n2(5n+1)\frac { n } { 2 } ( 5 n + 1 )
Question
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 2
An = an - 1 + 2

A)2,4,6,8,10,12 First differences: 0,0,0,0
Second differences: 2,2,2,2,2
Quadratic
B)0,2,4,6,8,10 First differences: 0,0,0,0
Second differences: 2,2,2,2,2
Linear
C)0,2,4,6,8,10 First differences: 2,2,2,2,2
Second differences: 0,0,0,0
Quadratic
D)2,4,6,8,10,12 First differences: 2,2,2,2,2
Second differences: 0,0,0,0
Linear
E)0,2,4,6,8,10 First differences: 2,2,2,2,2
Second differences: -1,-1,-1,-1
Quadratic
Question
Use mathematical induction to solve for all positive integers n.​ 5+9+13+17++(4n+1)=?5 + 9 + 13 + 17 + \ldots + ( 4 n + 1 ) = ?

A) n(9n+3)n ( 9 n + 3 )
B) n(2n+3)2\frac { n ( 2 n + 3 ) } { 2 }
C) n(n+3)n ( n + 3 )
D) n(n+3)9\frac { n ( n + 3 ) } { 9 }
E) n(2n+3)n ( 2 n + 3 )
Question
Find a formula for the sum of the first n terms of the sequence.​ 17,21,25,29,33,17,21,25,29,33 , \ldots

A) Sn=n(2n+15)S _ { n } = n ( 2 n + 15 )
B) Sn=n(5n+1)S _ { n } = n ( 5 n + 1 )
C) Sn=(n+1)nS _ { n } = \frac { ( n + 1 ) } { n }
D) Sn=n(2n+1)S _ { n } = n ( 2 n + 1 )
E) Sn=n(17n1)S _ { n } = n ( 17 n - 1 )
Question
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A0 = 1
An = an - 1 + n

A)0,1,2,-4,7,-11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Neither
B)1,-2,4,-7,11,-16 First differences: -1,1,-1,1
Second differences: 1,2,3,4,5
Neither
C)0,1,2,4,7,11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Linear
D)0,1,2,4,7,11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Quadratic
E)1,2,4,7,11,16 First differences: 1,2,3,4,5
Second differences: 1,1,1,1
Quadratic
Question
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither.​ a0=4an=(an1)2\begin{array} { l } a _ { 0 } = 4 \\a _ { n } = \left( a _ { n - 1 } \right) ^ { 2 }\end{array}

A)0,4,-16,256,-65,536,4,294,967,296 First differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Second differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Linear
B)0,4,16,256,65,536,4,294,967,296 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Quadratic
C)4,-16,256,-65,536,4,294,967,296,-18,446,744,073,709,600,000 First differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Second differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Neither
D)4,16,256,65,536,4,294,967,296,18,446,744,073,709,600,000 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: 228,65,040,4,294,836,480, 2×10192 \times 10 ^ { 19 }
Neither
E)0,-4,16,-256,65,536,-4,294,967,296 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Quadratic
Question
The table shows the numbers ana _ { n } (in thousands)of residents from 2002 through 2007.  Number of residents, . Year an.2002646200365720046682005679\begin{array} { | c | l | } \hline & \text { Number of residents, } \\&.\\{ \text { Year } }& a _ { n } \\&.\\\hline 2002 & 646 \\\hline 2003 & 657 \\\hline 2004 & 668 \\\hline 2005 & 679 \\\hline\end{array} 20066902007701\begin{array} { | l | l | } \hline 2006 & 690 \\\hline 2007 & 701 \\\hline\end{array}
Determine whether a linear model can be used to approximate the data.
If so,find a model algebraically.Let n represent the year,with n=2n = 2 corresponding to 2002.

A)A linear model can be used. an=11n+690a _ { n } = 11 n + 690
B)A linear model can be used. an=11n+657a _ { n } = 11 n + 657
C)A linear model can be used. an=11n+701a _ { n } = 11 n + 701
D)A linear model can be used. an=11n+624a _ { n } = 11 n + 624
E)A linear model can be used. an=11n+646a _ { n } = 11 n + 646
Question
Find the sum using the formulas for the sums of powers of integers. n=19n3\sum _ { n = 1 } ^ { 9 } n ^ { 3 }

A)729
B)285
C)4050
D)1296
E)2025
Question
Find Pk+1 for the given Pk. Pk=2k(k+1)P _ { k } = \frac { 2 } { k ( k + 1 ) }

A) Pk+1=2k(k+2)P _ { k + 1 } = \frac { 2 } { k ( k + 2 ) }
B) Pk+1=2k(k+1)+2(k+1)(k+2)P _ { k + 1 } = \frac { 2 } { k ( k + 1 ) } + \frac { 2 } { ( k + 1 ) ( k + 2 ) }
C) Pk+1=4(k+1)(k+2)P _ { k + 1 } = \frac { 4 } { ( k + 1 ) ( k + 2 ) }
D) Pk+1=2(k+1)(k+2)P _ { k + 1 } = \frac { 2 } { ( k + 1 ) ( k + 2 ) }
E) Pk+1=2k(k+1)+1P _ { k + 1 } = \frac { 2 } { k ( k + 1 ) } + 1
Question
Use mathematical induction to solve for all positive integers n.​ 3+8+13+18++(5n2)=?3 + 8 + 13 + 18 + \ldots + ( 5 n - 2 ) = ?

A) n6(5n+1)\frac { n } { 6 } ( 5 n + 1 )
B) n(5n+1)n ( 5 n + 1 )
C) n2(5n+1)\frac { n } { 2 } ( 5 n + 1 )
D) n4(5n+1)\frac { n } { 4 } ( 5 n + 1 )
E) 5n+15 n + 1
Question
Find a formula for the sum of the n terms of the sequence. 12,54,258,12516,\frac { 1 } { 2 } , \frac { 5 } { 4 } , \frac { 25 } { 8 } , \frac { 125 } { 16 } , \ldots

A) 5(5n2n)3(2n)\frac { 5 \left( 5 ^ { n } - 2 ^ { n } \right) } { 3 \left( 2 ^ { n } \right) }
B)​ 5n12\frac { 5 ^ { n - 1 } } { 2 }
C) 5n+2n7(2n)\frac { 5 ^ { n } + 2 ^ { n } } { 7 \left( 2 ^ { n } \right) }
D) 12n\frac { 1 } { 2 ^ { n } }
E) 5n2n3(2n)\frac { 5 ^ { n } - 2 ^ { n } } { 3 \left( 2 ^ { n } \right) }
Question
Find a quadratic model for the sequence with the indicated terms. a0=5,a2=5,a5=65a _ { 0 } = 5 , a _ { 2 } = 5 , a _ { 5 } = 65

A) an=4n2+5a _ { n } = 4 n ^ { 2 } + 5
B) an=8n+5a _ { n } = 8 n + 5
C) an=4n28n5a _ { n } = 4 n ^ { 2 } - 8 n - 5
D) an=4n28n+5a _ { n } = 4 n ^ { 2 } - 8 n + 5
Question
Use mathematical induction to solve for all positive integers n.​ i=1ni(i+4)=?\sum _ { i = 1 } ^ { n } i ( i + 4 ) = ?

A) n(2n+13)6\frac { n ( 2 n + 13 ) } { 6 }
B) n(n+1)(2n+13)4\frac { n ( n + 1 ) ( 2 n + 13 ) } { 4 }
C) n(n+1)(n+13)6\frac { n ( n + 1 ) ( n + 13 ) } { 6 }
D) n(n+1)(2n+13)6\frac { n ( n + 1 ) ( 2 n + 13 ) } { 6 }
E) n(n+1)(2n+13)2\frac { n ( n + 1 ) ( 2 n + 13 ) } { 2 }
Question
Find the sum using the formulas for the sums of powers of integers. n=1129n3n2\sum _ { n = 1 } ^ { 12 } 9 n - 3 n ^ { 2 }

A)-924
B)-1248
C)468
D)-324
E)-3744
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/48
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 55: Mathematical Induction
1
Find the sum using the formulas for the sums of powers of integers.​ n=17n5\sum _ { n = 1 } ^ { 7 } n ^ { 5 }

A)840
B)29,008
C)4,676
D)784
E)140
29,008
2
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 3,a1 = 3,a4 = 15

A)an = n2 - n + 15
B)an = n2 + n - 3
C)an = n2 - n - 3
D)an = n2 + n + ​3
E)an = n2 - n + 3
an = n2 - n + 3
3
Find the sum using the formulas for the sums of powers of integers.​ i=17(5i8i3)\sum _ { i = 1 } ^ { 7 } \left( 5 i - 8 i ^ { 3 } \right)

A)-784
B)-3,136
C)4,200
D)5,600
E)-6,132
-6,132
4
Find the sum using the formulas for the sums of powers of integers.​ n=12n4\sum _ { n = 1 } ^ { 2 } n ^ { 4 }

A)33
B)17
C)30
D)5
E)9
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
5
Find the sum using the formulas for the sums of powers of integers.​ n=15(n2n)\sum _ { n = 1 } ^ { 5 } \left( n ^ { 2 } - n \right)

A)40
B)330
C)225
D)15
E)55
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
6
Find pk + 1 for the given pk.​ pk=5(k+6)(k+5)p _ { k } = \frac { 5 } { ( k + 6 ) ( k + 5 ) }

A) pk+1=7(k+6)(k+6)p _ { k + 1 } = \frac { 7 } { ( k + 6 ) ( k + 6 ) }
B) pk+1=5(k+7)(k+7)p _ { k + 1 } = \frac { 5 } { ( k + 7 ) ( k + 7 ) }
C) pk+1=5(k+6)(k+6)p _ { k + 1 } = \frac { 5 } { ( k + 6 ) ( k + 6 ) }
D) pk+1=5(k+7)(k+6)p _ { k + 1 } = \frac { 5 } { ( k + 7 ) ( k + 6 ) }
E) pk+1=6(k+7)(k+6)p _ { k + 1 } = \frac { 6 } { ( k + 7 ) ( k + 6 ) }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
7
Find pk + 1 for the given pk .​ pk=k2(k+4)28p _ { k } = \frac { k ^ { 2 } ( k + 4 ) ^ { 2 } } { 8 }

A) pk+1=(k+1)2(k+5)28p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 5 ) ^ { 2 } } { 8 }
B) pk+1=k2(k+5)28p _ { k + 1 } = \frac { k ^ { 2 } ( k + 5 ) ^ { 2 } } { 8 }
C) pk+1=(k+1)2(k+5)29p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 5 ) ^ { 2 } } { 9 }
D) pk+1=(k+1)2(k+9)28p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 9 ) ^ { 2 } } { 8 }
E) pk+1=k2(k+9)28p _ { k + 1 } = \frac { k ^ { 2 } ( k + 9 ) ^ { 2 } } { 8 }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
8
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 8,a1 = 4,a3 = 10

A)an = 73\frac { 7 } { 3 } n2 193- \frac { 19 } { 3 } n - 8
B)an = 8n2 193- \frac { 19 } { 3 } n + 73\frac { 7 } { 3 }
C)an = 193- \frac { 19 } { 3 } n2 + 73\frac { 7 } { 3 } n - 8
D)an = 8n2 193- \frac { 19 } { 3 } n - 73\frac { 7 } { 3 }
E)an = 73\frac { 7 } { 3 } n2 193- \frac { 19 } { 3 } n + 8
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
9
Find the sum using the formulas for the sums of powers of integers.​ n=122(n3n)\sum _ { n = 1 } ^ { 22 } \left( n ^ { 3 } - n \right)

A)22,770
B)3,795
C)63,756
D)256,036
E)64,009
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
10
Find pk + 1 for the given pk.​ pk=k5(8k+1)p _ { k } = \frac { k } { 5 } ( 8 k + 1 )

A) pk+1=k+15(8k+5)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 5 )
B) pk+1=k+15(8k+6)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 6 )
C) pk+1=k+16(8k+6)p _ { k + 1 } = \frac { k + 1 } { 6 } ( 8 k + 6 )
D) pk+1=k+15(8k+9)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 9 )
E) pk+1=k+16(8k+9)p _ { k + 1 } = \frac { k + 1 } { 6 } ( 8 k + 9 )
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
11
Find pk+1 for the given pk.? pk=k27(k+2)2p _ { k } = \frac { k ^ { 2 } } { 7 ( k + 2 ) ^ { 2 } } ?

A) pk+1=(k+1)23(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 3 ( k + 8 ) ^ { 2 } }
B) pk+1=(k+1)28(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 8 ( k + 8 ) ^ { 2 } }
C) pk+1=(k+1)28(k+3)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 8 ( k + 3 ) ^ { 2 } }
D) pk+1=(k+1)27(k+3)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 7 ( k + 3 ) ^ { 2 } }
E) pk+1=(k+1)27(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 7 ( k + 8 ) ^ { 2 } }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
12
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 4,a2 = 0,a6 = 38

A)an = -4n2 356- \frac { 35 } { 6 } n + 2312\frac { 23 } { 12 }
B)an = 2312\frac { 23 } { 12 } n2 356- \frac { 35 } { 6 } n - 4
C)​an = 4n2 356- \frac { 35 } { 6 } n + 2312\frac { 23 } { 12 }
D)​an = 356- \frac { 35 } { 6 } n2 + 2312\frac { 23 } { 12 } n - 4
E)​an = 2312\frac { 23 } { 12 } n2 356- \frac { 35 } { 6 } n + 4
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
13
Find the sum using the formulas for the sums of powers of integers.​ j=111(412j+12j2)\sum _ { j = 1 } ^ { 11 } \left( 4 - \frac { 1 } { 2 } j + \frac { 1 } { 2 } j ^ { 2 } \right)

A)-264
B)264
C)-506
D)759
E)506
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
14
Find the sum using the formulas for the sums of powers of integers.​ n=16n2\sum _ { n = 1 } ^ { 6 } n ^ { 2 }

A)21
B)42
C)546
D)441
E)91
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
15
Find pk + 1 for the given pk.​ pk=14(k+2)p _ { k } = \frac { 1 } { 4 ( k + 2 ) }

A) pk+1=1k(k+3)p _ { k + 1 } = \frac { 1 } { k ( k + 3 ) }
B) pk+1=4(k+1)(k+2)p _ { k + 1 } = \frac { 4 } { ( k + 1 ) ( k + 2 ) }
C) pk+1=4k(k+3)p _ { k + 1 } = \frac { 4 } { k ( k + 3 ) }
D) pk+1=1(k+3)(k+2)p _ { k + 1 } = \frac { 1 } { ( k + 3 ) ( k + 2 ) }
E) pk+1=14(k+3)p _ { k + 1 } = \frac { 1 } { 4 ( k + 3 ) }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
16
Find a quadratic model for the sequence with the indicated terms. ​
A0 = -3,a2 = 2,a4 = 10

A)an = 38\frac {3 } { 8 } n2 - 74\frac { 7 } { 4 } n - 3
B)an = 3n2 + 74\frac { 7 } { 4 } n + 38\frac {3 } { 8 }
C)an = 38\frac {3 } { 8 } n2 + 74\frac { 7 } { 4 } n + 3
D)an = 38\frac {3 } { 8 } n2 + 74\frac { 7 } { 4 } n - 3
E)an = -3n2+ 74\frac { 7 } { 4 } n + 38\frac {3 } { 8 }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
17
Find the sum using the formulas for the sums of powers of integers.​ n=114n\sum _ { n = 1 } ^ { 14 } n

A)11,025
B)210
C)6,090
D)105
E)1,015
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
18
Find the sum using the formulas for the sums of powers of integers.​ n=114n3\sum _ { n = 1 } ^ { 14 } n ^ { 3 }

A)6,090
B)105
C)11,025
D)1,015
E)210
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
19
Find the sum using the formulas for the sums of powers of integers.​ n=116n\sum _ { n = 1 } ^ { 16 } n

A)18,496
B)8,976
C)1,496
D)272
E)136
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
20
Find pk + 1 for the given pk.​ pk=6k(k+1)p _ { k } = \frac { 6 } { k ( k + 1 ) }

A) pk+1=2k(k+2)p _ { k + 1 } = \frac { 2 } { k ( k + 2 ) }
B) pk+1=6(k+1)(k+1)p _ { k + 1 } = \frac { 6 } { ( k + 1 ) ( k + 1 ) }
C) pk+1=6(k+1)(k+2)p _ { k + 1 } = \frac { 6 } { ( k + 1 ) ( k + 2 ) }
D) pk+1=6(k+2)(k+6)p _ { k + 1 } = \frac { 6 } { ( k + 2 ) ( k + 6 ) }
E) pk+1=6k(k+2)p _ { k + 1 } = \frac { 6 } { k ( k + 2 ) }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
21
Use mathematical induction to solve for all positive integers n.​ 16+34+52+70++(18n2)=?16 + 34 + 52 + 70 + \ldots + ( 18 n - 2 ) = ?

A) n(n+16)(16n+1)6\frac { n ( n + 16 ) ( 16 n + 1 ) } { 6 }
B) n2(3n+1)\frac { n } { 2 } ( 3 n + 1 )
C) n2(3n+14)\frac { n } { 2 } ( 3 n + 14 )
D) n(n+16)n ( n + 16 )
E) n(n+16)2\frac { n ( n + 16 ) } { 2 }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
22
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A​1 = 3
An = n - an - 1

A)3,-1,4,0,5,1 First differences: -9,9,-9,9
Second differences: -4,5,-4,5,-4
Linear
B)0,3,-1,4,0,5 First differences: -4,5,-4,5,-4
Second differences: -9,-9,-9,-9
Quadratic
C)3,-1,4,0,5,1 First differences: -9,-9,-9,-9
Second differences: -4,5,-4,5,-4
Neither
D)3,-1,4,-0,5,-1 First differences: -9,-9,-9,-9
Second differences: -4,5,-4,5,-4
Linear
E)3,-1,4,0,5,1 First differences: -4,5,-4,5,-4
Second differences: 9,-9,9,-9
Neither
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
23
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 1
An = an - 1 + 2n

A)1,5,11,19,29,41 First differences: 4,6,8,10,12
Second differences: 2,2,2,2
Quadratic
B)1,5,11,19,29,41 First differences: 4,6,8,10,12
Second differences: -2,-2,-2,-2
Quadratic
C)1,5,11,19,29,41 First differences: 2,2,2,2
Second differences: 4,6,8,10,12
Linear
D)1,5,11,19,29,41 First differences: -2,-2,-2,2
Second differences: 4,6,8,10,12
Neither
E)1,5,11,19,29,41 First differences: -2,2,-2,2
Second differences: 4,6,8,10,12
Linear
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
24
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 0
An = an - 1 + 5

A)0,5,10,15,20,25 First differences: 0,0,0,0
Second differences: 5,5,5,5,5
Quadratic
B)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: 0,0,0,0
Linear
C)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: -1,-1,-1,-1
Quadratic
D)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: 0,0,0,0
Quadratic
E)0,5,10,15,20,25 First differences: 0,0,0,0
Second differences: 5,5,5,5,5
Linear
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
25
Use mathematical induction to solve for all positive integers n.​ 4+8+12+16++2n=?4 + 8 + 12 + 16 + \ldots + 2 n = ?

A) (n+3)n( n + 3 ) n
B) n(n+2)2\frac { n ( n + 2 ) } { 2 }
C) (n+2)n( n + 2 ) n
D) (n(n+2)2)2\left( \frac { n ( n + 2 ) } { 2 } \right) ^ { 2 }
E) n(n+1)(n+2)6\frac { n ( n + 1 ) ( n + 2 ) } { 6 }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
26
Find a quadratic model for the sequence with the indicated terms.​ a0=3,a2=7,a6=57a _ { 0 } = - 3 , a _ { 2 } = - 7 , a _ { 6 } = - 57

A)an = 32\frac { 3 } { 2 } n2 - 74\frac { 7 } { 4 } n - 3
B)an = -3n2 + 32\frac { 3 } { 2 } n - 74\frac { 7 } { 4 }
C)an = 74- \frac { 7 } { 4 } n2 + 32\frac { 3 } { 2 } n - 3
D)an = - 74\frac { 7 } { 4 } n2 + 32\frac { 3 } { 2 } n + 3
E)an = 3n2 + 32\frac { 3 } { 2 } n - 74\frac { 7 } { 4 }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
27
Use mathematical induction to solve for all positive integers n.​ 1+2+3+4++n=?1 + 2 + 3 + 4 + \ldots + n = ?

A) n(n+1)2\frac { n ( n + 1 ) } { 2 }
B) (n+1)2\frac { ( n + 1 ) } { 2 }
C) n2(3n+1)\frac { n } { 2 } ( 3 n + 1 )
D) n(n+1)(1n+1)6\frac { n ( n + 1 ) ( 1 n + 1 ) } { 6 }
E) n2(n+1)23\frac { n ^ { 2 } ( n + 1 ) ^ { 2 } } { 3 }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
28
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A2 = -4
An = -2an - 1

A)-4,8,-16,32,-64,128 First differences: 12,-24,48,-96,192
Second differences: -36,72,-144,288
Neither
B)0,4,8,16,32,64 First differences: 12,24,48,96,192
Second differences: -36,72,-144,288
Quadratic
C)0,4,-8,16,-32,64 First differences: -36,72,-144,288
Second differences: 12,24,48,96,192
Linear
D)0,-4,8,-16,32,-64 First differences: 12,24,48,96,192
Second differences: -36,72,-144,288
Quadratic
E)4,-8,16,-32,64,-128 First differences: -36,72,-144,288
Second differences: 12,24,48,96,192
Neither
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
29
Find a formula for the sum of the first n terms of the sequence.​ 9,12,15,18,21,9,12,15,18,21 , \ldots

A) Sn=n2(3n+15)S _ { n } = \frac { n } { 2 } ( 3 n + 15 )
B) Sn=n2(3n+3)S _ { n } = \frac { n } { 2 } ( 3 n + 3 )
C) Sn=n2(3n15)S _ { n } = \frac { n } { 2 } ( - 3 n - 15 )
D) Sn=n2(3n15)S _ { n } = \frac { n } { 2 } ( 3 n - 15 )
E) Sn=n2(3n+15)S _ { n } = \frac { n } { 2 } ( - 3 n + 15 )
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
30
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 3
​an = an - 1 - n

A)0,3,1,-2,-6,-11 First differences: 3,-2,-3,-4,-5
Second differences: -1,-1,-1,-1
Quadratic
B)0,3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: 1,1,1,1
Linear
C)3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: 1,1,1,1
Quadratic
D)3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: -1,-1,-1,-1
Quadratic
E)0,3,1,-2,-6,-11 First differences: 3,-2,-3,-4,-5
Second differences: 1,1,1,1
Quadratic
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
31
The table shows the numbers ana _ { n } (in thousands)of residents from 2002 through 2007.  Number of residents, . Year an.200264020036552004670\begin{array} { | c | l | } \hline & \text { Number of residents, } \\&.\\{ \text { Year } }& a _ { n } \\&.\\\hline 2002 & 640 \\\hline 2003 & 655 \\\hline 2004 & 670 \\\hline\end{array} 200567020066832007699\begin{array} { | l | l | } \hline 2005 & 670 \\\hline 2006 & 683 \\\hline 2007 & 699 \\\hline\end{array}

Find the first differences of the data shown in the table.

A) 15,15,0,13,1615,15,0,13,16
B) 15,13,0,15,1615,13,0,15,16
C) 16,0,15,13,1516,0,15,13,15
D) 0,15,0,13,160,15,0,13,16
E) 13,13,15,0,1613,13,15,0,16
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
32
Use mathematical induction to solve for all positive integers n. ​
A factor of (n3+7n2+6n)\left( n ^ { 3 } + 7 n ^ { 2 } + 6 n \right) is:

A)7
B)9
C)8
D)6
E)3
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
33
Determine whether the statement is true or false. ​If the statement P1 is true but the true statement P6 does not imply that the statement P7 is true,then Pn is not
Necessarily true for all positive integers n.


A)False
B)True
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
34
Determine whether the statement is true or false. ​A sequence with terms has n-1 second differences.

A)False
B)True
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
35
Use mathematical induction to solve for all positive integers n.​ 22+27+32+37++(5n17)=?22 + 27 + 32 + 37 + \ldots + ( 5 n - 17 ) = ?

A) n2(5n+5)\frac { n } { 2 } ( 5 n + 5 )
B) n(22n+1)n ( 22 n + 1 )
C) n(n+1)22\frac { n ( n + 1 ) } { 22 }
D) n(n+22)n ( n + 22 )
E) n2(5n+1)\frac { n } { 2 } ( 5 n + 1 )
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
36
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 2
An = an - 1 + 2

A)2,4,6,8,10,12 First differences: 0,0,0,0
Second differences: 2,2,2,2,2
Quadratic
B)0,2,4,6,8,10 First differences: 0,0,0,0
Second differences: 2,2,2,2,2
Linear
C)0,2,4,6,8,10 First differences: 2,2,2,2,2
Second differences: 0,0,0,0
Quadratic
D)2,4,6,8,10,12 First differences: 2,2,2,2,2
Second differences: 0,0,0,0
Linear
E)0,2,4,6,8,10 First differences: 2,2,2,2,2
Second differences: -1,-1,-1,-1
Quadratic
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
37
Use mathematical induction to solve for all positive integers n.​ 5+9+13+17++(4n+1)=?5 + 9 + 13 + 17 + \ldots + ( 4 n + 1 ) = ?

A) n(9n+3)n ( 9 n + 3 )
B) n(2n+3)2\frac { n ( 2 n + 3 ) } { 2 }
C) n(n+3)n ( n + 3 )
D) n(n+3)9\frac { n ( n + 3 ) } { 9 }
E) n(2n+3)n ( 2 n + 3 )
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
38
Find a formula for the sum of the first n terms of the sequence.​ 17,21,25,29,33,17,21,25,29,33 , \ldots

A) Sn=n(2n+15)S _ { n } = n ( 2 n + 15 )
B) Sn=n(5n+1)S _ { n } = n ( 5 n + 1 )
C) Sn=(n+1)nS _ { n } = \frac { ( n + 1 ) } { n }
D) Sn=n(2n+1)S _ { n } = n ( 2 n + 1 )
E) Sn=n(17n1)S _ { n } = n ( 17 n - 1 )
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
39
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A0 = 1
An = an - 1 + n

A)0,1,2,-4,7,-11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Neither
B)1,-2,4,-7,11,-16 First differences: -1,1,-1,1
Second differences: 1,2,3,4,5
Neither
C)0,1,2,4,7,11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Linear
D)0,1,2,4,7,11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Quadratic
E)1,2,4,7,11,16 First differences: 1,2,3,4,5
Second differences: 1,1,1,1
Quadratic
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
40
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither.​ a0=4an=(an1)2\begin{array} { l } a _ { 0 } = 4 \\a _ { n } = \left( a _ { n - 1 } \right) ^ { 2 }\end{array}

A)0,4,-16,256,-65,536,4,294,967,296 First differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Second differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Linear
B)0,4,16,256,65,536,4,294,967,296 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Quadratic
C)4,-16,256,-65,536,4,294,967,296,-18,446,744,073,709,600,000 First differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Second differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Neither
D)4,16,256,65,536,4,294,967,296,18,446,744,073,709,600,000 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: 228,65,040,4,294,836,480, 2×10192 \times 10 ^ { 19 }
Neither
E)0,-4,16,-256,65,536,-4,294,967,296 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Quadratic
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
41
The table shows the numbers ana _ { n } (in thousands)of residents from 2002 through 2007.  Number of residents, . Year an.2002646200365720046682005679\begin{array} { | c | l | } \hline & \text { Number of residents, } \\&.\\{ \text { Year } }& a _ { n } \\&.\\\hline 2002 & 646 \\\hline 2003 & 657 \\\hline 2004 & 668 \\\hline 2005 & 679 \\\hline\end{array} 20066902007701\begin{array} { | l | l | } \hline 2006 & 690 \\\hline 2007 & 701 \\\hline\end{array}
Determine whether a linear model can be used to approximate the data.
If so,find a model algebraically.Let n represent the year,with n=2n = 2 corresponding to 2002.

A)A linear model can be used. an=11n+690a _ { n } = 11 n + 690
B)A linear model can be used. an=11n+657a _ { n } = 11 n + 657
C)A linear model can be used. an=11n+701a _ { n } = 11 n + 701
D)A linear model can be used. an=11n+624a _ { n } = 11 n + 624
E)A linear model can be used. an=11n+646a _ { n } = 11 n + 646
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
42
Find the sum using the formulas for the sums of powers of integers. n=19n3\sum _ { n = 1 } ^ { 9 } n ^ { 3 }

A)729
B)285
C)4050
D)1296
E)2025
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
43
Find Pk+1 for the given Pk. Pk=2k(k+1)P _ { k } = \frac { 2 } { k ( k + 1 ) }

A) Pk+1=2k(k+2)P _ { k + 1 } = \frac { 2 } { k ( k + 2 ) }
B) Pk+1=2k(k+1)+2(k+1)(k+2)P _ { k + 1 } = \frac { 2 } { k ( k + 1 ) } + \frac { 2 } { ( k + 1 ) ( k + 2 ) }
C) Pk+1=4(k+1)(k+2)P _ { k + 1 } = \frac { 4 } { ( k + 1 ) ( k + 2 ) }
D) Pk+1=2(k+1)(k+2)P _ { k + 1 } = \frac { 2 } { ( k + 1 ) ( k + 2 ) }
E) Pk+1=2k(k+1)+1P _ { k + 1 } = \frac { 2 } { k ( k + 1 ) } + 1
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
44
Use mathematical induction to solve for all positive integers n.​ 3+8+13+18++(5n2)=?3 + 8 + 13 + 18 + \ldots + ( 5 n - 2 ) = ?

A) n6(5n+1)\frac { n } { 6 } ( 5 n + 1 )
B) n(5n+1)n ( 5 n + 1 )
C) n2(5n+1)\frac { n } { 2 } ( 5 n + 1 )
D) n4(5n+1)\frac { n } { 4 } ( 5 n + 1 )
E) 5n+15 n + 1
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
45
Find a formula for the sum of the n terms of the sequence. 12,54,258,12516,\frac { 1 } { 2 } , \frac { 5 } { 4 } , \frac { 25 } { 8 } , \frac { 125 } { 16 } , \ldots

A) 5(5n2n)3(2n)\frac { 5 \left( 5 ^ { n } - 2 ^ { n } \right) } { 3 \left( 2 ^ { n } \right) }
B)​ 5n12\frac { 5 ^ { n - 1 } } { 2 }
C) 5n+2n7(2n)\frac { 5 ^ { n } + 2 ^ { n } } { 7 \left( 2 ^ { n } \right) }
D) 12n\frac { 1 } { 2 ^ { n } }
E) 5n2n3(2n)\frac { 5 ^ { n } - 2 ^ { n } } { 3 \left( 2 ^ { n } \right) }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
46
Find a quadratic model for the sequence with the indicated terms. a0=5,a2=5,a5=65a _ { 0 } = 5 , a _ { 2 } = 5 , a _ { 5 } = 65

A) an=4n2+5a _ { n } = 4 n ^ { 2 } + 5
B) an=8n+5a _ { n } = 8 n + 5
C) an=4n28n5a _ { n } = 4 n ^ { 2 } - 8 n - 5
D) an=4n28n+5a _ { n } = 4 n ^ { 2 } - 8 n + 5
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
47
Use mathematical induction to solve for all positive integers n.​ i=1ni(i+4)=?\sum _ { i = 1 } ^ { n } i ( i + 4 ) = ?

A) n(2n+13)6\frac { n ( 2 n + 13 ) } { 6 }
B) n(n+1)(2n+13)4\frac { n ( n + 1 ) ( 2 n + 13 ) } { 4 }
C) n(n+1)(n+13)6\frac { n ( n + 1 ) ( n + 13 ) } { 6 }
D) n(n+1)(2n+13)6\frac { n ( n + 1 ) ( 2 n + 13 ) } { 6 }
E) n(n+1)(2n+13)2\frac { n ( n + 1 ) ( 2 n + 13 ) } { 2 }
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
48
Find the sum using the formulas for the sums of powers of integers. n=1129n3n2\sum _ { n = 1 } ^ { 12 } 9 n - 3 n ^ { 2 }

A)-924
B)-1248
C)468
D)-324
E)-3744
Unlock Deck
Unlock for access to all 48 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 48 flashcards in this deck.