Deck 63: Rotation of Conics

Full screen (f)
exit full mode
Question
Select the graph of the following equation.​ y=x±5y = x \pm 5

A)​  <strong>Select the graph of the following equation.​  y = x \pm 5  ​</strong> A)​   B)​   C)​ ​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the following equation.​  y = x \pm 5  ​</strong> A)​   B)​   C)​ ​   D)​   E)​   <div style=padding-top: 35px>
C)​ ​  <strong>Select the graph of the following equation.​  y = x \pm 5  ​</strong> A)​   B)​   C)​ ​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the following equation.​  y = x \pm 5  ​</strong> A)​   B)​   C)​ ​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the following equation.​  y = x \pm 5  ​</strong> A)​   B)​   C)​ ​   D)​   E)​   <div style=padding-top: 35px>
Use Space or
up arrow
down arrow
to flip the card.
Question
Select the graph of the following equation,showing both sets of axes.​ (y)22(x)22=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1

A)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=30\theta = 30 ^ { \circ } , (2,6)( 2,6 )

A) (3+3,33+1)( \sqrt { 3 } + 3,3 \sqrt { 3 } + 1 )
B) (3+3,331)( \sqrt { 3 } + 3,3 \sqrt { 3 } - 1 )
C) (332,33+12)\left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 1 } { 2 } \right)
D) (33,331)( \sqrt { 3 } - 3,3 \sqrt { 3 } - 1 )
E) (332,33+32)\left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 3 } { 2 } \right)
Question
Select the graph of the following equation,showing both sets of axes.​ (x)28(y)28=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1

A)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=90\theta = 90 ^ { \circ } , (2,2)( 2,2 )

A) (2,0)( - 2,0 )
B) (0,3)( 0,3 )
C) (2,2)( 2 , - 2 )
D) (2,0)( 2,0 )
E) (2,2)( - 2,2 )
Question
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=45\theta = 45 ^ { \circ } , (10,10)( 10,10 )

A) (52,0)( - 5 \sqrt { 2 } , 0 )
B) (52,0)( 5 \sqrt { 2 } , 0 )
C) (102,0)( - 10 \sqrt { 2 } , 0 )
D) (62,0)( 6 \sqrt { 2 } , 0 )
E) (102,0)( 10 \sqrt { 2 } , 0 )
Question
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 24x2+66xy+13y2=3224 x ^ { 2 } + 66 x y + 13 y ^ { 2 } = 32

A) θ=78.87\theta = 78.87 ^ { \circ }
B) θ=79.87\theta = 79.87 ^ { \circ }
C) θ=81.87\theta = 81.87 ^ { \circ }
D) θ=77.87\theta = 77.87 ^ { \circ }
E) θ=80.87\theta = 80.87 ^ { \circ }
Question
Use a graphing utility to graph the conic.Determine the angle θ\theta through which the axes are rotated.​ x2+2xy+y2=25x ^ { 2 } + 2 x y + y ^ { 2 } = 25

A) θ=π4 or 45\theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ } , y=x±25y = - x \pm \sqrt { 25 }  <strong>Use a graphing utility to graph the conic.Determine the angle  \theta  through which the axes are rotated.​  x ^ { 2 } + 2 x y + y ^ { 2 } = 25  ​</strong> A)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    B)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    C)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    D)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    E)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    <div style=padding-top: 35px>
B) θ=π4 or 45\theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ } , y=x±25y = - x \pm \sqrt { 25 }  <strong>Use a graphing utility to graph the conic.Determine the angle  \theta  through which the axes are rotated.​  x ^ { 2 } + 2 x y + y ^ { 2 } = 25  ​</strong> A)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    B)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    C)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    D)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    E)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    <div style=padding-top: 35px>
C) θ=π4 or 45\theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ } , y=x±25y = - x \pm \sqrt { 25 }  <strong>Use a graphing utility to graph the conic.Determine the angle  \theta  through which the axes are rotated.​  x ^ { 2 } + 2 x y + y ^ { 2 } = 25  ​</strong> A)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    B)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    C)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    D)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    E)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    <div style=padding-top: 35px>
D) θ=π4 or 45\theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ } , y=x±25y = - x \pm \sqrt { 25 }  <strong>Use a graphing utility to graph the conic.Determine the angle  \theta  through which the axes are rotated.​  x ^ { 2 } + 2 x y + y ^ { 2 } = 25  ​</strong> A)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    B)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    C)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    D)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    E)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    <div style=padding-top: 35px>
E) θ=π4 or 45\theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ } , y=x±25y = - x \pm \sqrt { 25 }  <strong>Use a graphing utility to graph the conic.Determine the angle  \theta  through which the axes are rotated.​  x ^ { 2 } + 2 x y + y ^ { 2 } = 25  ​</strong> A)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    B)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    C)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    D)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    E)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    <div style=padding-top: 35px>
Question
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=90\theta = 90 ^ { \circ } , (0,3)( 0,3 )

A) (0,4)( 0,4 )
B) (3,3)( - 3,3 )
C) (3,0)( - 3,0 )
D) (3,0)( 3,0 )
E) (0,3)( 0,3 )
Question
Use a graphing utility to graph the conic.​ x24xy+2y2=8x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8

A)​  <strong>Use a graphing utility to graph the conic.​  x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8  ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
B)​  <strong>Use a graphing utility to graph the conic.​  x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8  ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
C)​  <strong>Use a graphing utility to graph the conic.​  x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8  ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
D)​  <strong>Use a graphing utility to graph the conic.​  x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8  ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
E)​  <strong>Use a graphing utility to graph the conic.​  x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8  ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
Question
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 29x2+92xy+6y2=5129 x ^ { 2 } + 92 x y + 6 y ^ { 2 } = 51

A) θ=79.87\theta = 79.87 ^ { \circ }
B) θ=80.87\theta = 80.87 ^ { \circ }
C) θ=78.87\theta = 78.87 ^ { \circ }
D) θ=81.87\theta = 81.87 ^ { \circ }
E) θ=77.87\theta = 77.87 ^ { \circ }
Question
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=30\theta = 30 ^ { \circ } , (1,3)( 1,3 )

A) (332,33+32)\left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 3 } { 2 } \right)
B) (332,33+12)\left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 1 } { 2 } \right)
C) (3+32,3312)\left( \frac { 3 + \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } - 1 } { 2 } \right)
D) (3+32,33+12)\left( \frac { 3 + \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 1 } { 2 } \right)
E) (332,3312)\left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } - 1 } { 2 } \right)
Question
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 48x2+69xy+25y2=5048 x ^ { 2 } + 69 x y + 25 y ^ { 2 } = 50

A) θ=78.87\theta = 78.87 ^ { \circ }
B) θ=77.87\theta = 77.87 ^ { \circ }
C) θ=79.87\theta = 79.87 ^ { \circ }
D) θ=81.87\theta = 81.87 ^ { \circ }
E) θ=80.87\theta = 80.87 ^ { \circ }
Question
Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form.​ xy6=0x y - 6 = 0

A) (x)26(y)26=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 6 } = 1
B) (x)26+(y)26=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } + \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 6 } = 1
C) (x)212+(y)212=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 12 } + \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 12 } = 1
D) (x)212(y)212=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 12 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 12 } = 1
E) (x)26(y)212=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 12 } = 1
Question
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 5x210xy+12y2+(51110)x(711+11)y=935 x ^ { 2 } - 10 x y + 12 y ^ { 2 } + ( 5 \sqrt { 11 } - 10 ) x - ( 7 \sqrt { 11 } + 11 ) y = 93

A) θ=78.87\theta = 78.87 ^ { \circ }
B) θ=77.87\theta = 77.87 ^ { \circ }
C) θ=79.87\theta = 79.87 ^ { \circ }
D) θ=80.87\theta = 80.87 ^ { \circ }
E) θ=81.87\theta = 81.87 ^ { \circ }
Question
​Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places. 3x29xy+11y2+(3109)x(510+10)y=913 x ^ { 2 } - 9 x y + 11 y ^ { 2 } + ( 3 \sqrt { 10 } - 9 ) x - ( 5 \sqrt { 10 } + 10 ) y = 91 ​​

A) θ=79.87\theta = 79.87 ^ { \circ }
B) θ=78.87\theta = 78.87 ^ { \circ }
C) θ=80.87\theta = 80.87 ^ { \circ }
D) θ=77.87\theta = 77.87 ^ { \circ }
E) θ=81.87\theta = 81.87 ^ { \circ }
Question
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 5x24xy+6y2=95 x ^ { 2 } - 4 x y + 6 y ^ { 2 } = 9

A) θ=79.87\theta = 79.87 ^ { \circ }
B) θ=77.87\theta = 77.87 ^ { \circ }
C) θ=81.87\theta = 81.87 ^ { \circ }
D) θ=80.87\theta = 80.87 ^ { \circ }
E) θ=78.87\theta = 78.87 ^ { \circ }
Question
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=45\theta = 45 ^ { \circ } , (9,2)( 9,2 )

A) (1122,22)\left( \frac { 11 \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right)
B) (1122,722)\left( - \frac { 11 \sqrt { 2 } } { 2 } , - \frac { 7 \sqrt { 2 } } { 2 } \right)
C) (112,722)\left( \frac { 11 } { 2 } , - \frac { 7 \sqrt { 2 } } { 2 } \right)
D) (1122,722)\left( \frac { 11 \sqrt { 2 } } { 2 } , \frac { 7 \sqrt { 2 } } { 2 } \right)
E) (1122,722)\left( \frac { 11 \sqrt { 2 } } { 2 } , - \frac { 7 \sqrt { 2 } } { 2 } \right)
Question
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 17x2+72xy3y2=7717 x ^ { 2 } + 72 x y - 3 y ^ { 2 } = 77

A) θ=79.87\theta = 79.87 ^ { \circ }
B) θ=77.87\theta = 77.87 ^ { \circ }
C) θ=80.87\theta = 80.87 ^ { \circ }
D) θ=81.87\theta = 81.87 ^ { \circ }
E) θ=78.87\theta = 78.87 ^ { \circ }
Question
Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form.​ xy+3=0x y + 3 = 0

A) (y)23(x)23=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 3 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 3 } = 1
B) (y)26(x)23=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 6 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 3 } = 1
C) (y)26(x)26=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 6 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } = 1
D) (y)23(x)26=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 3 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } = 1
E) (y)26+(x)26=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 6 } + \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } = 1
Question
Select the graph of degenerate conic.​ x2+y22x+16y+65=0x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0

A)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the graph of the following equation.​ xy+4=0x y + 4 = 0

A)​  <strong>Select the graph of the following equation.​  x y + 4 = 0  ​</strong> A)​   B)​   C)​   D)​ ​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the following equation.​  x y + 4 = 0  ​</strong> A)​   B)​   C)​   D)​ ​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the following equation.​  x y + 4 = 0  ​</strong> A)​   B)​   C)​   D)​ ​   E)​   <div style=padding-top: 35px>
D)​ ​  <strong>Select the graph of the following equation.​  x y + 4 = 0  ​</strong> A)​   B)​   C)​   D)​ ​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the following equation.​  x y + 4 = 0  ​</strong> A)​   B)​   C)​   D)​ ​   E)​   <div style=padding-top: 35px>
Question
Use the discriminant to classify the graph.​ x2+xy+10y2+x+y10=0x ^ { 2 } + x y + 10 y ^ { 2 } + x + y - 10 = 0

A)The graph is a cone.
B)The graph is a parabola.
C)The graph is a ellipse or circle.
D)The graph is a hyperbola.
E)The graph is a line.
Question
Use the discriminant to classify the graph.​ x210xy8y218=0x ^ { 2 } - 10 x y - 8 y ^ { 2 } - 18 = 0

A)The graph is a parabola.
B)The graph is a hyperbola.
C)The graph is a ellipse.
D)The graph is a cone.
E)The graph is a circle.
Question
Use the discriminant to classify the graph.​ 100x2100xy+25y2+12y=0100 x ^ { 2 } - 100 x y + 25 y ^ { 2 } + 12 y = 0

A)The graph is a hyperbola.
B)The graph is a ellipse.
C)The graph is a circle.
D)The graph is a line.
E)The graph is a parabola.
Question
Use the discriminant to classify the graph.​ 16x25xy+10y244=016 x ^ { 2 } - 5 x y + 10 y ^ { 2 } - 44 = 0

A)The graph is a hyperbola.
B)The graph is a line.
C)The graph is a ellipse or Circle.
D)The graph is a parabola.
E)The graph is a cone.
Question
Select the graph of degenerate conic.​ 36x272xy+36y2=036 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0

A)​  <strong>Select the graph of degenerate conic.​  36 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of degenerate conic.​  36 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of degenerate conic.​  36 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of degenerate conic.​  36 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of degenerate conic.​  36 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Use the Quadratic Formula to solve for yy .​ x2+xy+4y2+x+y4=0x ^ { 2 } + x y + 4 y ^ { 2 } + x + y - 4 = 0

A) y=(x+1)±(x1)28(x2x+4)4y = \frac { ( x + 1 ) \pm \sqrt { ( x - 1 ) ^ { 2 } - 8 \left( x ^ { 2 } - x + 4 \right) } } { 4 }
B) y=(x+1)±(x+1)28(x2+x+4)4y = \frac { - ( x + 1 ) \pm \sqrt { ( x + 1 ) ^ { 2 } - 8 \left( x ^ { 2 } + x + 4 \right) } } { 4 }
C) y=(x+1)±(x+1)28(x2+x4)4y = \frac { - ( x + 1 ) \pm \sqrt { ( x + 1 ) ^ { 2 } - 8 \left( x ^ { 2 } + x - 4 \right) } } { 4 }
D) y=(x+1)±(x+1)28(x2+x4)4y = \frac { ( x + 1 ) \pm \sqrt { ( x + 1 ) ^ { 2 } - 8 \left( x ^ { 2 } + x - 4 \right) } } { 4 }
E) y=(x+1)±(x+1)2+8(x2+x4)4y = \frac { - ( x + 1 ) \pm \sqrt { ( x + 1 ) ^ { 2 } + 8 \left( x ^ { 2 } + x - 4 \right) } } { 4 }
Question
Use the Quadratic Formula to solve for yy .​ 81x290xy+25y2+10y=081 x ^ { 2 } - 90 x y + 25 y ^ { 2 } + 10 y = 0

A) y=90x10±(90x10)2+8100x250y = \frac { 90 x - 10 \pm \sqrt { ( 90 x - 10 ) ^ { 2 } + 8100 x ^ { 2 } } } { 50 }
B) y=90x+10±(90x+10)2+8100x250y = \frac { 90 x + 10 \pm \sqrt { ( 90 x + 10 ) ^ { 2 } + 8100 x ^ { 2 } } } { 50 }
C) y=90x+10±(90x10)28100x250y = \frac { 90 x + 10 \pm \sqrt { ( 90 x - 10 ) ^ { 2 } - 8100 x ^ { 2 } } } { 50 }
D) y=90x10±(90x10)28100x250y = \frac { 90 x - 10 \pm \sqrt { ( 90 x - 10 ) ^ { 2 } - 8100 x ^ { 2 } } } { 50 }
E) y=90x10±(90x+10)28100x250y = \frac { 90 x - 10 \pm \sqrt { ( 90 x + 10 ) ^ { 2 } - 8100 x ^ { 2 } } } { 50 }
Question
Use the Quadratic Formula to solve for yy .​ 5x2+10xy+11y2+9x10y42=05 x ^ { 2 } + 10 x y + 11 y ^ { 2 } + 9 x - 10 y - 42 = 0

A) y=(10x10)±(10x10)244(5x29x42)22y = \frac { - ( 10 x - 10 ) \pm \sqrt { ( 10 x - 10 ) ^ { 2 } - 44 \left( 5 x ^ { 2 } - 9 x - 42 \right) } } { 22 }
B) y=(10x10)±(10x10)244(5x2+9x42)22y = \frac { ( 10 x - 10 ) \pm \sqrt { ( 10 x - 10 ) ^ { 2 } - 44 \left( 5 x ^ { 2 } + 9 x - 42 \right) } } { 22 }
C) y=(10x10)±(10x10)244(5x2+9x42)22y = \frac { - ( 10 x - 10 ) \pm \sqrt { ( 10 x - 10 ) ^ { 2 } - 44 \left( 5 x ^ { 2 } + 9 x - 42 \right) } } { 22 } .
D) y=(10x10)±(10x10)244(5x2+9x42)22y = \frac { - ( 10 x - 10 ) \pm \sqrt { ( 10 x - 10 ) ^ { 2 } - 44 \left( 5 x ^ { 2 } + 9 x - 42 \right) } } { 22 }
E) y=(10x10)±(10x10)2+44(5x2+9x42)22y = \frac { - ( 10 x - 10 ) \pm \sqrt { ( 10 x - 10 ) ^ { 2 } + 44 \left( 5 x ^ { 2 } + 9 x - 42 \right) } } { 22 }
Question
Select the graph of degenerate conic.​ y249x2=0y ^ { 2 } - 49 x ^ { 2 } = 0

A)​  <strong>Select the graph of degenerate conic.​  y ^ { 2 } - 49 x ^ { 2 } = 0  ​</strong> A)​   B)​ ​ ​   ​ ​ C)​   D)​   E)​   <div style=padding-top: 35px>
B)​ ​
 <strong>Select the graph of degenerate conic.​  y ^ { 2 } - 49 x ^ { 2 } = 0  ​</strong> A)​   B)​ ​ ​   ​ ​ C)​   D)​   E)​   <div style=padding-top: 35px>


C)​  <strong>Select the graph of degenerate conic.​  y ^ { 2 } - 49 x ^ { 2 } = 0  ​</strong> A)​   B)​ ​ ​   ​ ​ C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of degenerate conic.​  y ^ { 2 } - 49 x ^ { 2 } = 0  ​</strong> A)​   B)​ ​ ​   ​ ​ C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of degenerate conic.​  y ^ { 2 } - 49 x ^ { 2 } = 0  ​</strong> A)​   B)​ ​ ​   ​ ​ C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the graph of the following equation​ 36x2+72xy+36y2=036 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0

A)​  <strong>Select the graph of the following equation​  36 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the following equation​  36 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the following equation​  36 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the following equation​  36 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the following equation​  36 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Use the Quadratic Formula to solve for yy .​ x25xy4y2+3x32=0x ^ { 2 } - 5 x y - 4 y ^ { 2 } + 3 x - 32 = 0

A) y=5x±25x2+16(x23x32)8y = \frac { - 5 x \pm \sqrt { 25 x ^ { 2 } + 16 \left( x ^ { 2 } - 3 x - 32 \right) } } { 8 }
B) y=5x±25x216(x2+3x32)8y = \frac { - 5 x \pm \sqrt { 25 x ^ { 2 } - 16 \left( x ^ { 2 } + 3 x - 32 \right) } } { 8 }
C) y=5x±25x216(x2+3x+32)8y = \frac { - 5 x \pm \sqrt { 25 x ^ { 2 } - 16 \left( x ^ { 2 } + 3 x + 32 \right) } } { 8 }
D) y=5x±25x2+16(x2+3x32)8y = \frac { - 5 x \pm \sqrt { 25 x ^ { 2 } + 16 \left( x ^ { 2 } + 3 x - 32 \right) } } { 8 }
E) y=5x±25x2+16(x2+3x32)8y = \frac { 5 x \pm \sqrt { 25 x ^ { 2 } + 16 \left( x ^ { 2 } + 3 x - 32 \right) } } { 8 }
Question
Use the Quadratic Formula to solve for yy .​ x212xy10y222=0x ^ { 2 } - 12 x y - 10 y ^ { 2 } - 22 = 0

A) y=12x±144x2+40(x2+22)20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } + 22 \right) } } { - 20 }
B) y=12x±144x2+40(x222)20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } - 22 \right) } } { - 20 }
C) y=12x±144x2+40(x222)20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } - 22 \right) } } { 20 }
D) y=12x±144x+40(x222)20y = \frac { 12 x \pm \sqrt { 144 x + 40 \left( x ^ { 2 } - 22 \right) } } { - 20 }
E) y=12x±144x2+40(x2+22)20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } + 22 \right) } } { 20 }
Question
Use the Quadratic Formula to solve for yy .​ 14x210xy+9y241=014 x ^ { 2 } - 10 x y + 9 y ^ { 2 } - 41 = 0

A) y=14x±100x2+36(x29)18y = \frac { 14 x \pm \sqrt { 100 x ^ { 2 } + 36 \left( x ^ { 2 } - 9 \right) } } { - 18 }
B) y=14x±100x2+36(x2+9)18y = \frac { 14 x \pm \sqrt { 100 x ^ { 2 } + 36 \left( x ^ { 2 } + 9 \right) } } { 18 }
C) y=10x±100x2+36(14x241)18y = \frac { 10 x \pm \sqrt { 100 x ^ { 2 } + 36 \left( 14 x ^ { 2 } - 41 \right) } } { - 18 }
D) y=10x±100x2+36(14x2+41)18y = \frac { 10 x \pm \sqrt { 100 x ^ { 2 } + 36 \left( 14 x ^ { 2 } + 41 \right) } } { 18 }
E) y=10x±100x236(14x241)18y = \frac { 10 x \pm \sqrt { 100 x ^ { 2 } - 36 \left( 14 x ^ { 2 } - 41 \right) } } { 18 }
Question
Use the discriminant to classify the graph.​ x210xy9y2+8x33=0x ^ { 2 } - 10 x y - 9 y ^ { 2 } + 8 x - 33 = 0

A)The graph is a ellipse.
B)The graph is a circle.
C)The graph is a hyperbola.
D)The graph is a line.
E)The graph is a parabola.
Question
Use the Quadratic Formula to solve for yy .​ x2+12xy+36y25xy3=0x ^ { 2 } + 12 x y + 36 y ^ { 2 } - 5 x - y - 3 = 0

A) y=(36x+1)±(36x1)2144(x25x3)72y = \frac { - ( 36 x + 1 ) \pm \sqrt { ( 36 x - 1 ) ^ { 2 } - 144 \left( x ^ { 2 } - 5 x - 3 \right) } } { 72 }
B) y=(12x+1)±(36x+1)2144(x2+5x+3)72y = \frac { - ( 12 x + 1 ) \pm \sqrt { ( 36 x + 1 ) ^ { 2 } - 144 \left( x ^ { 2 } + 5 x + 3 \right) } } { 72 }
C) y=(36x1)±(36x1)2144(x25x+3)72y = \frac { - ( 36 x - 1 ) \pm \sqrt { ( 36 x - 1 ) ^ { 2 } - 144 \left( x ^ { 2 } - 5 x + 3 \right) } } { 72 }
D) y=(36x1)±(36x1)2144(x25x3)72y = \frac { ( 36 x - 1 ) \pm \sqrt { ( 36 x - 1 ) ^ { 2 } - 144 \left( x ^ { 2 } - 5 x - 3 \right) } } { 72 }
E) y=(12x1)±(12x1)2144(x25x3)72y = \frac { - ( 12 x - 1 ) \pm \sqrt { ( 12 x - 1 ) ^ { 2 } - 144 \left( x ^ { 2 } - 5 x - 3 \right) } } { 72 }
Question
Use the discriminant to classify the graph.​ 36x2144xy+y210x+5y=036 x ^ { 2 } - 144 x y + y ^ { 2 } - 10 x + 5 y = 0

A)The graph is a cone.
B)The graph is a circle.
C)The graph is a parabola.
D)The graph is a ellipse.
E)The graph is a hyperbola.
Question
Use the discriminant to classify the graph.​ 5x2+10xy+11y2+9x10y72=05 x ^ { 2 } + 10 x y + 11 y ^ { 2 } + 9 x - 10 y - 72 = 0

A)The graph is a hyperbola.
B)The graph is a ellipse or circle.
C)The graph is a parabola.
D)The graph is a line.
E)The graph is a cone.
Question
Use the discriminant to classify the graph.​ x2+6xy+9y25xy3=0x ^ { 2 } + 6 x y + 9 y ^ { 2 } - 5 x - y - 3 = 0

A)The graph is a parabola.
B)The graph is a hyperbola.
C)The graph is a line.
D)The graph is a circle.
E)The graph is a ellipse.
Question
Identify the conic by writing the equation in standard form. 8x2+8y2+32x+144y+520=08 x ^ { 2 } + 8 y ^ { 2 } + 32 x + 144 y + 520 = 0

A) (x+2)2698+(y+9)2698=1\frac { ( x + 2 ) ^ { 2 } } { \frac { 69 } { 8 } } + \frac { ( y + 9 ) ^ { 2 } } { \frac { 69 } { 8 } } = 1 ;ellipse
B) (x+2)2118+(y+9)2118=1\frac { ( x + 2 ) ^ { 2 } } { \frac { 11 } { 8 } } + \frac { ( y + 9 ) ^ { 2 } } { \frac { 11 } { 8 } } = 1 ;ellipse
C) (8x+2)2+(8y+9)2=320( 8 x + 2 ) ^ { 2 } + ( 8 y + 9 ) ^ { 2 } = 320 ;circle
D) (x+2)2+(y+9)2=40( x + 2 ) ^ { 2 } + ( y + 9 ) ^ { 2 } = 40 ;circle
E) (x+2)2+(y+9)2=20( x + 2 ) ^ { 2 } + ( y + 9 ) ^ { 2 } = 20 ;circle
Question
Find the lengths of the major and minor axes of the ellipse graphed by following equation.​ (x)21+(y)236=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 1 } + \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 36 } = 1

A)Length of major axis is 2a=2(1)=22 a = 2 \cdot ( - 1 ) = - 2 Length of minor axis is 2b=2(6)=122 b = 2 \cdot ( - 6 ) = - 12
B)Length of major axis is 2a=21=22 a = 2 \cdot 1 = 2 Length of minor axis is 2b=26=122 b=2 \cdot 6=12
C)Length of major axis is 2a=2(6)=122 a = 2 \cdot ( - 6 ) = - 12 Length of minor axis is 2b=2(1)=22 b = 2 \cdot ( - 1 ) = - 2
D)Length of major axis is 2a=26=122 a = 2 \cdot 6 = 12 Length of minor axis is 2b=21=22 b = 2 \cdot 1 = 2
E)None of the above
Question
Consider the equation.​ 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 ​ Without calculating,explain how to rewrite the equation so that it does not have an xyx y -term.

A)To rewrite the equation 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 so that it does not have an xyx y -term,you can solve for yy in terms of xx by completing the square or using the Quadratic Formula.
B)To rewrite the equation 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 so that it does not have an xyx y -term,you can solve for xx in terms of yy by completing the square or using the Quadratic Formula.
C)To rewrite the equation 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 so that it has an xyx y -term,you can solve for yy yy in terms of xx by taking square root or using the Quadratic Formula.
D)To rewrite the equation 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 so that it has an xyx y -term,you can solve for xx in terms of yy by completing the square or using the Quadratic Formula.
E)To rewrite the equation 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 so that it has an xyx y -term,you can solve for yy in terms of xx by completing the square or using the Quadratic Formula.
Question
Find any points of intersection of the graphs algebraically.​ x2+y2+2x7y+6=0x2+y22x7y+6=0\begin{array} { l } - x ^ { 2 } + y ^ { 2 } + 2 x - 7 y + 6 = 0 \\x ^ { 2 } + y ^ { 2 } - 2 x - 7 y + 6 = 0\end{array}

A)The points of intersection are (2,2)( 2,2 ) and (3,3)( 3,3 ) .
B)The points of intersection are (2,2)( - 2 , - 2 ) and (2,3)( 2,3 ) .
C)The points of intersection are (3,3)( 3,3 ) and (3,3)( 3,3 ) .
D)The points of intersection are (2,2)( 2,2 ) and (2,3)( 2,3 ) .
E)The points of intersection are (3,3)( 3,3 ) and (3,3)( - 3 , - 3 ) .
Question
Select the graph of degenerate conic.​ 9x22xy+9y2=09 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0

A)​  <strong>Select the graph of degenerate conic.​  9 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of degenerate conic.​  9 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of degenerate conic.​  9 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of degenerate conic.​  9 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of degenerate conic.​  9 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Identify the conic by writing the equation in standard form. 10y220x2+80y+360x1485=010 y ^ { 2 } - 20 x ^ { 2 } + 80 y + 360 x - 1485 = 0

A) (y4)252(x9)254=1\frac { ( y - 4 ) ^ { 2 } } { \frac { 5 } { 2 } } - \frac { ( x - 9 ) ^ { 2 } } { \frac { 5 } { 4 } } = 1 ;hyperbola
B) (y+4)252(x9)254=1\frac { ( y + 4 ) ^ { 2 } } { \frac { 5 } { 2 } } - \frac { ( x - 9 ) ^ { 2 } } { \frac { 5 } { 4 } } = 1 ;hyperbola
C) (y+4)2972(x9)2974=1\frac { ( y + 4 ) ^ { 2 } } { \frac { 97 } { 2 } } - \frac { ( x - 9 ) ^ { 2 } } { \frac { 97 } { 4 } } = 1 ;hyperbola
D) (y+4)21495+(x9)214910=1\frac { ( y + 4 ) ^ { 2 } } { \frac { 149 } { 5 } } + \frac { ( x - 9 ) ^ { 2 } } { \frac { 149 } { 10 } } = 1 ;ellipse
E) (y4)21495+(x9)214910=1\frac { ( y - 4 ) ^ { 2 } } { \frac { 149 } { 5 } } + \frac { ( x - 9 ) ^ { 2 } } { \frac { 149 } { 10 } } = 1 ;ellipse
Question
Consider the equation.​ 10x25xy+10y281=010 x ^ { 2 } - 5 x y + 10 y ^ { 2 } - 81 = 0 ​ Explain how to identify the graph of the equation.

A)Find the discriminant of the equation to identify the graph of the equation.
B)Find the foci of the equation to identify the graph of the equation.
C)Find the major axis of the equation to identify the graph of the equation.
D)Find the minor axis of the equation to identify the graph of the equation.
E)Find the vertices of the equation to identify the graph of the equation.
Question
Select the graph of degenerate conic.​ x2+2xy+y29=0x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0

A)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Identify the conic by writing the equation in standard form.​ 25x2+4y2400x+72y+1824=025 x ^ { 2 } + 4 y ^ { 2 } - 400 x + 72 y + 1824 = 0

A)​ (x+4)248+(y8)284=1\frac { ( x + 4 ) ^ { 2 } } { \frac { 4 } { 8 } } + \frac { ( y - 8 ) ^ { 2 } } { \frac { 8 } { 4 } } = 1 ;ellipse
B)​ (x8)284+(y+4)284=1\frac { ( x - 8 ) ^ { 2 } } { \frac { 8 } { 4 } } + \frac { ( y + 4 ) ^ { 2 } } { \frac { 8 } { 4 } } = 1 ;ellipse
C)​ (x8)248+(y+4)284=1\frac { ( x - 8 ) ^ { 2 } } { \frac { 4 } { 8 } } + \frac { ( y + 4 ) ^ { 2 } } { \frac { 8 } { 4 } } = 1 ;ellipse
D)​ (x8)24+(y+9)225=1\frac { ( x - 8 ) ^ { 2 } } { 4 } + \frac { ( y + 9 ) ^ { 2 } } { 25 } = 1 ;ellipse
E)​ (5x8)2+(2y+9)2=1783( 5 x - 8 ) ^ { 2 } + ( 2 y + 9 ) ^ { 2 } = - 1783 ;circle
Question
Select the graph of degenerate conic.​ x214xy+y2=0x ^ { 2 } - 14 x y + y ^ { 2 } = 0

A)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } - 14 x y + y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } - 14 x y + y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } - 14 x y + y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } - 14 x y + y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } - 14 x y + y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Determine whether the statement is true or false? Justify your answer. ​
The graph of the equation x2+xy+ky2+12x+16=0x ^ { 2 } + x y + k y ^ { 2 } + 12 x + 16 = 0 where, kk is any constant less than 14\frac { 1 } { 4 } ,is a hyperbola.

A)False.For the graph to be a hyperbola,the discriminant must be less than zero.
B)True.For the graph to be a hyperbola,the discriminant must be greater than zero.
Question
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ x2+2xy+y2=10x ^ { 2 } + 2 x y + y ^ { 2 } = 10

A) θ=45\theta = 45 ^ { \circ }
B) θ=60\theta = 60 ^ { \circ }
C) θ=90\theta = 90 ^ { \circ }
D) θ=145\theta = 145 ^ { \circ }
E) θ=30\theta = 30 ^ { \circ }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/52
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 63: Rotation of Conics
1
Select the graph of the following equation.​ y=x±5y = x \pm 5

A)​  <strong>Select the graph of the following equation.​  y = x \pm 5  ​</strong> A)​   B)​   C)​ ​   D)​   E)​
B)​  <strong>Select the graph of the following equation.​  y = x \pm 5  ​</strong> A)​   B)​   C)​ ​   D)​   E)​
C)​ ​  <strong>Select the graph of the following equation.​  y = x \pm 5  ​</strong> A)​   B)​   C)​ ​   D)​   E)​
D)​  <strong>Select the graph of the following equation.​  y = x \pm 5  ​</strong> A)​   B)​   C)​ ​   D)​   E)​
E)​  <strong>Select the graph of the following equation.​  y = x \pm 5  ​</strong> A)​   B)​   C)​ ​   D)​   E)​
​
2
Select the graph of the following equation,showing both sets of axes.​ (y)22(x)22=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1

A)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 2 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 2 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
​
3
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=30\theta = 30 ^ { \circ } , (2,6)( 2,6 )

A) (3+3,33+1)( \sqrt { 3 } + 3,3 \sqrt { 3 } + 1 )
B) (3+3,331)( \sqrt { 3 } + 3,3 \sqrt { 3 } - 1 )
C) (332,33+12)\left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 1 } { 2 } \right)
D) (33,331)( \sqrt { 3 } - 3,3 \sqrt { 3 } - 1 )
E) (332,33+32)\left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 3 } { 2 } \right)
(3+3,331)( \sqrt { 3 } + 3,3 \sqrt { 3 } - 1 )
4
Select the graph of the following equation,showing both sets of axes.​ (x)28(y)28=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1

A)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of the following equation,showing both sets of axes.​  \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
5
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=90\theta = 90 ^ { \circ } , (2,2)( 2,2 )

A) (2,0)( - 2,0 )
B) (0,3)( 0,3 )
C) (2,2)( 2 , - 2 )
D) (2,0)( 2,0 )
E) (2,2)( - 2,2 )
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
6
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=45\theta = 45 ^ { \circ } , (10,10)( 10,10 )

A) (52,0)( - 5 \sqrt { 2 } , 0 )
B) (52,0)( 5 \sqrt { 2 } , 0 )
C) (102,0)( - 10 \sqrt { 2 } , 0 )
D) (62,0)( 6 \sqrt { 2 } , 0 )
E) (102,0)( 10 \sqrt { 2 } , 0 )
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
7
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 24x2+66xy+13y2=3224 x ^ { 2 } + 66 x y + 13 y ^ { 2 } = 32

A) θ=78.87\theta = 78.87 ^ { \circ }
B) θ=79.87\theta = 79.87 ^ { \circ }
C) θ=81.87\theta = 81.87 ^ { \circ }
D) θ=77.87\theta = 77.87 ^ { \circ }
E) θ=80.87\theta = 80.87 ^ { \circ }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
8
Use a graphing utility to graph the conic.Determine the angle θ\theta through which the axes are rotated.​ x2+2xy+y2=25x ^ { 2 } + 2 x y + y ^ { 2 } = 25

A) θ=π4 or 45\theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ } , y=x±25y = - x \pm \sqrt { 25 }  <strong>Use a graphing utility to graph the conic.Determine the angle  \theta  through which the axes are rotated.​  x ^ { 2 } + 2 x y + y ^ { 2 } = 25  ​</strong> A)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    B)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    C)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    D)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    E)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }
B) θ=π4 or 45\theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ } , y=x±25y = - x \pm \sqrt { 25 }  <strong>Use a graphing utility to graph the conic.Determine the angle  \theta  through which the axes are rotated.​  x ^ { 2 } + 2 x y + y ^ { 2 } = 25  ​</strong> A)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    B)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    C)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    D)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    E)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }
C) θ=π4 or 45\theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ } , y=x±25y = - x \pm \sqrt { 25 }  <strong>Use a graphing utility to graph the conic.Determine the angle  \theta  through which the axes are rotated.​  x ^ { 2 } + 2 x y + y ^ { 2 } = 25  ​</strong> A)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    B)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    C)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    D)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    E)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }
D) θ=π4 or 45\theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ } , y=x±25y = - x \pm \sqrt { 25 }  <strong>Use a graphing utility to graph the conic.Determine the angle  \theta  through which the axes are rotated.​  x ^ { 2 } + 2 x y + y ^ { 2 } = 25  ​</strong> A)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    B)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    C)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    D)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    E)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }
E) θ=π4 or 45\theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ } , y=x±25y = - x \pm \sqrt { 25 }  <strong>Use a graphing utility to graph the conic.Determine the angle  \theta  through which the axes are rotated.​  x ^ { 2 } + 2 x y + y ^ { 2 } = 25  ​</strong> A)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    B)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    C)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    D)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }    E)  \theta = \frac { \pi } { 4 } \text { or } 45 ^ { \circ }  ,  y = - x \pm \sqrt { 25 }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
9
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=90\theta = 90 ^ { \circ } , (0,3)( 0,3 )

A) (0,4)( 0,4 )
B) (3,3)( - 3,3 )
C) (3,0)( - 3,0 )
D) (3,0)( 3,0 )
E) (0,3)( 0,3 )
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
10
Use a graphing utility to graph the conic.​ x24xy+2y2=8x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8

A)​  <strong>Use a graphing utility to graph the conic.​  x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8  ​</strong> A)​   B)​   C)​   D)​   E)​   ​
B)​  <strong>Use a graphing utility to graph the conic.​  x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8  ​</strong> A)​   B)​   C)​   D)​   E)​   ​
C)​  <strong>Use a graphing utility to graph the conic.​  x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8  ​</strong> A)​   B)​   C)​   D)​   E)​   ​
D)​  <strong>Use a graphing utility to graph the conic.​  x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8  ​</strong> A)​   B)​   C)​   D)​   E)​   ​
E)​  <strong>Use a graphing utility to graph the conic.​  x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8  ​</strong> A)​   B)​   C)​   D)​   E)​   ​
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
11
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 29x2+92xy+6y2=5129 x ^ { 2 } + 92 x y + 6 y ^ { 2 } = 51

A) θ=79.87\theta = 79.87 ^ { \circ }
B) θ=80.87\theta = 80.87 ^ { \circ }
C) θ=78.87\theta = 78.87 ^ { \circ }
D) θ=81.87\theta = 81.87 ^ { \circ }
E) θ=77.87\theta = 77.87 ^ { \circ }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
12
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=30\theta = 30 ^ { \circ } , (1,3)( 1,3 )

A) (332,33+32)\left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 3 } { 2 } \right)
B) (332,33+12)\left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 1 } { 2 } \right)
C) (3+32,3312)\left( \frac { 3 + \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } - 1 } { 2 } \right)
D) (3+32,33+12)\left( \frac { 3 + \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } + 1 } { 2 } \right)
E) (332,3312)\left( \frac { 3 - \sqrt { 3 } } { 2 } , \frac { 3 \sqrt { 3 } - 1 } { 2 } \right)
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
13
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 48x2+69xy+25y2=5048 x ^ { 2 } + 69 x y + 25 y ^ { 2 } = 50

A) θ=78.87\theta = 78.87 ^ { \circ }
B) θ=77.87\theta = 77.87 ^ { \circ }
C) θ=79.87\theta = 79.87 ^ { \circ }
D) θ=81.87\theta = 81.87 ^ { \circ }
E) θ=80.87\theta = 80.87 ^ { \circ }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
14
Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form.​ xy6=0x y - 6 = 0

A) (x)26(y)26=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 6 } = 1
B) (x)26+(y)26=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } + \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 6 } = 1
C) (x)212+(y)212=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 12 } + \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 12 } = 1
D) (x)212(y)212=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 12 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 12 } = 1
E) (x)26(y)212=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 12 } = 1
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
15
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 5x210xy+12y2+(51110)x(711+11)y=935 x ^ { 2 } - 10 x y + 12 y ^ { 2 } + ( 5 \sqrt { 11 } - 10 ) x - ( 7 \sqrt { 11 } + 11 ) y = 93

A) θ=78.87\theta = 78.87 ^ { \circ }
B) θ=77.87\theta = 77.87 ^ { \circ }
C) θ=79.87\theta = 79.87 ^ { \circ }
D) θ=80.87\theta = 80.87 ^ { \circ }
E) θ=81.87\theta = 81.87 ^ { \circ }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
16
​Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places. 3x29xy+11y2+(3109)x(510+10)y=913 x ^ { 2 } - 9 x y + 11 y ^ { 2 } + ( 3 \sqrt { 10 } - 9 ) x - ( 5 \sqrt { 10 } + 10 ) y = 91 ​​

A) θ=79.87\theta = 79.87 ^ { \circ }
B) θ=78.87\theta = 78.87 ^ { \circ }
C) θ=80.87\theta = 80.87 ^ { \circ }
D) θ=77.87\theta = 77.87 ^ { \circ }
E) θ=81.87\theta = 81.87 ^ { \circ }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
17
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 5x24xy+6y2=95 x ^ { 2 } - 4 x y + 6 y ^ { 2 } = 9

A) θ=79.87\theta = 79.87 ^ { \circ }
B) θ=77.87\theta = 77.87 ^ { \circ }
C) θ=81.87\theta = 81.87 ^ { \circ }
D) θ=80.87\theta = 80.87 ^ { \circ }
E) θ=78.87\theta = 78.87 ^ { \circ }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
18
The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=45\theta = 45 ^ { \circ } , (9,2)( 9,2 )

A) (1122,22)\left( \frac { 11 \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right)
B) (1122,722)\left( - \frac { 11 \sqrt { 2 } } { 2 } , - \frac { 7 \sqrt { 2 } } { 2 } \right)
C) (112,722)\left( \frac { 11 } { 2 } , - \frac { 7 \sqrt { 2 } } { 2 } \right)
D) (1122,722)\left( \frac { 11 \sqrt { 2 } } { 2 } , \frac { 7 \sqrt { 2 } } { 2 } \right)
E) (1122,722)\left( \frac { 11 \sqrt { 2 } } { 2 } , - \frac { 7 \sqrt { 2 } } { 2 } \right)
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
19
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 17x2+72xy3y2=7717 x ^ { 2 } + 72 x y - 3 y ^ { 2 } = 77

A) θ=79.87\theta = 79.87 ^ { \circ }
B) θ=77.87\theta = 77.87 ^ { \circ }
C) θ=80.87\theta = 80.87 ^ { \circ }
D) θ=81.87\theta = 81.87 ^ { \circ }
E) θ=78.87\theta = 78.87 ^ { \circ }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
20
Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form.​ xy+3=0x y + 3 = 0

A) (y)23(x)23=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 3 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 3 } = 1
B) (y)26(x)23=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 6 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 3 } = 1
C) (y)26(x)26=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 6 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } = 1
D) (y)23(x)26=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 3 } - \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } = 1
E) (y)26+(x)26=1\frac { \left( y ^ { \prime } \right) ^ { 2 } } { 6 } + \frac { \left( x ^ { \prime } \right) ^ { 2 } } { 6 } = 1
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
21
Select the graph of degenerate conic.​ x2+y22x+16y+65=0x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0

A)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
22
Select the graph of the following equation.​ xy+4=0x y + 4 = 0

A)​  <strong>Select the graph of the following equation.​  x y + 4 = 0  ​</strong> A)​   B)​   C)​   D)​ ​   E)​
B)​  <strong>Select the graph of the following equation.​  x y + 4 = 0  ​</strong> A)​   B)​   C)​   D)​ ​   E)​
C)​  <strong>Select the graph of the following equation.​  x y + 4 = 0  ​</strong> A)​   B)​   C)​   D)​ ​   E)​
D)​ ​  <strong>Select the graph of the following equation.​  x y + 4 = 0  ​</strong> A)​   B)​   C)​   D)​ ​   E)​
E)​  <strong>Select the graph of the following equation.​  x y + 4 = 0  ​</strong> A)​   B)​   C)​   D)​ ​   E)​
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
23
Use the discriminant to classify the graph.​ x2+xy+10y2+x+y10=0x ^ { 2 } + x y + 10 y ^ { 2 } + x + y - 10 = 0

A)The graph is a cone.
B)The graph is a parabola.
C)The graph is a ellipse or circle.
D)The graph is a hyperbola.
E)The graph is a line.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
24
Use the discriminant to classify the graph.​ x210xy8y218=0x ^ { 2 } - 10 x y - 8 y ^ { 2 } - 18 = 0

A)The graph is a parabola.
B)The graph is a hyperbola.
C)The graph is a ellipse.
D)The graph is a cone.
E)The graph is a circle.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
25
Use the discriminant to classify the graph.​ 100x2100xy+25y2+12y=0100 x ^ { 2 } - 100 x y + 25 y ^ { 2 } + 12 y = 0

A)The graph is a hyperbola.
B)The graph is a ellipse.
C)The graph is a circle.
D)The graph is a line.
E)The graph is a parabola.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
26
Use the discriminant to classify the graph.​ 16x25xy+10y244=016 x ^ { 2 } - 5 x y + 10 y ^ { 2 } - 44 = 0

A)The graph is a hyperbola.
B)The graph is a line.
C)The graph is a ellipse or Circle.
D)The graph is a parabola.
E)The graph is a cone.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
27
Select the graph of degenerate conic.​ 36x272xy+36y2=036 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0

A)​  <strong>Select the graph of degenerate conic.​  36 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of degenerate conic.​  36 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of degenerate conic.​  36 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of degenerate conic.​  36 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of degenerate conic.​  36 x ^ { 2 } - 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
28
Use the Quadratic Formula to solve for yy .​ x2+xy+4y2+x+y4=0x ^ { 2 } + x y + 4 y ^ { 2 } + x + y - 4 = 0

A) y=(x+1)±(x1)28(x2x+4)4y = \frac { ( x + 1 ) \pm \sqrt { ( x - 1 ) ^ { 2 } - 8 \left( x ^ { 2 } - x + 4 \right) } } { 4 }
B) y=(x+1)±(x+1)28(x2+x+4)4y = \frac { - ( x + 1 ) \pm \sqrt { ( x + 1 ) ^ { 2 } - 8 \left( x ^ { 2 } + x + 4 \right) } } { 4 }
C) y=(x+1)±(x+1)28(x2+x4)4y = \frac { - ( x + 1 ) \pm \sqrt { ( x + 1 ) ^ { 2 } - 8 \left( x ^ { 2 } + x - 4 \right) } } { 4 }
D) y=(x+1)±(x+1)28(x2+x4)4y = \frac { ( x + 1 ) \pm \sqrt { ( x + 1 ) ^ { 2 } - 8 \left( x ^ { 2 } + x - 4 \right) } } { 4 }
E) y=(x+1)±(x+1)2+8(x2+x4)4y = \frac { - ( x + 1 ) \pm \sqrt { ( x + 1 ) ^ { 2 } + 8 \left( x ^ { 2 } + x - 4 \right) } } { 4 }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
29
Use the Quadratic Formula to solve for yy .​ 81x290xy+25y2+10y=081 x ^ { 2 } - 90 x y + 25 y ^ { 2 } + 10 y = 0

A) y=90x10±(90x10)2+8100x250y = \frac { 90 x - 10 \pm \sqrt { ( 90 x - 10 ) ^ { 2 } + 8100 x ^ { 2 } } } { 50 }
B) y=90x+10±(90x+10)2+8100x250y = \frac { 90 x + 10 \pm \sqrt { ( 90 x + 10 ) ^ { 2 } + 8100 x ^ { 2 } } } { 50 }
C) y=90x+10±(90x10)28100x250y = \frac { 90 x + 10 \pm \sqrt { ( 90 x - 10 ) ^ { 2 } - 8100 x ^ { 2 } } } { 50 }
D) y=90x10±(90x10)28100x250y = \frac { 90 x - 10 \pm \sqrt { ( 90 x - 10 ) ^ { 2 } - 8100 x ^ { 2 } } } { 50 }
E) y=90x10±(90x+10)28100x250y = \frac { 90 x - 10 \pm \sqrt { ( 90 x + 10 ) ^ { 2 } - 8100 x ^ { 2 } } } { 50 }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
30
Use the Quadratic Formula to solve for yy .​ 5x2+10xy+11y2+9x10y42=05 x ^ { 2 } + 10 x y + 11 y ^ { 2 } + 9 x - 10 y - 42 = 0

A) y=(10x10)±(10x10)244(5x29x42)22y = \frac { - ( 10 x - 10 ) \pm \sqrt { ( 10 x - 10 ) ^ { 2 } - 44 \left( 5 x ^ { 2 } - 9 x - 42 \right) } } { 22 }
B) y=(10x10)±(10x10)244(5x2+9x42)22y = \frac { ( 10 x - 10 ) \pm \sqrt { ( 10 x - 10 ) ^ { 2 } - 44 \left( 5 x ^ { 2 } + 9 x - 42 \right) } } { 22 }
C) y=(10x10)±(10x10)244(5x2+9x42)22y = \frac { - ( 10 x - 10 ) \pm \sqrt { ( 10 x - 10 ) ^ { 2 } - 44 \left( 5 x ^ { 2 } + 9 x - 42 \right) } } { 22 } .
D) y=(10x10)±(10x10)244(5x2+9x42)22y = \frac { - ( 10 x - 10 ) \pm \sqrt { ( 10 x - 10 ) ^ { 2 } - 44 \left( 5 x ^ { 2 } + 9 x - 42 \right) } } { 22 }
E) y=(10x10)±(10x10)2+44(5x2+9x42)22y = \frac { - ( 10 x - 10 ) \pm \sqrt { ( 10 x - 10 ) ^ { 2 } + 44 \left( 5 x ^ { 2 } + 9 x - 42 \right) } } { 22 }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
31
Select the graph of degenerate conic.​ y249x2=0y ^ { 2 } - 49 x ^ { 2 } = 0

A)​  <strong>Select the graph of degenerate conic.​  y ^ { 2 } - 49 x ^ { 2 } = 0  ​</strong> A)​   B)​ ​ ​   ​ ​ C)​   D)​   E)​
B)​ ​
 <strong>Select the graph of degenerate conic.​  y ^ { 2 } - 49 x ^ { 2 } = 0  ​</strong> A)​   B)​ ​ ​   ​ ​ C)​   D)​   E)​


C)​  <strong>Select the graph of degenerate conic.​  y ^ { 2 } - 49 x ^ { 2 } = 0  ​</strong> A)​   B)​ ​ ​   ​ ​ C)​   D)​   E)​
D)​  <strong>Select the graph of degenerate conic.​  y ^ { 2 } - 49 x ^ { 2 } = 0  ​</strong> A)​   B)​ ​ ​   ​ ​ C)​   D)​   E)​
E)​  <strong>Select the graph of degenerate conic.​  y ^ { 2 } - 49 x ^ { 2 } = 0  ​</strong> A)​   B)​ ​ ​   ​ ​ C)​   D)​   E)​
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
32
Select the graph of the following equation​ 36x2+72xy+36y2=036 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0

A)​  <strong>Select the graph of the following equation​  36 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of the following equation​  36 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of the following equation​  36 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of the following equation​  36 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of the following equation​  36 x ^ { 2 } + 72 x y + 36 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
33
Use the Quadratic Formula to solve for yy .​ x25xy4y2+3x32=0x ^ { 2 } - 5 x y - 4 y ^ { 2 } + 3 x - 32 = 0

A) y=5x±25x2+16(x23x32)8y = \frac { - 5 x \pm \sqrt { 25 x ^ { 2 } + 16 \left( x ^ { 2 } - 3 x - 32 \right) } } { 8 }
B) y=5x±25x216(x2+3x32)8y = \frac { - 5 x \pm \sqrt { 25 x ^ { 2 } - 16 \left( x ^ { 2 } + 3 x - 32 \right) } } { 8 }
C) y=5x±25x216(x2+3x+32)8y = \frac { - 5 x \pm \sqrt { 25 x ^ { 2 } - 16 \left( x ^ { 2 } + 3 x + 32 \right) } } { 8 }
D) y=5x±25x2+16(x2+3x32)8y = \frac { - 5 x \pm \sqrt { 25 x ^ { 2 } + 16 \left( x ^ { 2 } + 3 x - 32 \right) } } { 8 }
E) y=5x±25x2+16(x2+3x32)8y = \frac { 5 x \pm \sqrt { 25 x ^ { 2 } + 16 \left( x ^ { 2 } + 3 x - 32 \right) } } { 8 }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
34
Use the Quadratic Formula to solve for yy .​ x212xy10y222=0x ^ { 2 } - 12 x y - 10 y ^ { 2 } - 22 = 0

A) y=12x±144x2+40(x2+22)20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } + 22 \right) } } { - 20 }
B) y=12x±144x2+40(x222)20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } - 22 \right) } } { - 20 }
C) y=12x±144x2+40(x222)20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } - 22 \right) } } { 20 }
D) y=12x±144x+40(x222)20y = \frac { 12 x \pm \sqrt { 144 x + 40 \left( x ^ { 2 } - 22 \right) } } { - 20 }
E) y=12x±144x2+40(x2+22)20y = \frac { 12 x \pm \sqrt { 144 x ^ { 2 } + 40 \left( x ^ { 2 } + 22 \right) } } { 20 }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
35
Use the Quadratic Formula to solve for yy .​ 14x210xy+9y241=014 x ^ { 2 } - 10 x y + 9 y ^ { 2 } - 41 = 0

A) y=14x±100x2+36(x29)18y = \frac { 14 x \pm \sqrt { 100 x ^ { 2 } + 36 \left( x ^ { 2 } - 9 \right) } } { - 18 }
B) y=14x±100x2+36(x2+9)18y = \frac { 14 x \pm \sqrt { 100 x ^ { 2 } + 36 \left( x ^ { 2 } + 9 \right) } } { 18 }
C) y=10x±100x2+36(14x241)18y = \frac { 10 x \pm \sqrt { 100 x ^ { 2 } + 36 \left( 14 x ^ { 2 } - 41 \right) } } { - 18 }
D) y=10x±100x2+36(14x2+41)18y = \frac { 10 x \pm \sqrt { 100 x ^ { 2 } + 36 \left( 14 x ^ { 2 } + 41 \right) } } { 18 }
E) y=10x±100x236(14x241)18y = \frac { 10 x \pm \sqrt { 100 x ^ { 2 } - 36 \left( 14 x ^ { 2 } - 41 \right) } } { 18 }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
36
Use the discriminant to classify the graph.​ x210xy9y2+8x33=0x ^ { 2 } - 10 x y - 9 y ^ { 2 } + 8 x - 33 = 0

A)The graph is a ellipse.
B)The graph is a circle.
C)The graph is a hyperbola.
D)The graph is a line.
E)The graph is a parabola.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
37
Use the Quadratic Formula to solve for yy .​ x2+12xy+36y25xy3=0x ^ { 2 } + 12 x y + 36 y ^ { 2 } - 5 x - y - 3 = 0

A) y=(36x+1)±(36x1)2144(x25x3)72y = \frac { - ( 36 x + 1 ) \pm \sqrt { ( 36 x - 1 ) ^ { 2 } - 144 \left( x ^ { 2 } - 5 x - 3 \right) } } { 72 }
B) y=(12x+1)±(36x+1)2144(x2+5x+3)72y = \frac { - ( 12 x + 1 ) \pm \sqrt { ( 36 x + 1 ) ^ { 2 } - 144 \left( x ^ { 2 } + 5 x + 3 \right) } } { 72 }
C) y=(36x1)±(36x1)2144(x25x+3)72y = \frac { - ( 36 x - 1 ) \pm \sqrt { ( 36 x - 1 ) ^ { 2 } - 144 \left( x ^ { 2 } - 5 x + 3 \right) } } { 72 }
D) y=(36x1)±(36x1)2144(x25x3)72y = \frac { ( 36 x - 1 ) \pm \sqrt { ( 36 x - 1 ) ^ { 2 } - 144 \left( x ^ { 2 } - 5 x - 3 \right) } } { 72 }
E) y=(12x1)±(12x1)2144(x25x3)72y = \frac { - ( 12 x - 1 ) \pm \sqrt { ( 12 x - 1 ) ^ { 2 } - 144 \left( x ^ { 2 } - 5 x - 3 \right) } } { 72 }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
38
Use the discriminant to classify the graph.​ 36x2144xy+y210x+5y=036 x ^ { 2 } - 144 x y + y ^ { 2 } - 10 x + 5 y = 0

A)The graph is a cone.
B)The graph is a circle.
C)The graph is a parabola.
D)The graph is a ellipse.
E)The graph is a hyperbola.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
39
Use the discriminant to classify the graph.​ 5x2+10xy+11y2+9x10y72=05 x ^ { 2 } + 10 x y + 11 y ^ { 2 } + 9 x - 10 y - 72 = 0

A)The graph is a hyperbola.
B)The graph is a ellipse or circle.
C)The graph is a parabola.
D)The graph is a line.
E)The graph is a cone.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
40
Use the discriminant to classify the graph.​ x2+6xy+9y25xy3=0x ^ { 2 } + 6 x y + 9 y ^ { 2 } - 5 x - y - 3 = 0

A)The graph is a parabola.
B)The graph is a hyperbola.
C)The graph is a line.
D)The graph is a circle.
E)The graph is a ellipse.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
41
Identify the conic by writing the equation in standard form. 8x2+8y2+32x+144y+520=08 x ^ { 2 } + 8 y ^ { 2 } + 32 x + 144 y + 520 = 0

A) (x+2)2698+(y+9)2698=1\frac { ( x + 2 ) ^ { 2 } } { \frac { 69 } { 8 } } + \frac { ( y + 9 ) ^ { 2 } } { \frac { 69 } { 8 } } = 1 ;ellipse
B) (x+2)2118+(y+9)2118=1\frac { ( x + 2 ) ^ { 2 } } { \frac { 11 } { 8 } } + \frac { ( y + 9 ) ^ { 2 } } { \frac { 11 } { 8 } } = 1 ;ellipse
C) (8x+2)2+(8y+9)2=320( 8 x + 2 ) ^ { 2 } + ( 8 y + 9 ) ^ { 2 } = 320 ;circle
D) (x+2)2+(y+9)2=40( x + 2 ) ^ { 2 } + ( y + 9 ) ^ { 2 } = 40 ;circle
E) (x+2)2+(y+9)2=20( x + 2 ) ^ { 2 } + ( y + 9 ) ^ { 2 } = 20 ;circle
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
42
Find the lengths of the major and minor axes of the ellipse graphed by following equation.​ (x)21+(y)236=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 1 } + \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 36 } = 1

A)Length of major axis is 2a=2(1)=22 a = 2 \cdot ( - 1 ) = - 2 Length of minor axis is 2b=2(6)=122 b = 2 \cdot ( - 6 ) = - 12
B)Length of major axis is 2a=21=22 a = 2 \cdot 1 = 2 Length of minor axis is 2b=26=122 b=2 \cdot 6=12
C)Length of major axis is 2a=2(6)=122 a = 2 \cdot ( - 6 ) = - 12 Length of minor axis is 2b=2(1)=22 b = 2 \cdot ( - 1 ) = - 2
D)Length of major axis is 2a=26=122 a = 2 \cdot 6 = 12 Length of minor axis is 2b=21=22 b = 2 \cdot 1 = 2
E)None of the above
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
43
Consider the equation.​ 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 ​ Without calculating,explain how to rewrite the equation so that it does not have an xyx y -term.

A)To rewrite the equation 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 so that it does not have an xyx y -term,you can solve for yy in terms of xx by completing the square or using the Quadratic Formula.
B)To rewrite the equation 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 so that it does not have an xyx y -term,you can solve for xx in terms of yy by completing the square or using the Quadratic Formula.
C)To rewrite the equation 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 so that it has an xyx y -term,you can solve for yy yy in terms of xx by taking square root or using the Quadratic Formula.
D)To rewrite the equation 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 so that it has an xyx y -term,you can solve for xx in terms of yy by completing the square or using the Quadratic Formula.
E)To rewrite the equation 6x23xy+6y225=06 x ^ { 2 } - 3 x y + 6 y ^ { 2 } - 25 = 0 so that it has an xyx y -term,you can solve for yy in terms of xx by completing the square or using the Quadratic Formula.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
44
Find any points of intersection of the graphs algebraically.​ x2+y2+2x7y+6=0x2+y22x7y+6=0\begin{array} { l } - x ^ { 2 } + y ^ { 2 } + 2 x - 7 y + 6 = 0 \\x ^ { 2 } + y ^ { 2 } - 2 x - 7 y + 6 = 0\end{array}

A)The points of intersection are (2,2)( 2,2 ) and (3,3)( 3,3 ) .
B)The points of intersection are (2,2)( - 2 , - 2 ) and (2,3)( 2,3 ) .
C)The points of intersection are (3,3)( 3,3 ) and (3,3)( 3,3 ) .
D)The points of intersection are (2,2)( 2,2 ) and (2,3)( 2,3 ) .
E)The points of intersection are (3,3)( 3,3 ) and (3,3)( - 3 , - 3 ) .
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
45
Select the graph of degenerate conic.​ 9x22xy+9y2=09 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0

A)​  <strong>Select the graph of degenerate conic.​  9 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of degenerate conic.​  9 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of degenerate conic.​  9 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of degenerate conic.​  9 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of degenerate conic.​  9 x ^ { 2 } - 2 x y + 9 y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
46
Identify the conic by writing the equation in standard form. 10y220x2+80y+360x1485=010 y ^ { 2 } - 20 x ^ { 2 } + 80 y + 360 x - 1485 = 0

A) (y4)252(x9)254=1\frac { ( y - 4 ) ^ { 2 } } { \frac { 5 } { 2 } } - \frac { ( x - 9 ) ^ { 2 } } { \frac { 5 } { 4 } } = 1 ;hyperbola
B) (y+4)252(x9)254=1\frac { ( y + 4 ) ^ { 2 } } { \frac { 5 } { 2 } } - \frac { ( x - 9 ) ^ { 2 } } { \frac { 5 } { 4 } } = 1 ;hyperbola
C) (y+4)2972(x9)2974=1\frac { ( y + 4 ) ^ { 2 } } { \frac { 97 } { 2 } } - \frac { ( x - 9 ) ^ { 2 } } { \frac { 97 } { 4 } } = 1 ;hyperbola
D) (y+4)21495+(x9)214910=1\frac { ( y + 4 ) ^ { 2 } } { \frac { 149 } { 5 } } + \frac { ( x - 9 ) ^ { 2 } } { \frac { 149 } { 10 } } = 1 ;ellipse
E) (y4)21495+(x9)214910=1\frac { ( y - 4 ) ^ { 2 } } { \frac { 149 } { 5 } } + \frac { ( x - 9 ) ^ { 2 } } { \frac { 149 } { 10 } } = 1 ;ellipse
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
47
Consider the equation.​ 10x25xy+10y281=010 x ^ { 2 } - 5 x y + 10 y ^ { 2 } - 81 = 0 ​ Explain how to identify the graph of the equation.

A)Find the discriminant of the equation to identify the graph of the equation.
B)Find the foci of the equation to identify the graph of the equation.
C)Find the major axis of the equation to identify the graph of the equation.
D)Find the minor axis of the equation to identify the graph of the equation.
E)Find the vertices of the equation to identify the graph of the equation.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
48
Select the graph of degenerate conic.​ x2+2xy+y29=0x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0

A)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } + 2 x y + y ^ { 2 } - 9 = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
49
Identify the conic by writing the equation in standard form.​ 25x2+4y2400x+72y+1824=025 x ^ { 2 } + 4 y ^ { 2 } - 400 x + 72 y + 1824 = 0

A)​ (x+4)248+(y8)284=1\frac { ( x + 4 ) ^ { 2 } } { \frac { 4 } { 8 } } + \frac { ( y - 8 ) ^ { 2 } } { \frac { 8 } { 4 } } = 1 ;ellipse
B)​ (x8)284+(y+4)284=1\frac { ( x - 8 ) ^ { 2 } } { \frac { 8 } { 4 } } + \frac { ( y + 4 ) ^ { 2 } } { \frac { 8 } { 4 } } = 1 ;ellipse
C)​ (x8)248+(y+4)284=1\frac { ( x - 8 ) ^ { 2 } } { \frac { 4 } { 8 } } + \frac { ( y + 4 ) ^ { 2 } } { \frac { 8 } { 4 } } = 1 ;ellipse
D)​ (x8)24+(y+9)225=1\frac { ( x - 8 ) ^ { 2 } } { 4 } + \frac { ( y + 9 ) ^ { 2 } } { 25 } = 1 ;ellipse
E)​ (5x8)2+(2y+9)2=1783( 5 x - 8 ) ^ { 2 } + ( 2 y + 9 ) ^ { 2 } = - 1783 ;circle
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
50
Select the graph of degenerate conic.​ x214xy+y2=0x ^ { 2 } - 14 x y + y ^ { 2 } = 0

A)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } - 14 x y + y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } - 14 x y + y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } - 14 x y + y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } - 14 x y + y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of degenerate conic.​  x ^ { 2 } - 14 x y + y ^ { 2 } = 0  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
51
Determine whether the statement is true or false? Justify your answer. ​
The graph of the equation x2+xy+ky2+12x+16=0x ^ { 2 } + x y + k y ^ { 2 } + 12 x + 16 = 0 where, kk is any constant less than 14\frac { 1 } { 4 } ,is a hyperbola.

A)False.For the graph to be a hyperbola,the discriminant must be less than zero.
B)True.For the graph to be a hyperbola,the discriminant must be greater than zero.
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
52
Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ x2+2xy+y2=10x ^ { 2 } + 2 x y + y ^ { 2 } = 10

A) θ=45\theta = 45 ^ { \circ }
B) θ=60\theta = 60 ^ { \circ }
C) θ=90\theta = 90 ^ { \circ }
D) θ=145\theta = 145 ^ { \circ }
E) θ=30\theta = 30 ^ { \circ }
Unlock Deck
Unlock for access to all 52 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 52 flashcards in this deck.