Deck 64: Parametric Equations

Full screen (f)
exit full mode
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t+2x = t + 2 y=t2y = t ^ { 2 }

A) y=t2y = t - 2
B) y=x2+4x+4y = x ^ { 2 } + 4 x + 4
C) y=x2y = x ^ { 2 }
D) y=x24x+4y = x ^ { 2 } - 4 x + 4
E) y=t+2y = t + 2
Use Space or
up arrow
down arrow
to flip the card.
Question
Select the curve represented by the parametric equations.​ x=23ty=t2\begin{array} { l } x = \frac { 2 } { 3 } t \\\\y = t ^ { 2 }\end{array} ​ ​

A)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = \frac { 2 } { 3 } t \\\\ y = t ^ { 2 } \end{array}  ​ ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = \frac { 2 } { 3 } t \\\\ y = t ^ { 2 } \end{array}  ​ ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = \frac { 2 } { 3 } t \\\\ y = t ^ { 2 } \end{array}  ​ ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = \frac { 2 } { 3 } t \\\\ y = t ^ { 2 } \end{array}  ​ ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = \frac { 2 } { 3 } t \\\\ y = t ^ { 2 } \end{array}  ​ ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the curve represented by the parametric equations.​ x=t+2x = t + 2 y=t2y = t ^ { 2 }

A)​  <strong>Select the curve represented by the parametric equations.​  x = t + 2   y = t ^ { 2 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.​  x = t + 2   y = t ^ { 2 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.​  x = t + 2   y = t ^ { 2 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations.​  x = t + 2   y = t ^ { 2 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.​  x = t + 2   y = t ^ { 2 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=cosθx = \cos \theta y=5sin2θy = 5 \sin 2 \theta

A) x21+y25=1\frac { x ^ { 2 } } { 1 } + \frac { y ^ { 2 } } { 5 } = 1
B) y=±10x1+x2y = \pm 10 x \sqrt { 1 + x ^ { 2 } }
C) y=±10x1+xy = \pm 10 x \sqrt { 1 + x }
D)​ x21y25=1\frac { x ^ { 2 } } { 1 } - \frac { y ^ { 2 } } { 5 } = 1
E) y=±10x1x2y = \pm 10 x \sqrt { 1 - x ^ { 2 } }
Question
Select the curve represented by the parametric equations.​ x=t1x = t - 1 y=tt1y = \frac { t } { t - 1 }

A)​  <strong>Select the curve represented by the parametric equations.​  x = t - 1   y = \frac { t } { t - 1 }  ​</strong> A)​   B)​   C)​   D)​ ​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.​  x = t - 1   y = \frac { t } { t - 1 }  ​</strong> A)​   B)​   C)​   D)​ ​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.​  x = t - 1   y = \frac { t } { t - 1 }  ​</strong> A)​   B)​   C)​   D)​ ​   E)​   <div style=padding-top: 35px>
D)​ ​  <strong>Select the curve represented by the parametric equations.​  x = t - 1   y = \frac { t } { t - 1 }  ​</strong> A)​   B)​   C)​   D)​ ​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.​  x = t - 1   y = \frac { t } { t - 1 }  ​</strong> A)​   B)​   C)​   D)​ ​   E)​   <div style=padding-top: 35px>
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t1x = t - 1 y=5t+1y = 5 t + 1

A) y=5x6y = 5 x - 6
B) y=5x+6y = 5 x + 6
C) y=x+5y = x + 5
D) y=x+6y = x + 6
E) y=5x+1y = 5 x + 1
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=5sin2Θy=5cos2θ\begin{array} { l } x = 5 \sin 2 \Theta \\y = 5 \cos 2 \theta\end{array}

A) x225+y225=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 25 } = 1
B) x225y225=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 25 } = 1
C) x225+y22=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 2 } = 1 .
D) y=x2y = \frac { x } { 2 }
Question
Select the curve represented by the parametric equations.​ x=5cosθy=6sinθ\begin{array} { l } x = 5 \cos \theta \\y = 6 \sin \theta\end{array}

A)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 5 \cos \theta \\ y = 6 \sin \theta \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 5 \cos \theta \\ y = 6 \sin \theta \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 5 \cos \theta \\ y = 6 \sin \theta \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 5 \cos \theta \\ y = 6 \sin \theta \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 5 \cos \theta \\ y = 6 \sin \theta \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t2x = t - 2 y=tt2y = \frac { t } { t - 2 }

A) y=x+2y = x + 2
B) y=x+2xy = \frac { x + 2 } { x }
C) y=x2y = x - 2
D) y=x+23xy = \frac { x + 2 } { 3 x }
E) y=xx+2y = \frac { x } { x + 2 }
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=14ty=t2\begin{array} { l } x = \frac { 1 } { 4 } t \\\\y = t ^ { 2 }\end{array}

A) y=x2y = x ^ { 2 }
B) y=4x2y = - 4 x ^ { 2 }
C) y=4x2y = 4 x ^ { 2 }
D) y=16x2y = 16 x ^ { 2 }
E) y=16x2y = - 16 x ^ { 2 }
Question
Select the curve represented by the parametric equations.​ x=t+1x = t + 1 y=tt+1y = \frac { t } { t + 1 }

A)​  <strong>Select the curve represented by the parametric equations.​  x = t + 1   y = \frac { t } { t + 1 }  ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.​  x = t + 1   y = \frac { t } { t + 1 }  ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.​  x = t + 1   y = \frac { t } { t + 1 }  ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations.​  x = t + 1   y = \frac { t } { t + 1 }  ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.​  x = t + 1   y = \frac { t } { t + 1 }  ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the curve represented by the parametric equations.​ x=1+cosθx = 1 + \cos \theta y=1+2sinθy = 1 + 2 \sin \theta

A)​  <strong>Select the curve represented by the parametric equations.​  x = 1 + \cos \theta   y = 1 + 2 \sin \theta  ​</strong> A)​   B)​   C)​   ​ D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.​  x = 1 + \cos \theta   y = 1 + 2 \sin \theta  ​</strong> A)​   B)​   C)​   ​ D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.​  x = 1 + \cos \theta   y = 1 + 2 \sin \theta  ​</strong> A)​   B)​   C)​   ​ D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations.​  x = 1 + \cos \theta   y = 1 + 2 \sin \theta  ​</strong> A)​   B)​   C)​   ​ D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.​  x = 1 + \cos \theta   y = 1 + 2 \sin \theta  ​</strong> A)​   B)​   C)​   ​ D)​   E)​   <div style=padding-top: 35px>
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=tx = \sqrt { t } y=4ty = 4 - t

A) y=4xy = 4 - x
B) y=4+xy = 4 + x
C) y=4+x2y = 4 + x ^ { 2 }
D) y=4x2y = 4 - x ^ { 2 }
E) y=xy = \sqrt { x }
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t+8x = t + 8 y=tt+8y = \frac { t } { t + 8 }

A) y=x89xy = \frac { x - 8 } { 9 x }
B) y=xx8y = \frac { x } { x - 8 }
C) y=x8y = x - 8
D) y=x8xy = \frac { x - 8 } { x }
E) y=x+8y = x + 8
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=4cosθy=2sinθ\begin{array} { l } x = 4 \cos \theta \\y = 2 \sin \theta\end{array}

A)​ x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1
B) x216+y24=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1
C) y=x4y = \frac { x } { 4 }
D) y=x2y = \frac { x } { 2 }
E)​ x216y24=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 4 } = 1
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=1+3cosθx = 1 + 3 \cos \theta y=1+5sinθy = 1 + 5 \sin \theta

A) (x1)29+(y1)225=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
B) (x1)29(y1)225=1\frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
C) x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
D)​ x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1
E) (x1)225(y1)29=1\frac { ( x - 1 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1
Question
Select the curve represented by the parametric equations.​ x=tx = \sqrt { t } y=1ty = 1 - t

A)​  <strong>Select the curve represented by the parametric equations.​  x = \sqrt { t }   y = 1 - t  ​</strong> A)​   ​ B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.​  x = \sqrt { t }   y = 1 - t  ​</strong> A)​   ​ B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.​  x = \sqrt { t }   y = 1 - t  ​</strong> A)​   ​ B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations.​  x = \sqrt { t }   y = 1 - t  ​</strong> A)​   ​ B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.​  x = \sqrt { t }   y = 1 - t  ​</strong> A)​   ​ B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the curve represented by the parametric equations.(indicate the orientation of the curve)​ x=t1x = t - 1 y=4t+1y = 4 t + 1

A)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  x = t - 1   y = 4 t + 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  x = t - 1   y = 4 t + 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  x = t - 1   y = 4 t + 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  x = t - 1   y = 4 t + 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  x = t - 1   y = 4 t + 1  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=3(t+1)x = 3 ( t + 1 ) y=t3y = | t - 3 |

A) y=x43y = \left| \frac { x } { 4 } - 3 \right|
B) y=x3+4y = \left| \frac { x } { 3 } + 4 \right|
C) y=t4y = | t - 4 |
D) y=x34y = \left| \frac { x } { 3 } - 4 \right|
E) y=t+4y = | t + 4 |
Question
Select the curve represented by the parametric equations.(indicate the orientation of the curve)​ x=34ty=4+3t\begin{array} { l } x = 3 - 4 t \\y = 4 + 3 t\end{array}

A)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  \begin{array} { l } x = 3 - 4 t \\ y = 4 + 3 t \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  \begin{array} { l } x = 3 - 4 t \\ y = 4 + 3 t \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  \begin{array} { l } x = 3 - 4 t \\ y = 4 + 3 t \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  \begin{array} { l } x = 3 - 4 t \\ y = 4 + 3 t \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  \begin{array} { l } x = 3 - 4 t \\ y = 4 + 3 t \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Using following result find a set of parametric equation of conic. ​
Circle: x=h+rcosθ,y=k+rsinθx = h + r \cos \theta , y = k + r \sin \theta
Circle: center: (2,6)( 2,6 ) ;radius: 8

A) x=6+8cosθ,y=6+2sinθx = 6 + 8 \cos \theta , y = 6 + 2 \sin \theta
B) x=2+6cosθ,y=6+8sinθx = 2 + 6 \cos \theta , y = 6 + 8 \sin \theta
C) x=2+8cosθ,y=6+8sinθx = 2 + 8 \cos \theta , y = 6 + 8 \sin \theta
D) x=8+2cosθ,y=6+2sinθx = 8 + 2 \cos \theta , y = 6 + 2 \sin \theta
E) x=8+6cosθ,y=6+2sinθx = 8 + 6 \cos \theta , y = 6 + 2 \sin \theta
Question
Using following result find a set of parametric equation of conic.​ x=h+acosθ,y=k+bisnθx = h + a \cos \theta , y = k + b i s n \theta ​ vertices: (±17,0)( \pm 17,0 ) ;foci: (±15,0)( \pm 15,0 )

A) x=8cosθ,y=17sinθx = 8 \cos \theta , y = 17 \sin \theta
B) x=15+17cosθ,y=158sinθx = 15 + 17 \cos \theta , y = 15 - 8 \sin \theta
C) x=815cosθ,y=17+15sinθx = 8 - 15 \cos \theta , y = 17 + 15 \sin \theta
D) x=1517cosθ,y=8sinθx = 15 - 17 \cos \theta , y = 8 \sin \theta
E) x=17cosθ,y=8sinθx = 17 \cos \theta , y = 8 \sin \theta
Question
Select the curve represented by the parametric equations. ​
Curtate cycloid: x=4Θ2sinθ,y=42cosθx = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta

A)​  <strong>Select the curve represented by the parametric equations. ​ Curtate cycloid:  x = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations. ​ Curtate cycloid:  x = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations. ​ Curtate cycloid:  x = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations. ​ Curtate cycloid:  x = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations. ​ Curtate cycloid:  x = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Find a set of parametric equations for the rectangular equation.​ t=2xt = 2 - x y=13xy = \frac { 1 } { 3 x }

A) x=2t,y=1(66t)x = - 2 - t , y = \frac { 1 } { ( 6 - 6 t ) }
B) x=2t,y=1(63t)x = - 2 - t , y = \frac { 1 } { ( 6 - 3 t ) }
C) x=2t,y=1(33t)x = 2 - t , y = \frac { 1 } { ( 3 - 3 t ) }
D) x=2+t,y=1(63t)x = - 2 + t , y = \frac { 1 } { ( 6 - 3 t ) }
E) x=2t,y=1(63t)x = 2 - t , y = \frac { 1 } { ( 6 - 3 t ) }
Question
Select the curve represented by the parametric equations. ​
Prolate cycloid: x=3Θ7sinθ,y=37cosθx = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta

A)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta  ​</strong> A)​   B)​   C)​   ​ D)​   ​ E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta  ​</strong> A)​   B)​   C)​   ​ D)​   ​ E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta  ​</strong> A)​   B)​   C)​   ​ D)​   ​ E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta  ​</strong> A)​   B)​   C)​   ​ D)​   ​ E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta  ​</strong> A)​   B)​   C)​   ​ D)​   ​ E)​   <div style=padding-top: 35px>
Question
Find a set of parametric equations for the rectangular equation.​ t=2xx=5y2\begin{array} { l } t = 2 - x \\x = 5 y - 2\end{array}

A) x=5+t,y=12(4t)x = 5 + t , y = \frac { 1 } { 2 } ( 4 - t )
B) x=2t,y=15(4t)x = 2 - t , y = \frac { 1 } { 5 } ( 4 - t )
C) x=2+t,y=15(4t)x = 2 + t , y = \frac { 1 } { 5 } ( 4 - t )
D) x=2+t,y=15(4+t)x = 2 + t , y = \frac { 1 } { 5 } ( 4 + t )
E) x=2+t,y=15(t4)x = 2 + t , y = \frac { 1 } { 5 } ( t - 4 )
Question
Find a set of parametric equations for the rectangular equation.​ t=5xy=x23\begin{array} { l } t = 5 - x \\y = x ^ { 2 } - 3\end{array}

A) x=t5,y=t2+10t22x = t - 5 , y = t ^ { 2 } + 10 t - 22
B) x=t5,y=t210t+22x = t - 5 , y = t ^ { 2 } - 10 t + 22
C) x=t+5,y=t222t+10x = - t + 5 , y = t ^ { 2 } - 22 t + 10
D) x=t+5,y=t210t+22x = - t + 5 , y = t ^ { 2 } - 10 t + 22
E) x=t+5,y=t210t+22x = t + 5 , y = t ^ { 2 } - 10 t + 22
Question
Find a set of parametric equations for the rectangular equation.​ t=4xt = 4 - x y=1xy = \frac { 1 } { x }

A) x=4t,y=1(t+4)x = 4 - t , y = \frac { - 1 } { ( t + 4 ) }
B) x=4t,y=1(t4)x = 4 - t , y = \frac { - 1 } { ( - t - 4 ) }
C) x=4t,y=1(t4)x = 4 - t , y = \frac { - 1 } { ( t - 4 ) }
D) x=4+t,y=1(t8)x = 4 + t , y = \frac { - 1 } { ( t - 8 ) }
E) x=8t,y=1(t4)x = 8 - t , y = \frac { - 1 } { ( t - 4 ) }
Question
Find a set of parametric equations for the rectangular equation.​ t=2xt = 2 - x y=x2+5y = x ^ { 2 } + 5

A) x=t+2,y=t2+4t+9x = - t + 2 , y = t ^ { 2 } + 4 t + 9
B) x=t+2,y=t24t9x = - t + 2 , y = t ^ { 2 } - 4 t - 9
C) x=t2,y=t24t+9x = t - 2 , y = t ^ { 2 } - 4 t + 9
D) x=t+2,y=t24t+9x = - t + 2 , y = t ^ { 2 } - 4 t + 9
E) x=t2,y=t24t9x = t - 2 , y = t ^ { 2 } - 4 t - 9
Question
Using following result find a set of parametric equation of the line.​ x=x1+t(x2x1),y=y1+t(y2y1)x = x _ { 1 } + t \left( x _ { 2 } - x _ { 1 } \right) , y = y _ { 1 } + t \left( y _ { 2 } - y _ { 1 } \right) ​ Line: passes through (0,0)and (5,8)( 5,8 )

A) x=8t,y=5tx = 8 t , y = 5 t
B) x=5t,y=8tx = 5 t , y = - 8 t
C) x=5t,y=tx = - 5 t , y = - t
D) x=5t,y=8tx = - 5 t , y = 8 t
E) x=5t,y=8tx = 5 t , y = 8 t
Question
Using following result find a set of parametric equation of conic. ​
Hyperbola: x=h+asecθ,y=k+btanθx = h + a \sec \theta , y = k + b \tan \theta
Hyperbola: vertices: (±15,0)( \pm 15,0 ) ;foci: (±17,0)( \pm 17,0 )

A) x=8secθ,y=15tanθx = 8 \sec \theta , y = 15 \tan \theta
B) x=1715secθ,y=17+8tanθx = 17 - 15 \sec \theta , y = 17 + 8 \tan \theta
C) x=15secθ,y=8tanθx = 15 \sec \theta , y = 8 \tan \theta
D) x=8+15secθ,y=178tanθx = - 8 + 15 \sec \theta , y = 17 - 8 \tan \theta
E) x=17secθ,y=17tanθx = 17 \sec \theta , y = 17 \tan \theta
Question
Select the curve represented by the parametric equations. ​
Cycloid: x=Θ+sinθ,y=4cosθx = \Theta + \sin \theta , y = 4 - \cos \theta

A)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = \Theta + \sin \theta , y = 4 - \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = \Theta + \sin \theta , y = 4 - \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = \Theta + \sin \theta , y = 4 - \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = \Theta + \sin \theta , y = 4 - \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = \Theta + \sin \theta , y = 4 - \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the parametric equations matching with the following graph.​  <strong>Select the parametric equations matching with the following graph.​   ​</strong> A)Lissajous curve:  x = 2 \cos \theta , y = 2 \sin \theta  B)Lissajous curve:  x = 2 \cos 2 \theta , y = 2 \sin 2 \theta  C)Lissajous curve:  x = 2 \cos \theta , y = 2 \sin 2 \theta  D)Lissajous curve:  x = 2 \cos \theta , y = \sin 2 \theta  , E)Lissajous curve:  x = 2 \cos 2 \theta , y = \sin 2 \theta  <div style=padding-top: 35px>

A)Lissajous curve: x=2cosθ,y=2sinθx = 2 \cos \theta , y = 2 \sin \theta
B)Lissajous curve: x=2cos2θ,y=2sin2θx = 2 \cos 2 \theta , y = 2 \sin 2 \theta
C)Lissajous curve: x=2cosθ,y=2sin2θx = 2 \cos \theta , y = 2 \sin 2 \theta
D)Lissajous curve: x=2cosθ,y=sin2θx = 2 \cos \theta , y = \sin 2 \theta ,
E)Lissajous curve: x=2cos2θ,y=sin2θx = 2 \cos 2 \theta , y = \sin 2 \theta
Question
Using following result find a set of parametric equation of the line.​ x=x1+t(x2x1),y=y1+t(y2y1)x = x _ { 1 } + t \left( x _ { 2 } - x _ { 1 } \right) , y = y _ { 1 } + t \left( y _ { 2 } - y _ { 1 } \right) ​ Line: passes through (9,2)( 9,2 ) and (3,9)( - 3,9 )

A) x=9+12t,y=2+7tx = 9 + 12 t , y = 2 + 7 t
B) x=212t,y=2+7tx = 2 - 12 t , y = 2 + 7 t ,
C) x=212t,y=97tx = 2 - 12 t , y = 9 - 7 t ,
D) x=212t,y=9+7tx = 2 - 12 t , y = 9 + 7 t
E) x=912t,y=2+7tx = 9 - 12 t , y = 2 + 7 t
Question
Select the curve represented by the parametric equations. ​
Prolate cycloid: x=Θ43sinΘ,y=143cosθx = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta

A)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Find a set of parametric equations for the rectangular equation.​ t=2xt = 2 - x y=4x2y = 4 x - 2

A) x=t+4y=4t+2x = - t + 4 y = - 4 t + 2
B) x=t+6,y=4t+6x = - t + 6 , y = - 4 t + 6
C) x=t+2,y=6t+4x = - t + 2 , y = - 6 t + 4
D) x=t+2,y=4t+6x = t + 2 , y = - 4 t + 6
E) x=t+2,y=4t+6x = - t + 2 , y = - 4 t + 6
Question
Find a set of parametric equations for the rectangular equation.​ t=2xy=16x2\begin{array} { l } t = 2 - x \\y = 1 - 6 x ^ { 2 }\end{array} ​​

A) x=t+2,y=6t2+24t23x = - t + 2 , y = - 6 t ^ { 2 } + 24 t - 23
B) x=t+2,y=6t2+24t23x = t + 2 , y = - 6 t ^ { 2 } + 24 t - 23
C) x=t2,y=6t2+24t23x = t - 2 , y = - 6 t ^ { 2 } + 24 t - 23
D) x=t+2,y=6t2+23t24x = - t + 2 , y = - 6 t ^ { 2 } + 23 t - 24
E) x=t+2,y=24t2+6t+23x = t + 2 , y = - 24 t ^ { 2 } + 6 t + 23
Question
Using following result find a set of parametric equation of conic. ​
Circle: x=h+rcosθ,y=k+rsinθx = h + r \cos \theta , y = k + r \sin \theta
Circle: center: (8,3)( 8 , - 3 ) ;radius: 5

A) x=5+3cosθ,y=83sinθx = 5 + 3 \cos \theta , y = 8 - 3 \sin \theta
B) x=3+5cosθ,y=85sinθx = 3 + 5 \cos \theta , y = 8 - 5 \sin \theta
C) x=8+5cosθ,y=35sinθx = 8 + 5 \cos \theta , y = 3 - 5 \sin \theta
D) x=85cosθ,y=3+5sinθx = 8 - 5 \cos \theta , y = 3 + 5 \sin \theta
E) x=8+5cosθ,y=3+5sinθx = 8 + 5 \cos \theta , y = - 3 + 5 \sin \theta
Question
Select the curve represented by the parametric equations. ​
Cycloid: x=5(Θsinθ),y=5(1cosθ)x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )

A)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Using following result find a set of parametric equation of conic. ​
Hyperbola: x=h+asecθ,y=k+btanθx = h + a \sec \theta , y = k + b \tan \theta
Hyperbola: vertices: (±4,0)( \pm 4,0 ) ;foci: (±5,0)( \pm 5,0 )

A) x=5+4secθ,y=5+3tanθx = 5 + 4 \sec \theta , y = 5 + 3 \tan \theta
B) x=4secθ,y=3tanθx = 4 \sec \theta , y = 3 \tan \theta
C) x=54secθ,y=3tanθx = 5 - 4 \sec \theta , y = 3 \tan \theta
D) x=3secθ,y=4tanθx = 3 \sec \theta , y = 4 \tan \theta
E) x=5secθ,y=4tanθx = 5 \sec \theta , y = 4 \tan \theta
Question
A projectile is launched at a height of h feet above the ground at an angle of θ\theta with the horizontal.The initial velocity is v0v _ { 0 } feet per second,and the path of the projectile is modeled by the parametric equations x=(v0cosθ)t and y=h+(v0sinθ)t16t2x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 } . Select the correct graph of the path of a projectile launched from ground level at the value of θ\theta and v0v _ { 0 } .​ θ=45,v0=114\theta = 45 ^ { \circ } , v _ { 0 } = 114 feet per second

A)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 45 ^ { \circ } , v _ { 0 } = 114  feet per second ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 45 ^ { \circ } , v _ { 0 } = 114  feet per second ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 45 ^ { \circ } , v _ { 0 } = 114  feet per second ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 45 ^ { \circ } , v _ { 0 } = 114  feet per second ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 45 ^ { \circ } , v _ { 0 } = 114  feet per second ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the parametric equations matching with the following graph.​  <strong>Select the parametric equations matching with the following graph.​   ​</strong> A)Serpentine curve:  x = \frac { 1 } { 4 } \cot \Theta , y = 4 \sin \Theta \cos \Theta  B)Serpentine curve:  x = \frac { 1 } { 5 } \tan \Theta , y = 5 \sin \Theta \cos \theta  C)Serpentine curve:  x = \frac { 1 } { 5 } \cot \Theta , y = 4 \sin \Theta \cos \Theta  D)Serpentine curve:  x = \frac { 1 } { 4 } \cot \Theta , y = 5 \sin \Theta \cos \Theta  E)Serpentine curve:  x = \tan \theta , y = \sin \theta  <div style=padding-top: 35px>

A)Serpentine curve: x=14cotΘ,y=4sinΘcosΘx = \frac { 1 } { 4 } \cot \Theta , y = 4 \sin \Theta \cos \Theta
B)Serpentine curve: x=15tanΘ,y=5sinΘcosθx = \frac { 1 } { 5 } \tan \Theta , y = 5 \sin \Theta \cos \theta
C)Serpentine curve: x=15cotΘ,y=4sinΘcosΘx = \frac { 1 } { 5 } \cot \Theta , y = 4 \sin \Theta \cos \Theta
D)Serpentine curve: x=14cotΘ,y=5sinΘcosΘx = \frac { 1 } { 4 } \cot \Theta , y = 5 \sin \Theta \cos \Theta
E)Serpentine curve: x=tanθ,y=sinθx = \tan \theta , y = \sin \theta
Question
A projectile is launched at a height of h feet above the ground at an angle of θ\theta with the horizontal.The initial velocity is v0v _ { 0 } feet per second,and the path of the projectile is modeled by the parametric equations x=(v0cosθ)t and y=h+(v0sinθ)t16t2x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 } . Select the correct graph of the path of a projectile launched from ground level at the value of θ\theta and v0v _ { 0 } .​ θ=60\theta = 60 ^ { \circ } , v0=93v _ { 0 } = 93 feet per second

A)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 60 ^ { \circ }  ,  v _ { 0 } = 93  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
B)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 60 ^ { \circ }  ,  v _ { 0 } = 93  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
C)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 60 ^ { \circ }  ,  v _ { 0 } = 93  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
D)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 60 ^ { \circ }  ,  v _ { 0 } = 93  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
E)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 60 ^ { \circ }  ,  v _ { 0 } = 93  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
Question
A projectile is launched at a height of h feet above the ground at an angle of θ\theta with the horizontal.The initial velocity is v0v _ { 0 } feet per second,and the path of the projectile is modeled by the parametric equations x=(v0cosθ)t and y=h+(v0sinθ)t16t2x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 } . Select the correct graph of the path of a projectile launched from ground level at the value of θ\theta and v0v _ { 0 } .​ θ=10,v0=70\theta = 10 ^ { \circ } , v _ { 0 } = 70 feet per second

A)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 10 ^ { \circ } , v _ { 0 } = 70  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
B)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 10 ^ { \circ } , v _ { 0 } = 70  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
C)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 10 ^ { \circ } , v _ { 0 } = 70  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
D)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 10 ^ { \circ } , v _ { 0 } = 70  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
E)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 10 ^ { \circ } , v _ { 0 } = 70  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​ <div style=padding-top: 35px>
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t1y=t+5\begin{array} { l } x = | t - 1 | \\y = t + 5\end{array}

A) x=y1 OR y=x+1,x0 and y=x+6,x0x = | y - 1 | \text { OR } y = x + 1 , x \geq 0 \text { and } y = - x + 6 , x \geq 0
B) x=y6 OR y=x+6,x0 and y=x+6,x0x = | y - 6 | \text { OR } y = x + 6 , x \geq 0 \text { and } y = - x + 6 , x \geq 0
C) x=y+6 OR y=x+6,x0 and y=x+6,x0x = | y + 6 | \text { OR } y = x + 6 , x \geq 0 \text { and } y = x + 6 , x \geq 0
D) x=y5 OR y=x+5,x0 and y=x+6,x0x = | y - 5 | \text { OR } y = x + 5 , x \geq 0 \text { and } y = - x + 6 , x \geq 0
E) x=y+5 OR y=x1,x0 and y=x+5,x0x = | y + 5 | \text { OR } y = x - 1 , x \geq 0 \text { and } y = - x + 5 , x \geq 0
Question
A projectile is launched at a height of h feet above the ground at an angle of θ\theta with the horizontal.The initial velocity is v0v _ { 0 } feet per second,and the path of the projectile is modeled by the parametric equations x=(v0cosθ)t and y=h+(v0sinθ)t16t2x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 } . Select the correct graph of the path of a projectile launched from ground level at the value of θ\theta and v0v _ { 0 } .​ θ=15,v0=80\theta = 15 ^ { \circ } , v _ { 0 } = 80 feet per second

A)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 15 ^ { \circ } , v _ { 0 } = 80  feet per second ​</strong> A)​   ​ B)​   ​ C)​   ​ D)​   ​ E)​   ​ ​ <div style=padding-top: 35px>
B)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 15 ^ { \circ } , v _ { 0 } = 80  feet per second ​</strong> A)​   ​ B)​   ​ C)​   ​ D)​   ​ E)​   ​ ​ <div style=padding-top: 35px>
C)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 15 ^ { \circ } , v _ { 0 } = 80  feet per second ​</strong> A)​   ​ B)​   ​ C)​   ​ D)​   ​ E)​   ​ ​ <div style=padding-top: 35px>
D)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 15 ^ { \circ } , v _ { 0 } = 80  feet per second ​</strong> A)​   ​ B)​   ​ C)​   ​ D)​   ​ E)​   ​ ​ <div style=padding-top: 35px>
E)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 15 ^ { \circ } , v _ { 0 } = 80  feet per second ​</strong> A)​   ​ B)​   ​ C)​   ​ D)​   ​ E)​   ​ ​ <div style=padding-top: 35px>
Question
Select the parametric equations matching with the following graph.​  <strong>Select the parametric equations matching with the following graph.​   ​</strong> A)Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )  B)Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )  C)Involute of circle:  x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )  D)Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )  E)Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta )  <div style=padding-top: 35px>

A)Involute of circle: x=15(cosθ+Θsinθ),y=15(sinθΘcosθ)x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )
B)Involute of circle: x=15(cosθ+Θsinθ),y=15(sinθ+Θcosθ)x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )
C)Involute of circle: x=15(cosΘΘsinθ),y=15(sinθΘcosθ)x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )
D)Involute of circle: x=15(cosθΘsinθ),y=15(sinθ+Θcosθ)x = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )
E)Involute of circle: x=15(cosθ+Θsinθ),y=15(cosθΘsinθ)x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta )
Question
Select the curve represented by the parametric equations.​ x=t2y=t+6\begin{array} { l } x = | t - 2 | \\y = t + 6\end{array}

A)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = | t - 2 | \\ y = t + 6 \end{array}  ​</strong> A)​   B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = | t - 2 | \\ y = t + 6 \end{array}  ​</strong> A)​   B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = | t - 2 | \\ y = t + 6 \end{array}  ​</strong> A)​   B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = | t - 2 | \\ y = t + 6 \end{array}  ​</strong> A)​   B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = | t - 2 | \\ y = t + 6 \end{array}  ​</strong> A)​   B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=3cosθy=4sinθ\begin{array} { l } x = 3 \cos \theta \\y = 4 \sin \theta\end{array}

A) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
B) x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1
C) y=x4y = \frac { x } { 4 }
D) x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
E) y=x3y = \frac { x } { 3 }
Question
Select the curve represented by the parametric equations.​ x=4(t+1)y=t4\begin{array} { l } x = 4 ( t + 1 ) \\y = | t - 4 |\end{array}

A)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 4 ( t + 1 ) \\ y = | t - 4 | \end{array}  ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 4 ( t + 1 ) \\ y = | t - 4 | \end{array}  ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 4 ( t + 1 ) \\ y = | t - 4 | \end{array}  ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 4 ( t + 1 ) \\ y = | t - 4 | \end{array}  ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 4 ( t + 1 ) \\ y = | t - 4 | \end{array}  ​</strong> A)​   ​ B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/50
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 64: Parametric Equations
1
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t+2x = t + 2 y=t2y = t ^ { 2 }

A) y=t2y = t - 2
B) y=x2+4x+4y = x ^ { 2 } + 4 x + 4
C) y=x2y = x ^ { 2 }
D) y=x24x+4y = x ^ { 2 } - 4 x + 4
E) y=t+2y = t + 2
y=x24x+4y = x ^ { 2 } - 4 x + 4
2
Select the curve represented by the parametric equations.​ x=23ty=t2\begin{array} { l } x = \frac { 2 } { 3 } t \\\\y = t ^ { 2 }\end{array} ​ ​

A)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = \frac { 2 } { 3 } t \\\\ y = t ^ { 2 } \end{array}  ​ ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = \frac { 2 } { 3 } t \\\\ y = t ^ { 2 } \end{array}  ​ ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = \frac { 2 } { 3 } t \\\\ y = t ^ { 2 } \end{array}  ​ ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = \frac { 2 } { 3 } t \\\\ y = t ^ { 2 } \end{array}  ​ ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = \frac { 2 } { 3 } t \\\\ y = t ^ { 2 } \end{array}  ​ ​</strong> A)​   B)​   C)​   D)​   E)​
​
3
Select the curve represented by the parametric equations.​ x=t+2x = t + 2 y=t2y = t ^ { 2 }

A)​  <strong>Select the curve represented by the parametric equations.​  x = t + 2   y = t ^ { 2 }  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations.​  x = t + 2   y = t ^ { 2 }  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations.​  x = t + 2   y = t ^ { 2 }  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations.​  x = t + 2   y = t ^ { 2 }  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations.​  x = t + 2   y = t ^ { 2 }  ​</strong> A)​   B)​   C)​   D)​   E)​
​
4
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=cosθx = \cos \theta y=5sin2θy = 5 \sin 2 \theta

A) x21+y25=1\frac { x ^ { 2 } } { 1 } + \frac { y ^ { 2 } } { 5 } = 1
B) y=±10x1+x2y = \pm 10 x \sqrt { 1 + x ^ { 2 } }
C) y=±10x1+xy = \pm 10 x \sqrt { 1 + x }
D)​ x21y25=1\frac { x ^ { 2 } } { 1 } - \frac { y ^ { 2 } } { 5 } = 1
E) y=±10x1x2y = \pm 10 x \sqrt { 1 - x ^ { 2 } }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
5
Select the curve represented by the parametric equations.​ x=t1x = t - 1 y=tt1y = \frac { t } { t - 1 }

A)​  <strong>Select the curve represented by the parametric equations.​  x = t - 1   y = \frac { t } { t - 1 }  ​</strong> A)​   B)​   C)​   D)​ ​   E)​
B)​  <strong>Select the curve represented by the parametric equations.​  x = t - 1   y = \frac { t } { t - 1 }  ​</strong> A)​   B)​   C)​   D)​ ​   E)​
C)​  <strong>Select the curve represented by the parametric equations.​  x = t - 1   y = \frac { t } { t - 1 }  ​</strong> A)​   B)​   C)​   D)​ ​   E)​
D)​ ​  <strong>Select the curve represented by the parametric equations.​  x = t - 1   y = \frac { t } { t - 1 }  ​</strong> A)​   B)​   C)​   D)​ ​   E)​
E)​  <strong>Select the curve represented by the parametric equations.​  x = t - 1   y = \frac { t } { t - 1 }  ​</strong> A)​   B)​   C)​   D)​ ​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
6
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t1x = t - 1 y=5t+1y = 5 t + 1

A) y=5x6y = 5 x - 6
B) y=5x+6y = 5 x + 6
C) y=x+5y = x + 5
D) y=x+6y = x + 6
E) y=5x+1y = 5 x + 1
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
7
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=5sin2Θy=5cos2θ\begin{array} { l } x = 5 \sin 2 \Theta \\y = 5 \cos 2 \theta\end{array}

A) x225+y225=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 25 } = 1
B) x225y225=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 25 } = 1
C) x225+y22=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 2 } = 1 .
D) y=x2y = \frac { x } { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
8
Select the curve represented by the parametric equations.​ x=5cosθy=6sinθ\begin{array} { l } x = 5 \cos \theta \\y = 6 \sin \theta\end{array}

A)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 5 \cos \theta \\ y = 6 \sin \theta \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 5 \cos \theta \\ y = 6 \sin \theta \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 5 \cos \theta \\ y = 6 \sin \theta \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 5 \cos \theta \\ y = 6 \sin \theta \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 5 \cos \theta \\ y = 6 \sin \theta \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
9
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t2x = t - 2 y=tt2y = \frac { t } { t - 2 }

A) y=x+2y = x + 2
B) y=x+2xy = \frac { x + 2 } { x }
C) y=x2y = x - 2
D) y=x+23xy = \frac { x + 2 } { 3 x }
E) y=xx+2y = \frac { x } { x + 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
10
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=14ty=t2\begin{array} { l } x = \frac { 1 } { 4 } t \\\\y = t ^ { 2 }\end{array}

A) y=x2y = x ^ { 2 }
B) y=4x2y = - 4 x ^ { 2 }
C) y=4x2y = 4 x ^ { 2 }
D) y=16x2y = 16 x ^ { 2 }
E) y=16x2y = - 16 x ^ { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
11
Select the curve represented by the parametric equations.​ x=t+1x = t + 1 y=tt+1y = \frac { t } { t + 1 }

A)​  <strong>Select the curve represented by the parametric equations.​  x = t + 1   y = \frac { t } { t + 1 }  ​</strong> A)​   ​ B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations.​  x = t + 1   y = \frac { t } { t + 1 }  ​</strong> A)​   ​ B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations.​  x = t + 1   y = \frac { t } { t + 1 }  ​</strong> A)​   ​ B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations.​  x = t + 1   y = \frac { t } { t + 1 }  ​</strong> A)​   ​ B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations.​  x = t + 1   y = \frac { t } { t + 1 }  ​</strong> A)​   ​ B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
12
Select the curve represented by the parametric equations.​ x=1+cosθx = 1 + \cos \theta y=1+2sinθy = 1 + 2 \sin \theta

A)​  <strong>Select the curve represented by the parametric equations.​  x = 1 + \cos \theta   y = 1 + 2 \sin \theta  ​</strong> A)​   B)​   C)​   ​ D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations.​  x = 1 + \cos \theta   y = 1 + 2 \sin \theta  ​</strong> A)​   B)​   C)​   ​ D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations.​  x = 1 + \cos \theta   y = 1 + 2 \sin \theta  ​</strong> A)​   B)​   C)​   ​ D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations.​  x = 1 + \cos \theta   y = 1 + 2 \sin \theta  ​</strong> A)​   B)​   C)​   ​ D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations.​  x = 1 + \cos \theta   y = 1 + 2 \sin \theta  ​</strong> A)​   B)​   C)​   ​ D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
13
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=tx = \sqrt { t } y=4ty = 4 - t

A) y=4xy = 4 - x
B) y=4+xy = 4 + x
C) y=4+x2y = 4 + x ^ { 2 }
D) y=4x2y = 4 - x ^ { 2 }
E) y=xy = \sqrt { x }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
14
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t+8x = t + 8 y=tt+8y = \frac { t } { t + 8 }

A) y=x89xy = \frac { x - 8 } { 9 x }
B) y=xx8y = \frac { x } { x - 8 }
C) y=x8y = x - 8
D) y=x8xy = \frac { x - 8 } { x }
E) y=x+8y = x + 8
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
15
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=4cosθy=2sinθ\begin{array} { l } x = 4 \cos \theta \\y = 2 \sin \theta\end{array}

A)​ x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1
B) x216+y24=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1
C) y=x4y = \frac { x } { 4 }
D) y=x2y = \frac { x } { 2 }
E)​ x216y24=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 4 } = 1
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
16
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=1+3cosθx = 1 + 3 \cos \theta y=1+5sinθy = 1 + 5 \sin \theta

A) (x1)29+(y1)225=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
B) (x1)29(y1)225=1\frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
C) x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
D)​ x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1
E) (x1)225(y1)29=1\frac { ( x - 1 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
17
Select the curve represented by the parametric equations.​ x=tx = \sqrt { t } y=1ty = 1 - t

A)​  <strong>Select the curve represented by the parametric equations.​  x = \sqrt { t }   y = 1 - t  ​</strong> A)​   ​ B)​   ​ C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations.​  x = \sqrt { t }   y = 1 - t  ​</strong> A)​   ​ B)​   ​ C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations.​  x = \sqrt { t }   y = 1 - t  ​</strong> A)​   ​ B)​   ​ C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations.​  x = \sqrt { t }   y = 1 - t  ​</strong> A)​   ​ B)​   ​ C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations.​  x = \sqrt { t }   y = 1 - t  ​</strong> A)​   ​ B)​   ​ C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
18
Select the curve represented by the parametric equations.(indicate the orientation of the curve)​ x=t1x = t - 1 y=4t+1y = 4 t + 1

A)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  x = t - 1   y = 4 t + 1  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  x = t - 1   y = 4 t + 1  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  x = t - 1   y = 4 t + 1  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  x = t - 1   y = 4 t + 1  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  x = t - 1   y = 4 t + 1  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
19
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=3(t+1)x = 3 ( t + 1 ) y=t3y = | t - 3 |

A) y=x43y = \left| \frac { x } { 4 } - 3 \right|
B) y=x3+4y = \left| \frac { x } { 3 } + 4 \right|
C) y=t4y = | t - 4 |
D) y=x34y = \left| \frac { x } { 3 } - 4 \right|
E) y=t+4y = | t + 4 |
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
20
Select the curve represented by the parametric equations.(indicate the orientation of the curve)​ x=34ty=4+3t\begin{array} { l } x = 3 - 4 t \\y = 4 + 3 t\end{array}

A)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  \begin{array} { l } x = 3 - 4 t \\ y = 4 + 3 t \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  \begin{array} { l } x = 3 - 4 t \\ y = 4 + 3 t \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  \begin{array} { l } x = 3 - 4 t \\ y = 4 + 3 t \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  \begin{array} { l } x = 3 - 4 t \\ y = 4 + 3 t \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations.(indicate the orientation of the curve)​  \begin{array} { l } x = 3 - 4 t \\ y = 4 + 3 t \end{array}  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
21
Using following result find a set of parametric equation of conic. ​
Circle: x=h+rcosθ,y=k+rsinθx = h + r \cos \theta , y = k + r \sin \theta
Circle: center: (2,6)( 2,6 ) ;radius: 8

A) x=6+8cosθ,y=6+2sinθx = 6 + 8 \cos \theta , y = 6 + 2 \sin \theta
B) x=2+6cosθ,y=6+8sinθx = 2 + 6 \cos \theta , y = 6 + 8 \sin \theta
C) x=2+8cosθ,y=6+8sinθx = 2 + 8 \cos \theta , y = 6 + 8 \sin \theta
D) x=8+2cosθ,y=6+2sinθx = 8 + 2 \cos \theta , y = 6 + 2 \sin \theta
E) x=8+6cosθ,y=6+2sinθx = 8 + 6 \cos \theta , y = 6 + 2 \sin \theta
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
22
Using following result find a set of parametric equation of conic.​ x=h+acosθ,y=k+bisnθx = h + a \cos \theta , y = k + b i s n \theta ​ vertices: (±17,0)( \pm 17,0 ) ;foci: (±15,0)( \pm 15,0 )

A) x=8cosθ,y=17sinθx = 8 \cos \theta , y = 17 \sin \theta
B) x=15+17cosθ,y=158sinθx = 15 + 17 \cos \theta , y = 15 - 8 \sin \theta
C) x=815cosθ,y=17+15sinθx = 8 - 15 \cos \theta , y = 17 + 15 \sin \theta
D) x=1517cosθ,y=8sinθx = 15 - 17 \cos \theta , y = 8 \sin \theta
E) x=17cosθ,y=8sinθx = 17 \cos \theta , y = 8 \sin \theta
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
23
Select the curve represented by the parametric equations. ​
Curtate cycloid: x=4Θ2sinθ,y=42cosθx = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta

A)​  <strong>Select the curve represented by the parametric equations. ​ Curtate cycloid:  x = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations. ​ Curtate cycloid:  x = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations. ​ Curtate cycloid:  x = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations. ​ Curtate cycloid:  x = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations. ​ Curtate cycloid:  x = 4 \Theta - 2 \sin \theta , y = 4 - 2 \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
24
Find a set of parametric equations for the rectangular equation.​ t=2xt = 2 - x y=13xy = \frac { 1 } { 3 x }

A) x=2t,y=1(66t)x = - 2 - t , y = \frac { 1 } { ( 6 - 6 t ) }
B) x=2t,y=1(63t)x = - 2 - t , y = \frac { 1 } { ( 6 - 3 t ) }
C) x=2t,y=1(33t)x = 2 - t , y = \frac { 1 } { ( 3 - 3 t ) }
D) x=2+t,y=1(63t)x = - 2 + t , y = \frac { 1 } { ( 6 - 3 t ) }
E) x=2t,y=1(63t)x = 2 - t , y = \frac { 1 } { ( 6 - 3 t ) }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
25
Select the curve represented by the parametric equations. ​
Prolate cycloid: x=3Θ7sinθ,y=37cosθx = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta

A)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta  ​</strong> A)​   B)​   C)​   ​ D)​   ​ E)​
B)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta  ​</strong> A)​   B)​   C)​   ​ D)​   ​ E)​
C)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta  ​</strong> A)​   B)​   C)​   ​ D)​   ​ E)​
D)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta  ​</strong> A)​   B)​   C)​   ​ D)​   ​ E)​
E)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta  ​</strong> A)​   B)​   C)​   ​ D)​   ​ E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
26
Find a set of parametric equations for the rectangular equation.​ t=2xx=5y2\begin{array} { l } t = 2 - x \\x = 5 y - 2\end{array}

A) x=5+t,y=12(4t)x = 5 + t , y = \frac { 1 } { 2 } ( 4 - t )
B) x=2t,y=15(4t)x = 2 - t , y = \frac { 1 } { 5 } ( 4 - t )
C) x=2+t,y=15(4t)x = 2 + t , y = \frac { 1 } { 5 } ( 4 - t )
D) x=2+t,y=15(4+t)x = 2 + t , y = \frac { 1 } { 5 } ( 4 + t )
E) x=2+t,y=15(t4)x = 2 + t , y = \frac { 1 } { 5 } ( t - 4 )
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
27
Find a set of parametric equations for the rectangular equation.​ t=5xy=x23\begin{array} { l } t = 5 - x \\y = x ^ { 2 } - 3\end{array}

A) x=t5,y=t2+10t22x = t - 5 , y = t ^ { 2 } + 10 t - 22
B) x=t5,y=t210t+22x = t - 5 , y = t ^ { 2 } - 10 t + 22
C) x=t+5,y=t222t+10x = - t + 5 , y = t ^ { 2 } - 22 t + 10
D) x=t+5,y=t210t+22x = - t + 5 , y = t ^ { 2 } - 10 t + 22
E) x=t+5,y=t210t+22x = t + 5 , y = t ^ { 2 } - 10 t + 22
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
28
Find a set of parametric equations for the rectangular equation.​ t=4xt = 4 - x y=1xy = \frac { 1 } { x }

A) x=4t,y=1(t+4)x = 4 - t , y = \frac { - 1 } { ( t + 4 ) }
B) x=4t,y=1(t4)x = 4 - t , y = \frac { - 1 } { ( - t - 4 ) }
C) x=4t,y=1(t4)x = 4 - t , y = \frac { - 1 } { ( t - 4 ) }
D) x=4+t,y=1(t8)x = 4 + t , y = \frac { - 1 } { ( t - 8 ) }
E) x=8t,y=1(t4)x = 8 - t , y = \frac { - 1 } { ( t - 4 ) }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
29
Find a set of parametric equations for the rectangular equation.​ t=2xt = 2 - x y=x2+5y = x ^ { 2 } + 5

A) x=t+2,y=t2+4t+9x = - t + 2 , y = t ^ { 2 } + 4 t + 9
B) x=t+2,y=t24t9x = - t + 2 , y = t ^ { 2 } - 4 t - 9
C) x=t2,y=t24t+9x = t - 2 , y = t ^ { 2 } - 4 t + 9
D) x=t+2,y=t24t+9x = - t + 2 , y = t ^ { 2 } - 4 t + 9
E) x=t2,y=t24t9x = t - 2 , y = t ^ { 2 } - 4 t - 9
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
30
Using following result find a set of parametric equation of the line.​ x=x1+t(x2x1),y=y1+t(y2y1)x = x _ { 1 } + t \left( x _ { 2 } - x _ { 1 } \right) , y = y _ { 1 } + t \left( y _ { 2 } - y _ { 1 } \right) ​ Line: passes through (0,0)and (5,8)( 5,8 )

A) x=8t,y=5tx = 8 t , y = 5 t
B) x=5t,y=8tx = 5 t , y = - 8 t
C) x=5t,y=tx = - 5 t , y = - t
D) x=5t,y=8tx = - 5 t , y = 8 t
E) x=5t,y=8tx = 5 t , y = 8 t
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
31
Using following result find a set of parametric equation of conic. ​
Hyperbola: x=h+asecθ,y=k+btanθx = h + a \sec \theta , y = k + b \tan \theta
Hyperbola: vertices: (±15,0)( \pm 15,0 ) ;foci: (±17,0)( \pm 17,0 )

A) x=8secθ,y=15tanθx = 8 \sec \theta , y = 15 \tan \theta
B) x=1715secθ,y=17+8tanθx = 17 - 15 \sec \theta , y = 17 + 8 \tan \theta
C) x=15secθ,y=8tanθx = 15 \sec \theta , y = 8 \tan \theta
D) x=8+15secθ,y=178tanθx = - 8 + 15 \sec \theta , y = 17 - 8 \tan \theta
E) x=17secθ,y=17tanθx = 17 \sec \theta , y = 17 \tan \theta
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
32
Select the curve represented by the parametric equations. ​
Cycloid: x=Θ+sinθ,y=4cosθx = \Theta + \sin \theta , y = 4 - \cos \theta

A)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = \Theta + \sin \theta , y = 4 - \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = \Theta + \sin \theta , y = 4 - \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = \Theta + \sin \theta , y = 4 - \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = \Theta + \sin \theta , y = 4 - \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = \Theta + \sin \theta , y = 4 - \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
33
Select the parametric equations matching with the following graph.​  <strong>Select the parametric equations matching with the following graph.​   ​</strong> A)Lissajous curve:  x = 2 \cos \theta , y = 2 \sin \theta  B)Lissajous curve:  x = 2 \cos 2 \theta , y = 2 \sin 2 \theta  C)Lissajous curve:  x = 2 \cos \theta , y = 2 \sin 2 \theta  D)Lissajous curve:  x = 2 \cos \theta , y = \sin 2 \theta  , E)Lissajous curve:  x = 2 \cos 2 \theta , y = \sin 2 \theta

A)Lissajous curve: x=2cosθ,y=2sinθx = 2 \cos \theta , y = 2 \sin \theta
B)Lissajous curve: x=2cos2θ,y=2sin2θx = 2 \cos 2 \theta , y = 2 \sin 2 \theta
C)Lissajous curve: x=2cosθ,y=2sin2θx = 2 \cos \theta , y = 2 \sin 2 \theta
D)Lissajous curve: x=2cosθ,y=sin2θx = 2 \cos \theta , y = \sin 2 \theta ,
E)Lissajous curve: x=2cos2θ,y=sin2θx = 2 \cos 2 \theta , y = \sin 2 \theta
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
34
Using following result find a set of parametric equation of the line.​ x=x1+t(x2x1),y=y1+t(y2y1)x = x _ { 1 } + t \left( x _ { 2 } - x _ { 1 } \right) , y = y _ { 1 } + t \left( y _ { 2 } - y _ { 1 } \right) ​ Line: passes through (9,2)( 9,2 ) and (3,9)( - 3,9 )

A) x=9+12t,y=2+7tx = 9 + 12 t , y = 2 + 7 t
B) x=212t,y=2+7tx = 2 - 12 t , y = 2 + 7 t ,
C) x=212t,y=97tx = 2 - 12 t , y = 9 - 7 t ,
D) x=212t,y=9+7tx = 2 - 12 t , y = 9 + 7 t
E) x=912t,y=2+7tx = 9 - 12 t , y = 2 + 7 t
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
35
Select the curve represented by the parametric equations. ​
Prolate cycloid: x=Θ43sinΘ,y=143cosθx = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta

A)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations. ​ Prolate cycloid:  x = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
36
Find a set of parametric equations for the rectangular equation.​ t=2xt = 2 - x y=4x2y = 4 x - 2

A) x=t+4y=4t+2x = - t + 4 y = - 4 t + 2
B) x=t+6,y=4t+6x = - t + 6 , y = - 4 t + 6
C) x=t+2,y=6t+4x = - t + 2 , y = - 6 t + 4
D) x=t+2,y=4t+6x = t + 2 , y = - 4 t + 6
E) x=t+2,y=4t+6x = - t + 2 , y = - 4 t + 6
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
37
Find a set of parametric equations for the rectangular equation.​ t=2xy=16x2\begin{array} { l } t = 2 - x \\y = 1 - 6 x ^ { 2 }\end{array} ​​

A) x=t+2,y=6t2+24t23x = - t + 2 , y = - 6 t ^ { 2 } + 24 t - 23
B) x=t+2,y=6t2+24t23x = t + 2 , y = - 6 t ^ { 2 } + 24 t - 23
C) x=t2,y=6t2+24t23x = t - 2 , y = - 6 t ^ { 2 } + 24 t - 23
D) x=t+2,y=6t2+23t24x = - t + 2 , y = - 6 t ^ { 2 } + 23 t - 24
E) x=t+2,y=24t2+6t+23x = t + 2 , y = - 24 t ^ { 2 } + 6 t + 23
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
38
Using following result find a set of parametric equation of conic. ​
Circle: x=h+rcosθ,y=k+rsinθx = h + r \cos \theta , y = k + r \sin \theta
Circle: center: (8,3)( 8 , - 3 ) ;radius: 5

A) x=5+3cosθ,y=83sinθx = 5 + 3 \cos \theta , y = 8 - 3 \sin \theta
B) x=3+5cosθ,y=85sinθx = 3 + 5 \cos \theta , y = 8 - 5 \sin \theta
C) x=8+5cosθ,y=35sinθx = 8 + 5 \cos \theta , y = 3 - 5 \sin \theta
D) x=85cosθ,y=3+5sinθx = 8 - 5 \cos \theta , y = 3 + 5 \sin \theta
E) x=8+5cosθ,y=3+5sinθx = 8 + 5 \cos \theta , y = - 3 + 5 \sin \theta
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
39
Select the curve represented by the parametric equations. ​
Cycloid: x=5(Θsinθ),y=5(1cosθ)x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )

A)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations. ​ Cycloid:  x = 5 ( \Theta - \sin \theta ) , y = 5 ( 1 - \cos \theta )  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
40
Using following result find a set of parametric equation of conic. ​
Hyperbola: x=h+asecθ,y=k+btanθx = h + a \sec \theta , y = k + b \tan \theta
Hyperbola: vertices: (±4,0)( \pm 4,0 ) ;foci: (±5,0)( \pm 5,0 )

A) x=5+4secθ,y=5+3tanθx = 5 + 4 \sec \theta , y = 5 + 3 \tan \theta
B) x=4secθ,y=3tanθx = 4 \sec \theta , y = 3 \tan \theta
C) x=54secθ,y=3tanθx = 5 - 4 \sec \theta , y = 3 \tan \theta
D) x=3secθ,y=4tanθx = 3 \sec \theta , y = 4 \tan \theta
E) x=5secθ,y=4tanθx = 5 \sec \theta , y = 4 \tan \theta
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
41
A projectile is launched at a height of h feet above the ground at an angle of θ\theta with the horizontal.The initial velocity is v0v _ { 0 } feet per second,and the path of the projectile is modeled by the parametric equations x=(v0cosθ)t and y=h+(v0sinθ)t16t2x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 } . Select the correct graph of the path of a projectile launched from ground level at the value of θ\theta and v0v _ { 0 } .​ θ=45,v0=114\theta = 45 ^ { \circ } , v _ { 0 } = 114 feet per second

A)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 45 ^ { \circ } , v _ { 0 } = 114  feet per second ​</strong> A)​   ​ B)​   C)​   D)​   E)​
B)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 45 ^ { \circ } , v _ { 0 } = 114  feet per second ​</strong> A)​   ​ B)​   C)​   D)​   E)​
C)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 45 ^ { \circ } , v _ { 0 } = 114  feet per second ​</strong> A)​   ​ B)​   C)​   D)​   E)​
D)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 45 ^ { \circ } , v _ { 0 } = 114  feet per second ​</strong> A)​   ​ B)​   C)​   D)​   E)​
E)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 45 ^ { \circ } , v _ { 0 } = 114  feet per second ​</strong> A)​   ​ B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
42
Select the parametric equations matching with the following graph.​  <strong>Select the parametric equations matching with the following graph.​   ​</strong> A)Serpentine curve:  x = \frac { 1 } { 4 } \cot \Theta , y = 4 \sin \Theta \cos \Theta  B)Serpentine curve:  x = \frac { 1 } { 5 } \tan \Theta , y = 5 \sin \Theta \cos \theta  C)Serpentine curve:  x = \frac { 1 } { 5 } \cot \Theta , y = 4 \sin \Theta \cos \Theta  D)Serpentine curve:  x = \frac { 1 } { 4 } \cot \Theta , y = 5 \sin \Theta \cos \Theta  E)Serpentine curve:  x = \tan \theta , y = \sin \theta

A)Serpentine curve: x=14cotΘ,y=4sinΘcosΘx = \frac { 1 } { 4 } \cot \Theta , y = 4 \sin \Theta \cos \Theta
B)Serpentine curve: x=15tanΘ,y=5sinΘcosθx = \frac { 1 } { 5 } \tan \Theta , y = 5 \sin \Theta \cos \theta
C)Serpentine curve: x=15cotΘ,y=4sinΘcosΘx = \frac { 1 } { 5 } \cot \Theta , y = 4 \sin \Theta \cos \Theta
D)Serpentine curve: x=14cotΘ,y=5sinΘcosΘx = \frac { 1 } { 4 } \cot \Theta , y = 5 \sin \Theta \cos \Theta
E)Serpentine curve: x=tanθ,y=sinθx = \tan \theta , y = \sin \theta
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
43
A projectile is launched at a height of h feet above the ground at an angle of θ\theta with the horizontal.The initial velocity is v0v _ { 0 } feet per second,and the path of the projectile is modeled by the parametric equations x=(v0cosθ)t and y=h+(v0sinθ)t16t2x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 } . Select the correct graph of the path of a projectile launched from ground level at the value of θ\theta and v0v _ { 0 } .​ θ=60\theta = 60 ^ { \circ } , v0=93v _ { 0 } = 93 feet per second

A)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 60 ^ { \circ }  ,  v _ { 0 } = 93  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​
B)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 60 ^ { \circ }  ,  v _ { 0 } = 93  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​
C)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 60 ^ { \circ }  ,  v _ { 0 } = 93  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​
D)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 60 ^ { \circ }  ,  v _ { 0 } = 93  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​
E)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 60 ^ { \circ }  ,  v _ { 0 } = 93  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
44
A projectile is launched at a height of h feet above the ground at an angle of θ\theta with the horizontal.The initial velocity is v0v _ { 0 } feet per second,and the path of the projectile is modeled by the parametric equations x=(v0cosθ)t and y=h+(v0sinθ)t16t2x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 } . Select the correct graph of the path of a projectile launched from ground level at the value of θ\theta and v0v _ { 0 } .​ θ=10,v0=70\theta = 10 ^ { \circ } , v _ { 0 } = 70 feet per second

A)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 10 ^ { \circ } , v _ { 0 } = 70  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​
B)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 10 ^ { \circ } , v _ { 0 } = 70  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​
C)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 10 ^ { \circ } , v _ { 0 } = 70  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​
D)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 10 ^ { \circ } , v _ { 0 } = 70  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​
E)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 10 ^ { \circ } , v _ { 0 } = 70  feet per second ​</strong> A)​   B)​   C)​   D)​   E)​   ​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
45
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t1y=t+5\begin{array} { l } x = | t - 1 | \\y = t + 5\end{array}

A) x=y1 OR y=x+1,x0 and y=x+6,x0x = | y - 1 | \text { OR } y = x + 1 , x \geq 0 \text { and } y = - x + 6 , x \geq 0
B) x=y6 OR y=x+6,x0 and y=x+6,x0x = | y - 6 | \text { OR } y = x + 6 , x \geq 0 \text { and } y = - x + 6 , x \geq 0
C) x=y+6 OR y=x+6,x0 and y=x+6,x0x = | y + 6 | \text { OR } y = x + 6 , x \geq 0 \text { and } y = x + 6 , x \geq 0
D) x=y5 OR y=x+5,x0 and y=x+6,x0x = | y - 5 | \text { OR } y = x + 5 , x \geq 0 \text { and } y = - x + 6 , x \geq 0
E) x=y+5 OR y=x1,x0 and y=x+5,x0x = | y + 5 | \text { OR } y = x - 1 , x \geq 0 \text { and } y = - x + 5 , x \geq 0
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
46
A projectile is launched at a height of h feet above the ground at an angle of θ\theta with the horizontal.The initial velocity is v0v _ { 0 } feet per second,and the path of the projectile is modeled by the parametric equations x=(v0cosθ)t and y=h+(v0sinθ)t16t2x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 } . Select the correct graph of the path of a projectile launched from ground level at the value of θ\theta and v0v _ { 0 } .​ θ=15,v0=80\theta = 15 ^ { \circ } , v _ { 0 } = 80 feet per second

A)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 15 ^ { \circ } , v _ { 0 } = 80  feet per second ​</strong> A)​   ​ B)​   ​ C)​   ​ D)​   ​ E)​   ​ ​
B)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 15 ^ { \circ } , v _ { 0 } = 80  feet per second ​</strong> A)​   ​ B)​   ​ C)​   ​ D)​   ​ E)​   ​ ​
C)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 15 ^ { \circ } , v _ { 0 } = 80  feet per second ​</strong> A)​   ​ B)​   ​ C)​   ​ D)​   ​ E)​   ​ ​
D)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 15 ^ { \circ } , v _ { 0 } = 80  feet per second ​</strong> A)​   ​ B)​   ​ C)​   ​ D)​   ​ E)​   ​ ​
E)​  <strong>A projectile is launched at a height of h feet above the ground at an angle of  \theta  with the horizontal.The initial velocity is  v _ { 0 }  feet per second,and the path of the projectile is modeled by the parametric equations  x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 }  . Select the correct graph of the path of a projectile launched from ground level at the value of  \theta  and  v _ { 0 }  .​  \theta = 15 ^ { \circ } , v _ { 0 } = 80  feet per second ​</strong> A)​   ​ B)​   ​ C)​   ​ D)​   ​ E)​   ​ ​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
47
Select the parametric equations matching with the following graph.​  <strong>Select the parametric equations matching with the following graph.​   ​</strong> A)Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )  B)Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )  C)Involute of circle:  x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )  D)Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )  E)Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta )

A)Involute of circle: x=15(cosθ+Θsinθ),y=15(sinθΘcosθ)x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )
B)Involute of circle: x=15(cosθ+Θsinθ),y=15(sinθ+Θcosθ)x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )
C)Involute of circle: x=15(cosΘΘsinθ),y=15(sinθΘcosθ)x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )
D)Involute of circle: x=15(cosθΘsinθ),y=15(sinθ+Θcosθ)x = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )
E)Involute of circle: x=15(cosθ+Θsinθ),y=15(cosθΘsinθ)x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta )
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
48
Select the curve represented by the parametric equations.​ x=t2y=t+6\begin{array} { l } x = | t - 2 | \\y = t + 6\end{array}

A)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = | t - 2 | \\ y = t + 6 \end{array}  ​</strong> A)​   B)​   ​ C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = | t - 2 | \\ y = t + 6 \end{array}  ​</strong> A)​   B)​   ​ C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = | t - 2 | \\ y = t + 6 \end{array}  ​</strong> A)​   B)​   ​ C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = | t - 2 | \\ y = t + 6 \end{array}  ​</strong> A)​   B)​   ​ C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = | t - 2 | \\ y = t + 6 \end{array}  ​</strong> A)​   B)​   ​ C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
49
Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=3cosθy=4sinθ\begin{array} { l } x = 3 \cos \theta \\y = 4 \sin \theta\end{array}

A) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
B) x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1
C) y=x4y = \frac { x } { 4 }
D) x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
E) y=x3y = \frac { x } { 3 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
50
Select the curve represented by the parametric equations.​ x=4(t+1)y=t4\begin{array} { l } x = 4 ( t + 1 ) \\y = | t - 4 |\end{array}

A)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 4 ( t + 1 ) \\ y = | t - 4 | \end{array}  ​</strong> A)​   ​ B)​   C)​   D)​   E)​
B)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 4 ( t + 1 ) \\ y = | t - 4 | \end{array}  ​</strong> A)​   ​ B)​   C)​   D)​   E)​
C)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 4 ( t + 1 ) \\ y = | t - 4 | \end{array}  ​</strong> A)​   ​ B)​   C)​   D)​   E)​
D)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 4 ( t + 1 ) \\ y = | t - 4 | \end{array}  ​</strong> A)​   ​ B)​   C)​   D)​   E)​
E)​  <strong>Select the curve represented by the parametric equations.​  \begin{array} { l } x = 4 ( t + 1 ) \\ y = | t - 4 | \end{array}  ​</strong> A)​   ​ B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 50 flashcards in this deck.