Deck 67: Graphs of Polar Equations

Full screen (f)
exit full mode
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=5cos2θr = 5 \cos 2 \theta

A)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   <div style=padding-top: 35px>
B)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   <div style=padding-top: 35px>
C)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   <div style=padding-top: 35px>
D)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   <div style=padding-top: 35px>
E)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   <div style=padding-top: 35px>
Use Space or
up arrow
down arrow
to flip the card.
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4(1cosθ)r = 4 ( 1 - \cos \theta )

A)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 ( 1 - \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}  ​   E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    <div style=padding-top: 35px>
B)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 ( 1 - \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}  ​   E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    <div style=padding-top: 35px>
C)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 ( 1 - \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}  ​   E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    <div style=padding-top: 35px>
D)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 ( 1 - \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}  ​   E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    <div style=padding-top: 35px>
E)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 ( 1 - \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}  ​   E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=2r = 2

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=46cosθr = 4 - 6 \cos \theta

A)Symmetric with respect to the polar axis r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 6 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   B)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   C)Symmetric with respect to the polar axis ​  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}  ​ ​   D)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   E)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   <div style=padding-top: 35px>
B)Symmetric with respect to the polar axis ​ r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 6 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   B)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   C)Symmetric with respect to the polar axis ​  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}  ​ ​   D)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   E)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   <div style=padding-top: 35px>
C)Symmetric with respect to the polar axis ​ r=10 when θ=πr=0 when cosθ=46\begin{array} { l } | r | = 10 \text { when } \theta = \pi \\r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }\end{array}

 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 6 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   B)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   C)Symmetric with respect to the polar axis ​  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}  ​ ​   D)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   E)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   <div style=padding-top: 35px>
D)Symmetric with respect to the polar axis ​ r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 6 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   B)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   C)Symmetric with respect to the polar axis ​  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}  ​ ​   D)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   E)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   <div style=padding-top: 35px>
E)Symmetric with respect to the polar axis ​ r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 6 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   B)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   C)Symmetric with respect to the polar axis ​  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}  ​ ​   D)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   E)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4+6sinθr = 4 + 6 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 }
r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 + 6 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 }
r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 + 6 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 }
r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 + 6 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 }
r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 + 6 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 }
r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 + 6 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=43sinθr = 4 - 3 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 3 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 3 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 3 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 3 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 3 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=(1+sinθ)r = ( 1 + \sin \theta )

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=1r = 1

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=1r = 1
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 1  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=1r = 1
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 1  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=1r = 1
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 1  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=1r = 1
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 1  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=1r = 1
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 1  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=cos3θr = \cos 3 \theta

A)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   <div style=padding-top: 35px>
B)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   <div style=padding-top: 35px>
C)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   <div style=padding-top: 35px>
D)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   <div style=padding-top: 35px>
E)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4sin(2θ)r = 4 \sin ( 2 \theta )

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=3π7r = \frac { 3 \pi } { 7 }

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius 3π7\frac { 3 \pi } { 7 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 3 \pi } { 7 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius 3π7\frac { 3 \pi } { 7 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 3 \pi } { 7 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius 3π7\frac { 3 \pi } { 7 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 3 \pi } { 7 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius 3π7\frac { 3 \pi } { 7 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 3 \pi } { 7 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius 3π7\frac { 3 \pi } { 7 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 3 \pi } { 7 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=π4r = \frac { \pi } { 4 }

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius π4\frac { \pi } { 4 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { \pi } { 4 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius π4\frac { \pi } { 4 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { \pi } { 4 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius π4\frac { \pi } { 4 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { \pi } { 4 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius π4\frac { \pi } { 4 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { \pi } { 4 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius π4\frac { \pi } { 4 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { \pi } { 4 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=45cosθr = 4 - 5 \cos \theta

A)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   <div style=padding-top: 35px>
B)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   <div style=padding-top: 35px>
C)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   <div style=padding-top: 35px>
D)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   <div style=padding-top: 35px>
E)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4sin3θr = 4 \sin 3 \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=3+7cosθr = 3 + 7 \cos \theta

A)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 + 7 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   <div style=padding-top: 35px>
B)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 + 7 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   <div style=padding-top: 35px>
C)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 + 7 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   <div style=padding-top: 35px>
D)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 + 7 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   <div style=padding-top: 35px>
E)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 + 7 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=5cosθr = 5 \cos \theta

A)Symmetric with respect to polar axis Circle with radius 2.5
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis Circle with radius 2.5 ​   B)Symmetric with respect to polar axis Circle with radius 2.5 ​   C)Symmetric with respect to polar axis Circle with radius 2.5 ​   D)Symmetric with respect to polar axis Circle with radius 2.5 ​   E)Symmetric with respect to polar axis Circle with radius 2.5 ​   <div style=padding-top: 35px>
B)Symmetric with respect to polar axis Circle with radius 2.5
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis Circle with radius 2.5 ​   B)Symmetric with respect to polar axis Circle with radius 2.5 ​   C)Symmetric with respect to polar axis Circle with radius 2.5 ​   D)Symmetric with respect to polar axis Circle with radius 2.5 ​   E)Symmetric with respect to polar axis Circle with radius 2.5 ​   <div style=padding-top: 35px>
C)Symmetric with respect to polar axis Circle with radius 2.5
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis Circle with radius 2.5 ​   B)Symmetric with respect to polar axis Circle with radius 2.5 ​   C)Symmetric with respect to polar axis Circle with radius 2.5 ​   D)Symmetric with respect to polar axis Circle with radius 2.5 ​   E)Symmetric with respect to polar axis Circle with radius 2.5 ​   <div style=padding-top: 35px>
D)Symmetric with respect to polar axis Circle with radius 2.5
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis Circle with radius 2.5 ​   B)Symmetric with respect to polar axis Circle with radius 2.5 ​   C)Symmetric with respect to polar axis Circle with radius 2.5 ​   D)Symmetric with respect to polar axis Circle with radius 2.5 ​   E)Symmetric with respect to polar axis Circle with radius 2.5 ​   <div style=padding-top: 35px>
E)Symmetric with respect to polar axis Circle with radius 2.5
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis Circle with radius 2.5 ​   B)Symmetric with respect to polar axis Circle with radius 2.5 ​   C)Symmetric with respect to polar axis Circle with radius 2.5 ​   D)Symmetric with respect to polar axis Circle with radius 2.5 ​   E)Symmetric with respect to polar axis Circle with radius 2.5 ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ γ=(1+cosθ)\gamma = ( 1 + \cos \theta )

A)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  \gamma = ( 1 + \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​ ​   C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   <div style=padding-top: 35px>
B)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  \gamma = ( 1 + \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​ ​   C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   <div style=padding-top: 35px>
C)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  \gamma = ( 1 + \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​ ​   C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   <div style=padding-top: 35px>
D)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  \gamma = ( 1 + \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​ ​   C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   <div style=padding-top: 35px>
E)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  \gamma = ( 1 + \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​ ​   C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=2(1sinθ)r = 2 ( 1 - \sin \theta )

A)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2 ( 1 - \sin \theta )  ​</strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   <div style=padding-top: 35px>
B)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2 ( 1 - \sin \theta )  ​</strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   <div style=padding-top: 35px>
C)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2 ( 1 - \sin \theta )  ​</strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   <div style=padding-top: 35px>
D)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2 ( 1 - \sin \theta )  ​</strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   <div style=padding-top: 35px>
E)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2 ( 1 - \sin \theta )  ​</strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=35sinθr = 3 - 5 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 - 5 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 - 5 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 - 5 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 - 5 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 - 5 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=secθr = \sec \theta

A) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \sec \theta  ​</strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
B) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \sec \theta  ​</strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
C) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \sec \theta  ​</strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
D) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \sec \theta  ​</strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
E) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \sec \theta  ​</strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
Question
Select the graph of the equation.​ r=4secθr = - 4 \sec \theta

A)​  <strong>Select the graph of the equation.​  r = - 4 \sec \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the equation.​  r = - 4 \sec \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the equation.​  r = - 4 \sec \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the equation.​  r = - 4 \sec \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the equation.​  r = - 4 \sec \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the graph of the equation.​ r=1sinθr = 1 - \sin \theta

A)​  <strong>Select the graph of the equation.​  r = 1 - \sin \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the equation.​  r = 1 - \sin \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the equation.​  r = 1 - \sin \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the equation.​  r = 1 - \sin \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the equation.​  r = 1 - \sin \theta  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the graph of the equation.​ r=5sec(θπ2)r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)

A)​  <strong>Select the graph of the equation.​  r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the equation.​  r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the equation.​  r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the equation.​  r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the equation.​  r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r=48cosθr = 4 - 8 \cos \theta

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 - 8 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi  <div style=padding-top: 35px>  0θ<2π0 \leq \theta < 2 \pi
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 - 8 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi  <div style=padding-top: 35px>  0θ<2π0 \leq \theta < 2 \pi
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 - 8 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi  <div style=padding-top: 35px>  0θ<2π0 \leq \theta < 2 \pi
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 - 8 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi  <div style=padding-top: 35px>  0θ<2π0 \leq \theta < 2 \pi
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 - 8 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi  <div style=padding-top: 35px>  0θ<2π0 \leq \theta < 2 \pi
Question
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case.​ 0θπ0 \leq \theta \leq \pi

A)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  0 \leq \theta \leq \pi  ​</strong> A)​   Upper half of circle B)​   Upper half of circle C)​   Upper half of circle D)​   Upper half of circle E)​   Upper half of circle <div style=padding-top: 35px>  Upper half of circle
B)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  0 \leq \theta \leq \pi  ​</strong> A)​   Upper half of circle B)​   Upper half of circle C)​   Upper half of circle D)​   Upper half of circle E)​   Upper half of circle <div style=padding-top: 35px>  Upper half of circle
C)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  0 \leq \theta \leq \pi  ​</strong> A)​   Upper half of circle B)​   Upper half of circle C)​   Upper half of circle D)​   Upper half of circle E)​   Upper half of circle <div style=padding-top: 35px>  Upper half of circle
D)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  0 \leq \theta \leq \pi  ​</strong> A)​   Upper half of circle B)​   Upper half of circle C)​   Upper half of circle D)​   Upper half of circle E)​   Upper half of circle <div style=padding-top: 35px>  Upper half of circle
E)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  0 \leq \theta \leq \pi  ​</strong> A)​   Upper half of circle B)​   Upper half of circle C)​   Upper half of circle D)​   Upper half of circle E)​   Upper half of circle <div style=padding-top: 35px>  Upper half of circle
Question
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case.​ π2θπ2- \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }

A)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  ​</strong> A)​   Entire circle B)​   Entire circle C)​   Entire circle D)​   Entire circle E)​   Entire circle <div style=padding-top: 35px>  Entire circle
B)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  ​</strong> A)​   Entire circle B)​   Entire circle C)​   Entire circle D)​   Entire circle E)​   Entire circle <div style=padding-top: 35px>  Entire circle
C)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  ​</strong> A)​   Entire circle B)​   Entire circle C)​   Entire circle D)​   Entire circle E)​   Entire circle <div style=padding-top: 35px>  Entire circle
D)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  ​</strong> A)​   Entire circle B)​   Entire circle C)​   Entire circle D)​   Entire circle E)​   Entire circle <div style=padding-top: 35px>  Entire circle
E)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  ​</strong> A)​   Entire circle B)​   Entire circle C)​   Entire circle D)​   Entire circle E)​   Entire circle <div style=padding-top: 35px>  Entire circle
Question
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case.​ π2θπ\frac { \pi } { 2 } \leq \theta \leq \pi

A)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 2 } \leq \theta \leq \pi  ​</strong> A)​   Lower half of circle B)​   Lower half of circle C)​   Lower half of circle D)​   Lower half of circle E)​   Lower half of circle <div style=padding-top: 35px>  Lower half of circle
B)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 2 } \leq \theta \leq \pi  ​</strong> A)​   Lower half of circle B)​   Lower half of circle C)​   Lower half of circle D)​   Lower half of circle E)​   Lower half of circle <div style=padding-top: 35px>  Lower half of circle
C)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 2 } \leq \theta \leq \pi  ​</strong> A)​   Lower half of circle B)​   Lower half of circle C)​   Lower half of circle D)​   Lower half of circle E)​   Lower half of circle <div style=padding-top: 35px>  Lower half of circle
D)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 2 } \leq \theta \leq \pi  ​</strong> A)​   Lower half of circle B)​   Lower half of circle C)​   Lower half of circle D)​   Lower half of circle E)​   Lower half of circle <div style=padding-top: 35px>  Lower half of circle
E)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 2 } \leq \theta \leq \pi  ​</strong> A)​   Lower half of circle B)​   Lower half of circle C)​   Lower half of circle D)​   Lower half of circle E)​   Lower half of circle <div style=padding-top: 35px>  Lower half of circle
Question
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r=5+4cosθr = 5 + 4 \cos \theta

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 5 + 4 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi  <div style=padding-top: 35px>  0θ<2π0 \leq \theta < 2 \pi
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 5 + 4 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi  <div style=padding-top: 35px>  0θ<2π0 \leq \theta < 2 \pi
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 5 + 4 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi  <div style=padding-top: 35px>  0θ<2π0 \leq \theta < 2 \pi
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 5 + 4 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi  <div style=padding-top: 35px>  0θ<2π0 \leq \theta < 2 \pi
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 5 + 4 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi  <div style=padding-top: 35px>  0θ<2π0 \leq \theta < 2 \pi
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=82sinθ3cosθr = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }

A) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  ​</strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   <div style=padding-top: 35px>
B) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  ​</strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   <div style=padding-top: 35px>
C) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  ​</strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   <div style=padding-top: 35px>
D) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  ​</strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   <div style=padding-top: 35px>
E) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  ​</strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r2=4cos2θr ^ { 2 } = 4 \cos 2 \theta

A)Symmetric with respect to the polar axis, θ=π2\theta = \frac { \pi } { 2 } ,and the pole
Lemniscate
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 4 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   B)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   C)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   D)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   E)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   <div style=padding-top: 35px>
B)Symmetric with respect to the polar axis, θ=π2\theta = \frac { \pi } { 2 } ,and the pole
Lemniscate
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 4 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   B)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   C)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   D)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   E)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   <div style=padding-top: 35px>
C)Symmetric with respect to the polar axis, θ=π2\theta = \frac { \pi } { 2 } ,and the pole
Lemniscate
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 4 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   B)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   C)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   D)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   E)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   <div style=padding-top: 35px>
D)Symmetric with respect to the polar axis, θ=π2\theta = \frac { \pi } { 2 } ,and the pole
Lemniscate
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 4 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   B)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   C)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   D)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   E)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   <div style=padding-top: 35px>
E)Symmetric with respect to the polar axis, θ=π2\theta = \frac { \pi } { 2 } ,and the pole
Lemniscate
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 4 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   B)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   C)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   D)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   E)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   <div style=padding-top: 35px>
Question
Consider the equation r=sinkθr = \sin k \theta .Select the correct graph of the equation for k=2.5k = 2.5 . ​

A)​  <strong>Consider the equation  r = \sin k \theta  .Select the correct graph of the equation for  k = 2.5  . ​</strong> A)​   B)​   C)​   D)​   ​ E)​   <div style=padding-top: 35px>
B)​  <strong>Consider the equation  r = \sin k \theta  .Select the correct graph of the equation for  k = 2.5  . ​</strong> A)​   B)​   C)​   D)​   ​ E)​   <div style=padding-top: 35px>
C)​  <strong>Consider the equation  r = \sin k \theta  .Select the correct graph of the equation for  k = 2.5  . ​</strong> A)​   B)​   C)​   D)​   ​ E)​   <div style=padding-top: 35px>
D)​  <strong>Consider the equation  r = \sin k \theta  .Select the correct graph of the equation for  k = 2.5  . ​</strong> A)​   B)​   C)​   D)​   ​ E)​   <div style=padding-top: 35px>
E)​  <strong>Consider the equation  r = \sin k \theta  .Select the correct graph of the equation for  k = 2.5  . ​</strong> A)​   B)​   C)​   D)​   ​ E)​   <div style=padding-top: 35px>
Question
Select the graph of the equation.​ r=4sec(θ+π3)r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)

A)​  <strong>Select the graph of the equation.​  r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the equation.​  r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the equation.​  r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the equation.​  r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the equation.​  r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r2=9sinθr ^ { 2 } = 9 \sin \theta

A) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 9 \sin \theta  ​</strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   <div style=padding-top: 35px>
B) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 9 \sin \theta  ​</strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   <div style=padding-top: 35px>
C) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 9 \sin \theta  ​</strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   <div style=padding-top: 35px>
D) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 9 \sin \theta  ​</strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   <div style=padding-top: 35px>
E) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 9 \sin \theta  ​</strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   <div style=padding-top: 35px>
Question
Consider the equation r=3sinkφr = 3 \sin k \varphi .Select the correct graph of the equation for k=1.5k = 1.5 . ​

A)​  <strong>Consider the equation  r = 3 \sin k \varphi  .Select the correct graph of the equation for  k = 1.5  . ​</strong> A)​   B)​   C)​   ​ D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Consider the equation  r = 3 \sin k \varphi  .Select the correct graph of the equation for  k = 1.5  . ​</strong> A)​   B)​   C)​   ​ D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Consider the equation  r = 3 \sin k \varphi  .Select the correct graph of the equation for  k = 1.5  . ​</strong> A)​   B)​   C)​   ​ D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Consider the equation  r = 3 \sin k \varphi  .Select the correct graph of the equation for  k = 1.5  . ​</strong> A)​   B)​   C)​   ​ D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Consider the equation  r = 3 \sin k \varphi  .Select the correct graph of the equation for  k = 1.5  . ​</strong> A)​   B)​   C)​   ​ D)​   E)​   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4sinθ2cosθr = \frac { 4 } { \sin \theta - 2 \cos \theta }

A) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 4 } { \sin \theta - 2 \cos \theta }  ​</strong> A)  y = 2 x + 4 \Rightarrow \text { Line }  ​   B)  y = 2 x + 4 \Rightarrow \text { Line }  ​   C)  y = 2 x + 4 \Rightarrow \text { Line }  ​   D)  y = 2 x + 4 \Rightarrow \text { Line }  ​   E)  y = 2 x + 4 \Rightarrow \text { Line }  ​   <div style=padding-top: 35px>
B) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 4 } { \sin \theta - 2 \cos \theta }  ​</strong> A)  y = 2 x + 4 \Rightarrow \text { Line }  ​   B)  y = 2 x + 4 \Rightarrow \text { Line }  ​   C)  y = 2 x + 4 \Rightarrow \text { Line }  ​   D)  y = 2 x + 4 \Rightarrow \text { Line }  ​   E)  y = 2 x + 4 \Rightarrow \text { Line }  ​   <div style=padding-top: 35px>
C) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 4 } { \sin \theta - 2 \cos \theta }  ​</strong> A)  y = 2 x + 4 \Rightarrow \text { Line }  ​   B)  y = 2 x + 4 \Rightarrow \text { Line }  ​   C)  y = 2 x + 4 \Rightarrow \text { Line }  ​   D)  y = 2 x + 4 \Rightarrow \text { Line }  ​   E)  y = 2 x + 4 \Rightarrow \text { Line }  ​   <div style=padding-top: 35px>
D) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 4 } { \sin \theta - 2 \cos \theta }  ​</strong> A)  y = 2 x + 4 \Rightarrow \text { Line }  ​   B)  y = 2 x + 4 \Rightarrow \text { Line }  ​   C)  y = 2 x + 4 \Rightarrow \text { Line }  ​   D)  y = 2 x + 4 \Rightarrow \text { Line }  ​   E)  y = 2 x + 4 \Rightarrow \text { Line }  ​   <div style=padding-top: 35px>
E) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 4 } { \sin \theta - 2 \cos \theta }  ​</strong> A)  y = 2 x + 4 \Rightarrow \text { Line }  ​   B)  y = 2 x + 4 \Rightarrow \text { Line }  ​   C)  y = 2 x + 4 \Rightarrow \text { Line }  ​   D)  y = 2 x + 4 \Rightarrow \text { Line }  ​   E)  y = 2 x + 4 \Rightarrow \text { Line }  ​   <div style=padding-top: 35px>
Question
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r=cos(3θ2)r = \cos \left( \frac { 3 \theta } { 2 } \right)

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = \cos \left( \frac { 3 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi  <div style=padding-top: 35px>  0θ<4π0 \leq \theta < 4 \pi
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = \cos \left( \frac { 3 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi  <div style=padding-top: 35px>  0θ<4π0 \leq \theta < 4 \pi
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = \cos \left( \frac { 3 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi  <div style=padding-top: 35px>  0θ<4π0 \leq \theta < 4 \pi
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = \cos \left( \frac { 3 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi  <div style=padding-top: 35px>  0θ<4π0 \leq \theta < 4 \pi
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = \cos \left( \frac { 3 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi  <div style=padding-top: 35px>  0θ<4π0 \leq \theta < 4 \pi
Question
Select the graph of r=4cosθr = 4 \cos \theta over the interval.Describe the part of the graph obtained in this case.​ π4θ3π4\frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }

A)​  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  ​</strong> A)​   Left half of circle B)​   Left half of circle C)​   Left half of circle D)​   Left half of circle E)​   Left half of circle <div style=padding-top: 35px>  Left half of circle
B)​  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  ​</strong> A)​   Left half of circle B)​   Left half of circle C)​   Left half of circle D)​   Left half of circle E)​   Left half of circle <div style=padding-top: 35px>  Left half of circle
C)​  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  ​</strong> A)​   Left half of circle B)​   Left half of circle C)​   Left half of circle D)​   Left half of circle E)​   Left half of circle <div style=padding-top: 35px>  Left half of circle
D)​  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  ​</strong> A)​   Left half of circle B)​   Left half of circle C)​   Left half of circle D)​   Left half of circle E)​   Left half of circle <div style=padding-top: 35px>  Left half of circle
E)​  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  ​</strong> A)​   Left half of circle B)​   Left half of circle C)​   Left half of circle D)​   Left half of circle E)​   Left half of circle <div style=padding-top: 35px>  Left half of circle
Question
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=cscθr = \csc \theta

A) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \csc \theta  ​</strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
B) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \csc \theta  ​</strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
C) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \csc \theta  ​</strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
D) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \csc \theta  ​</strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
E) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \csc \theta  ​</strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
Question
Select the graph of the equation.​ r=2sin(θπ4)r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)

A)​  <strong>Select the graph of the equation.​  r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the equation.​  r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the equation.​  r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the equation.​  r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the equation.​  r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the graph of the equation.​ r=2sec(θπ4)r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)

A)​  <strong>Select the graph of the equation.​  r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of the equation.​  r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of the equation.​  r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of the equation.​  r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of the equation.​  r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   ​ C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r2=4θr ^ { 2 } = \frac { 4 } { \theta }

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = \frac { 4 } { \theta }  ​</strong> A)​    0 < \theta < \infty  B)​    0 < \theta < \infty  C)​    0 < \theta < \infty  D)​    0 < \theta < \infty  E)​    0 < \theta < \infty  <div style=padding-top: 35px>  0<θ<0 < \theta < \infty
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = \frac { 4 } { \theta }  ​</strong> A)​    0 < \theta < \infty  B)​    0 < \theta < \infty  C)​    0 < \theta < \infty  D)​    0 < \theta < \infty  E)​    0 < \theta < \infty  <div style=padding-top: 35px>  0<θ<0 < \theta < \infty
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = \frac { 4 } { \theta }  ​</strong> A)​    0 < \theta < \infty  B)​    0 < \theta < \infty  C)​    0 < \theta < \infty  D)​    0 < \theta < \infty  E)​    0 < \theta < \infty  <div style=padding-top: 35px>  0<θ<0 < \theta < \infty
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = \frac { 4 } { \theta }  ​</strong> A)​    0 < \theta < \infty  B)​    0 < \theta < \infty  C)​    0 < \theta < \infty  D)​    0 < \theta < \infty  E)​    0 < \theta < \infty  <div style=padding-top: 35px>  0<θ<0 < \theta < \infty
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = \frac { 4 } { \theta }  ​</strong> A)​    0 < \theta < \infty  B)​    0 < \theta < \infty  C)​    0 < \theta < \infty  D)​    0 < \theta < \infty  E)​    0 < \theta < \infty  <div style=padding-top: 35px>  0<θ<0 < \theta < \infty
Question
Select the correct graph of the polar equation.Describe your viewing window.​ r=74r = \frac { 7 } { 4 }

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
Question
Select the correct graph of the polar equation.Describe your viewing window.​ r=9π2r = \frac { 9 \pi } { 2 }

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 9 \pi } { 2 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  B)​    \begin{array}{l} \theta_{\min }=0 \\ \theta_{\max }=2 \pi \\ \theta_{s t e p}=\pi / 24 \\ X_{\min }=-18 \\ X_{\max }=18 \\ X_{s c l}=3 \\ Y_{\min }=-18 \\ Y_{\max }=18 \\ Y_{s c l}=3 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=18Xmax=18Xscl=3Ymin=18Ymax=18Yscl=3\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 18 \\X _ { \max } = 18 \\X _ { s c l } = 3 \\Y _ { \min } = - 18 \\Y _ { \max } = 18 \\Y _ { s c l } = 3\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 9 \pi } { 2 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  B)​    \begin{array}{l} \theta_{\min }=0 \\ \theta_{\max }=2 \pi \\ \theta_{s t e p}=\pi / 24 \\ X_{\min }=-18 \\ X_{\max }=18 \\ X_{s c l}=3 \\ Y_{\min }=-18 \\ Y_{\max }=18 \\ Y_{s c l}=3 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=18Xmax=18Xscl=3Ymin=18Ymax=18Yscl=3\begin{array}{l}\theta_{\min }=0 \\\theta_{\max }=2 \pi \\\theta_{s t e p}=\pi / 24 \\X_{\min }=-18 \\X_{\max }=18 \\X_{s c l}=3 \\Y_{\min }=-18 \\Y_{\max }=18 \\Y_{s c l}=3\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 9 \pi } { 2 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  B)​    \begin{array}{l} \theta_{\min }=0 \\ \theta_{\max }=2 \pi \\ \theta_{s t e p}=\pi / 24 \\ X_{\min }=-18 \\ X_{\max }=18 \\ X_{s c l}=3 \\ Y_{\min }=-18 \\ Y_{\max }=18 \\ Y_{s c l}=3 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=18Xmax=18Xscl=3Ymin=18Ymax=18Yscl=3\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 18 \\X _ { \max } = 18 \\X _ { s c l } = 3 \\Y _ { \min } = - 18 \\Y _ { \max } = 18 \\Y _ { s c l } = 3\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 9 \pi } { 2 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  B)​    \begin{array}{l} \theta_{\min }=0 \\ \theta_{\max }=2 \pi \\ \theta_{s t e p}=\pi / 24 \\ X_{\min }=-18 \\ X_{\max }=18 \\ X_{s c l}=3 \\ Y_{\min }=-18 \\ Y_{\max }=18 \\ Y_{s c l}=3 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=18Xmax=18Xscl=3Ymin=18Ymax=18Yscl=3\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 18 \\X _ { \max } = 18 \\X _ { s c l } = 3 \\Y _ { \min } = - 18 \\Y _ { \max } = 18 \\Y _ { s c l } = 3\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 9 \pi } { 2 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  B)​    \begin{array}{l} \theta_{\min }=0 \\ \theta_{\max }=2 \pi \\ \theta_{s t e p}=\pi / 24 \\ X_{\min }=-18 \\ X_{\max }=18 \\ X_{s c l}=3 \\ Y_{\min }=-18 \\ Y_{\max }=18 \\ Y_{s c l}=3 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=18Xmax=18Xscl=3Ymin=18Ymax=18Yscl=3\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 18 \\X _ { \max } = 18 \\X _ { s c l } = 3 \\Y _ { \min } = - 18 \\Y _ { \max } = 18 \\Y _ { s c l } = 3\end{array}
Question
Select the correct graph of the polar equation.Describe your viewing window.​ r=8sinθcos2θr = 8 \sin \theta \cos ^ { 2 } \theta

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 8 \sin \theta \cos ^ { 2 } \theta  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 8 \sin \theta \cos ^ { 2 } \theta  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 8 \sin \theta \cos ^ { 2 } \theta  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 8 \sin \theta \cos ^ { 2 } \theta  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 8 \sin \theta \cos ^ { 2 } \theta  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
Question
Select the correct graph of the polar equation.Describe your viewing window.​ r=74r = \frac { 7 } { 4 }

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
Question
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r=4sin(5θ2)r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi  <div style=padding-top: 35px>  0θ<4π0 \leq \theta < 4 \pi
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi  <div style=padding-top: 35px>  0θ<4π0 \leq \theta < 4 \pi
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi  <div style=padding-top: 35px>  0θ<4π0 \leq \theta < 4 \pi
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi  <div style=padding-top: 35px>  0θ<4π0 \leq \theta < 4 \pi
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi  <div style=padding-top: 35px>  0θ<4π0 \leq \theta < 4 \pi
Question
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r2=4sin2θr ^ { 2 } = 4 \sin 2 \theta

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = 4 \sin 2 \theta  ​</strong> A)​    0 \leq \theta < \pi  B)​    0 \leq \theta < \pi  C)​    0 \leq \theta < \pi  D)​    0 \leq \theta < \pi  E)​    0 \leq \theta < \pi  <div style=padding-top: 35px>  0θ<π0 \leq \theta < \pi
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = 4 \sin 2 \theta  ​</strong> A)​    0 \leq \theta < \pi  B)​    0 \leq \theta < \pi  C)​    0 \leq \theta < \pi  D)​    0 \leq \theta < \pi  E)​    0 \leq \theta < \pi  <div style=padding-top: 35px>  0θ<π0 \leq \theta < \pi
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = 4 \sin 2 \theta  ​</strong> A)​    0 \leq \theta < \pi  B)​    0 \leq \theta < \pi  C)​    0 \leq \theta < \pi  D)​    0 \leq \theta < \pi  E)​    0 \leq \theta < \pi  <div style=padding-top: 35px>  0θ<π0 \leq \theta < \pi
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = 4 \sin 2 \theta  ​</strong> A)​    0 \leq \theta < \pi  B)​    0 \leq \theta < \pi  C)​    0 \leq \theta < \pi  D)​    0 \leq \theta < \pi  E)​    0 \leq \theta < \pi  <div style=padding-top: 35px>  0θ<π0 \leq \theta < \pi
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = 4 \sin 2 \theta  ​</strong> A)​    0 \leq \theta < \pi  B)​    0 \leq \theta < \pi  C)​    0 \leq \theta < \pi  D)​    0 \leq \theta < \pi  E)​    0 \leq \theta < \pi  <div style=padding-top: 35px>  0θ<π0 \leq \theta < \pi
Question
Select the correct graph of the polar equation.Describe your viewing window.​ r=2cscθ+5r = 2 \csc \theta + 5

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 2 \csc \theta + 5  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 2 \csc \theta + 5  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 2 \csc \theta + 5  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 2 \csc \theta + 5  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 2 \csc \theta + 5  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
Question
Select the correct graph of the polar equation.Describe your viewing window.​ r=π4r = \frac { \pi } { 4 }

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  <div style=padding-top: 35px>  θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/49
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 67: Graphs of Polar Equations
1
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=5cos2θr = 5 \cos 2 \theta

A)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​
B)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​
C)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​
D)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​
E)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​   E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​
Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array} Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}  ​
2
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4(1cosθ)r = 4 ( 1 - \cos \theta )

A)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 ( 1 - \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}  ​   E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
B)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 ( 1 - \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}  ​   E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
C)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 ( 1 - \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}  ​   E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
D)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 ( 1 - \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}  ​   E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
E)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 ( 1 - \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}  ​   E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
3
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=2r = 2

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​
Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=2r = 2
 Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 2  ​
4
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=46cosθr = 4 - 6 \cos \theta

A)Symmetric with respect to the polar axis r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 6 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   B)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   C)Symmetric with respect to the polar axis ​  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}  ​ ​   D)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   E)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​
B)Symmetric with respect to the polar axis ​ r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 6 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   B)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   C)Symmetric with respect to the polar axis ​  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}  ​ ​   D)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   E)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​
C)Symmetric with respect to the polar axis ​ r=10 when θ=πr=0 when cosθ=46\begin{array} { l } | r | = 10 \text { when } \theta = \pi \\r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }\end{array}

 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 6 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   B)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   C)Symmetric with respect to the polar axis ​  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}  ​ ​   D)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   E)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​
D)Symmetric with respect to the polar axis ​ r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 6 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   B)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   C)Symmetric with respect to the polar axis ​  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}  ​ ​   D)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   E)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​
E)Symmetric with respect to the polar axis ​ r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 6 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   B)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   C)Symmetric with respect to the polar axis ​  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}  ​ ​   D)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​   E)Symmetric with respect to the polar axis ​  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
5
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4+6sinθr = 4 + 6 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 }
r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 + 6 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 }
r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 + 6 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 }
r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 + 6 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 }
r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 + 6 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 }
r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 + 6 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
6
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=43sinθr = 4 - 3 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 3 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 3 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 3 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 3 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 3 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
7
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=(1+sinθ)r = ( 1 + \sin \theta )

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = ( 1 + \sin \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​ ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
8
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=1r = 1

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=1r = 1
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 1  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=1r = 1
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 1  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=1r = 1
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 1  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=1r = 1
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 1  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius r=1r = 1
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 1  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  r = 1  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
9
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=cos3θr = \cos 3 \theta

A)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​
B)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​
C)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​
D)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​
E)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \cos 3 \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​   E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
10
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4sin(2θ)r = 4 \sin ( 2 \theta )

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
11
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=3π7r = \frac { 3 \pi } { 7 }

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius 3π7\frac { 3 \pi } { 7 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 3 \pi } { 7 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius 3π7\frac { 3 \pi } { 7 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 3 \pi } { 7 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius 3π7\frac { 3 \pi } { 7 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 3 \pi } { 7 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius 3π7\frac { 3 \pi } { 7 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 3 \pi } { 7 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius 3π7\frac { 3 \pi } { 7 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 3 \pi } { 7 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { 3 \pi } { 7 }  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
12
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=π4r = \frac { \pi } { 4 }

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius π4\frac { \pi } { 4 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { \pi } { 4 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius π4\frac { \pi } { 4 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { \pi } { 4 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius π4\frac { \pi } { 4 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { \pi } { 4 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius π4\frac { \pi } { 4 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { \pi } { 4 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,polar axis,pole Circle with radius π4\frac { \pi } { 4 }
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { \pi } { 4 }  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,polar axis,pole Circle with radius  \frac { \pi } { 4 }  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
13
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=45cosθr = 4 - 5 \cos \theta

A)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​
B)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​
C)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​
D)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​
E)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 - 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​   E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
14
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4sin3θr = 4 \sin 3 \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
15
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=3+7cosθr = 3 + 7 \cos \theta

A)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 + 7 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​
B)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 + 7 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​
C)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 + 7 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​
D)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 + 7 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​
E)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 + 7 \cos \theta  ​</strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​   E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
16
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=5cosθr = 5 \cos \theta

A)Symmetric with respect to polar axis Circle with radius 2.5
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis Circle with radius 2.5 ​   B)Symmetric with respect to polar axis Circle with radius 2.5 ​   C)Symmetric with respect to polar axis Circle with radius 2.5 ​   D)Symmetric with respect to polar axis Circle with radius 2.5 ​   E)Symmetric with respect to polar axis Circle with radius 2.5 ​
B)Symmetric with respect to polar axis Circle with radius 2.5
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis Circle with radius 2.5 ​   B)Symmetric with respect to polar axis Circle with radius 2.5 ​   C)Symmetric with respect to polar axis Circle with radius 2.5 ​   D)Symmetric with respect to polar axis Circle with radius 2.5 ​   E)Symmetric with respect to polar axis Circle with radius 2.5 ​
C)Symmetric with respect to polar axis Circle with radius 2.5
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis Circle with radius 2.5 ​   B)Symmetric with respect to polar axis Circle with radius 2.5 ​   C)Symmetric with respect to polar axis Circle with radius 2.5 ​   D)Symmetric with respect to polar axis Circle with radius 2.5 ​   E)Symmetric with respect to polar axis Circle with radius 2.5 ​
D)Symmetric with respect to polar axis Circle with radius 2.5
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis Circle with radius 2.5 ​   B)Symmetric with respect to polar axis Circle with radius 2.5 ​   C)Symmetric with respect to polar axis Circle with radius 2.5 ​   D)Symmetric with respect to polar axis Circle with radius 2.5 ​   E)Symmetric with respect to polar axis Circle with radius 2.5 ​
E)Symmetric with respect to polar axis Circle with radius 2.5
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 5 \cos \theta  ​</strong> A)Symmetric with respect to polar axis Circle with radius 2.5 ​   B)Symmetric with respect to polar axis Circle with radius 2.5 ​   C)Symmetric with respect to polar axis Circle with radius 2.5 ​   D)Symmetric with respect to polar axis Circle with radius 2.5 ​   E)Symmetric with respect to polar axis Circle with radius 2.5 ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
17
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ γ=(1+cosθ)\gamma = ( 1 + \cos \theta )

A)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  \gamma = ( 1 + \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​ ​   C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​
B)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  \gamma = ( 1 + \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​ ​   C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​
C)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  \gamma = ( 1 + \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​ ​   C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​
D)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  \gamma = ( 1 + \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​ ​   C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​
E)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  \gamma = ( 1 + \cos \theta )  ​</strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​ ​   C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​   E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
18
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=2(1sinθ)r = 2 ( 1 - \sin \theta )

A)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2 ( 1 - \sin \theta )  ​</strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
B)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2 ( 1 - \sin \theta )  ​</strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
C)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2 ( 1 - \sin \theta )  ​</strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
D)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2 ( 1 - \sin \theta )  ​</strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
E)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 2 ( 1 - \sin \theta )  ​</strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​   E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
19
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=35sinθr = 3 - 5 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 - 5 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 - 5 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 - 5 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 - 5 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 3 - 5 \sin \theta  ​</strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​   E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
20
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=secθr = \sec \theta

A) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \sec \theta  ​</strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }
B) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \sec \theta  ​</strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }
C) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \sec \theta  ​</strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }
D) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \sec \theta  ​</strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }
E) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \sec \theta  ​</strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
21
Select the graph of the equation.​ r=4secθr = - 4 \sec \theta

A)​  <strong>Select the graph of the equation.​  r = - 4 \sec \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of the equation.​  r = - 4 \sec \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of the equation.​  r = - 4 \sec \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of the equation.​  r = - 4 \sec \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of the equation.​  r = - 4 \sec \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
22
Select the graph of the equation.​ r=1sinθr = 1 - \sin \theta

A)​  <strong>Select the graph of the equation.​  r = 1 - \sin \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of the equation.​  r = 1 - \sin \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of the equation.​  r = 1 - \sin \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of the equation.​  r = 1 - \sin \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of the equation.​  r = 1 - \sin \theta  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
23
Select the graph of the equation.​ r=5sec(θπ2)r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)

A)​  <strong>Select the graph of the equation.​  r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of the equation.​  r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of the equation.​  r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of the equation.​  r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of the equation.​  r = 5 \sec \left( \theta - \frac { \pi } { 2 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
24
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r=48cosθr = 4 - 8 \cos \theta

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 - 8 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi   0θ<2π0 \leq \theta < 2 \pi
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 - 8 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi   0θ<2π0 \leq \theta < 2 \pi
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 - 8 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi   0θ<2π0 \leq \theta < 2 \pi
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 - 8 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi   0θ<2π0 \leq \theta < 2 \pi
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 - 8 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi   0θ<2π0 \leq \theta < 2 \pi
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
25
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case.​ 0θπ0 \leq \theta \leq \pi

A)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  0 \leq \theta \leq \pi  ​</strong> A)​   Upper half of circle B)​   Upper half of circle C)​   Upper half of circle D)​   Upper half of circle E)​   Upper half of circle  Upper half of circle
B)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  0 \leq \theta \leq \pi  ​</strong> A)​   Upper half of circle B)​   Upper half of circle C)​   Upper half of circle D)​   Upper half of circle E)​   Upper half of circle  Upper half of circle
C)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  0 \leq \theta \leq \pi  ​</strong> A)​   Upper half of circle B)​   Upper half of circle C)​   Upper half of circle D)​   Upper half of circle E)​   Upper half of circle  Upper half of circle
D)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  0 \leq \theta \leq \pi  ​</strong> A)​   Upper half of circle B)​   Upper half of circle C)​   Upper half of circle D)​   Upper half of circle E)​   Upper half of circle  Upper half of circle
E)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  0 \leq \theta \leq \pi  ​</strong> A)​   Upper half of circle B)​   Upper half of circle C)​   Upper half of circle D)​   Upper half of circle E)​   Upper half of circle  Upper half of circle
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
26
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case.​ π2θπ2- \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }

A)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  ​</strong> A)​   Entire circle B)​   Entire circle C)​   Entire circle D)​   Entire circle E)​   Entire circle  Entire circle
B)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  ​</strong> A)​   Entire circle B)​   Entire circle C)​   Entire circle D)​   Entire circle E)​   Entire circle  Entire circle
C)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  ​</strong> A)​   Entire circle B)​   Entire circle C)​   Entire circle D)​   Entire circle E)​   Entire circle  Entire circle
D)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  ​</strong> A)​   Entire circle B)​   Entire circle C)​   Entire circle D)​   Entire circle E)​   Entire circle  Entire circle
E)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  ​</strong> A)​   Entire circle B)​   Entire circle C)​   Entire circle D)​   Entire circle E)​   Entire circle  Entire circle
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
27
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case.​ π2θπ\frac { \pi } { 2 } \leq \theta \leq \pi

A)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 2 } \leq \theta \leq \pi  ​</strong> A)​   Lower half of circle B)​   Lower half of circle C)​   Lower half of circle D)​   Lower half of circle E)​   Lower half of circle  Lower half of circle
B)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 2 } \leq \theta \leq \pi  ​</strong> A)​   Lower half of circle B)​   Lower half of circle C)​   Lower half of circle D)​   Lower half of circle E)​   Lower half of circle  Lower half of circle
C)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 2 } \leq \theta \leq \pi  ​</strong> A)​   Lower half of circle B)​   Lower half of circle C)​   Lower half of circle D)​   Lower half of circle E)​   Lower half of circle  Lower half of circle
D)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 2 } \leq \theta \leq \pi  ​</strong> A)​   Lower half of circle B)​   Lower half of circle C)​   Lower half of circle D)​   Lower half of circle E)​   Lower half of circle  Lower half of circle
E)​  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 2 } \leq \theta \leq \pi  ​</strong> A)​   Lower half of circle B)​   Lower half of circle C)​   Lower half of circle D)​   Lower half of circle E)​   Lower half of circle  Lower half of circle
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
28
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r=5+4cosθr = 5 + 4 \cos \theta

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 5 + 4 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi   0θ<2π0 \leq \theta < 2 \pi
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 5 + 4 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi   0θ<2π0 \leq \theta < 2 \pi
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 5 + 4 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi   0θ<2π0 \leq \theta < 2 \pi
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 5 + 4 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi   0θ<2π0 \leq \theta < 2 \pi
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 5 + 4 \cos \theta  ​</strong> A)​    0 \leq \theta < 2 \pi  B)​    0 \leq \theta < 2 \pi  C)​    0 \leq \theta < 2 \pi  D)​    0 \leq \theta < 2 \pi  E)​    0 \leq \theta < 2 \pi   0θ<2π0 \leq \theta < 2 \pi
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
29
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=82sinθ3cosθr = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }

A) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  ​</strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​
B) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  ​</strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​
C) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  ​</strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​
D) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  ​</strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​
E) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  ​</strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​   E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
30
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r2=4cos2θr ^ { 2 } = 4 \cos 2 \theta

A)Symmetric with respect to the polar axis, θ=π2\theta = \frac { \pi } { 2 } ,and the pole
Lemniscate
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 4 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   B)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   C)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   D)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   E)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​
B)Symmetric with respect to the polar axis, θ=π2\theta = \frac { \pi } { 2 } ,and the pole
Lemniscate
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 4 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   B)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   C)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   D)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   E)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​
C)Symmetric with respect to the polar axis, θ=π2\theta = \frac { \pi } { 2 } ,and the pole
Lemniscate
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 4 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   B)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   C)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   D)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   E)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​
D)Symmetric with respect to the polar axis, θ=π2\theta = \frac { \pi } { 2 } ,and the pole
Lemniscate
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 4 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   B)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   C)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   D)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   E)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​
E)Symmetric with respect to the polar axis, θ=π2\theta = \frac { \pi } { 2 } ,and the pole
Lemniscate
 <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 4 \cos 2 \theta  ​</strong> A)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   B)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   C)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   D)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​   E)Symmetric with respect to the polar axis,  \theta = \frac { \pi } { 2 }  ,and the pole Lemniscate ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
31
Consider the equation r=sinkθr = \sin k \theta .Select the correct graph of the equation for k=2.5k = 2.5 . ​

A)​  <strong>Consider the equation  r = \sin k \theta  .Select the correct graph of the equation for  k = 2.5  . ​</strong> A)​   B)​   C)​   D)​   ​ E)​
B)​  <strong>Consider the equation  r = \sin k \theta  .Select the correct graph of the equation for  k = 2.5  . ​</strong> A)​   B)​   C)​   D)​   ​ E)​
C)​  <strong>Consider the equation  r = \sin k \theta  .Select the correct graph of the equation for  k = 2.5  . ​</strong> A)​   B)​   C)​   D)​   ​ E)​
D)​  <strong>Consider the equation  r = \sin k \theta  .Select the correct graph of the equation for  k = 2.5  . ​</strong> A)​   B)​   C)​   D)​   ​ E)​
E)​  <strong>Consider the equation  r = \sin k \theta  .Select the correct graph of the equation for  k = 2.5  . ​</strong> A)​   B)​   C)​   D)​   ​ E)​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
32
Select the graph of the equation.​ r=4sec(θ+π3)r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)

A)​  <strong>Select the graph of the equation.​  r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of the equation.​  r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of the equation.​  r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of the equation.​  r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of the equation.​  r = 4 \sec \left( \theta + \frac { \pi } { 3 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
33
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r2=9sinθr ^ { 2 } = 9 \sin \theta

A) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 9 \sin \theta  ​</strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​
B) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 9 \sin \theta  ​</strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​
C) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 9 \sin \theta  ​</strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​
D) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 9 \sin \theta  ​</strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​
E) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array} <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r ^ { 2 } = 9 \sin \theta  ​</strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​   E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
34
Consider the equation r=3sinkφr = 3 \sin k \varphi .Select the correct graph of the equation for k=1.5k = 1.5 . ​

A)​  <strong>Consider the equation  r = 3 \sin k \varphi  .Select the correct graph of the equation for  k = 1.5  . ​</strong> A)​   B)​   C)​   ​ D)​   E)​
B)​  <strong>Consider the equation  r = 3 \sin k \varphi  .Select the correct graph of the equation for  k = 1.5  . ​</strong> A)​   B)​   C)​   ​ D)​   E)​
C)​  <strong>Consider the equation  r = 3 \sin k \varphi  .Select the correct graph of the equation for  k = 1.5  . ​</strong> A)​   B)​   C)​   ​ D)​   E)​
D)​  <strong>Consider the equation  r = 3 \sin k \varphi  .Select the correct graph of the equation for  k = 1.5  . ​</strong> A)​   B)​   C)​   ​ D)​   E)​
E)​  <strong>Consider the equation  r = 3 \sin k \varphi  .Select the correct graph of the equation for  k = 1.5  . ​</strong> A)​   B)​   C)​   ​ D)​   E)​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
35
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4sinθ2cosθr = \frac { 4 } { \sin \theta - 2 \cos \theta }

A) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 4 } { \sin \theta - 2 \cos \theta }  ​</strong> A)  y = 2 x + 4 \Rightarrow \text { Line }  ​   B)  y = 2 x + 4 \Rightarrow \text { Line }  ​   C)  y = 2 x + 4 \Rightarrow \text { Line }  ​   D)  y = 2 x + 4 \Rightarrow \text { Line }  ​   E)  y = 2 x + 4 \Rightarrow \text { Line }  ​
B) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 4 } { \sin \theta - 2 \cos \theta }  ​</strong> A)  y = 2 x + 4 \Rightarrow \text { Line }  ​   B)  y = 2 x + 4 \Rightarrow \text { Line }  ​   C)  y = 2 x + 4 \Rightarrow \text { Line }  ​   D)  y = 2 x + 4 \Rightarrow \text { Line }  ​   E)  y = 2 x + 4 \Rightarrow \text { Line }  ​
C) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 4 } { \sin \theta - 2 \cos \theta }  ​</strong> A)  y = 2 x + 4 \Rightarrow \text { Line }  ​   B)  y = 2 x + 4 \Rightarrow \text { Line }  ​   C)  y = 2 x + 4 \Rightarrow \text { Line }  ​   D)  y = 2 x + 4 \Rightarrow \text { Line }  ​   E)  y = 2 x + 4 \Rightarrow \text { Line }  ​
D) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 4 } { \sin \theta - 2 \cos \theta }  ​</strong> A)  y = 2 x + 4 \Rightarrow \text { Line }  ​   B)  y = 2 x + 4 \Rightarrow \text { Line }  ​   C)  y = 2 x + 4 \Rightarrow \text { Line }  ​   D)  y = 2 x + 4 \Rightarrow \text { Line }  ​   E)  y = 2 x + 4 \Rightarrow \text { Line }  ​
E) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line } <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \frac { 4 } { \sin \theta - 2 \cos \theta }  ​</strong> A)  y = 2 x + 4 \Rightarrow \text { Line }  ​   B)  y = 2 x + 4 \Rightarrow \text { Line }  ​   C)  y = 2 x + 4 \Rightarrow \text { Line }  ​   D)  y = 2 x + 4 \Rightarrow \text { Line }  ​   E)  y = 2 x + 4 \Rightarrow \text { Line }  ​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
36
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r=cos(3θ2)r = \cos \left( \frac { 3 \theta } { 2 } \right)

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = \cos \left( \frac { 3 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi   0θ<4π0 \leq \theta < 4 \pi
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = \cos \left( \frac { 3 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi   0θ<4π0 \leq \theta < 4 \pi
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = \cos \left( \frac { 3 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi   0θ<4π0 \leq \theta < 4 \pi
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = \cos \left( \frac { 3 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi   0θ<4π0 \leq \theta < 4 \pi
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = \cos \left( \frac { 3 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi   0θ<4π0 \leq \theta < 4 \pi
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
37
Select the graph of r=4cosθr = 4 \cos \theta over the interval.Describe the part of the graph obtained in this case.​ π4θ3π4\frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }

A)​  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  ​</strong> A)​   Left half of circle B)​   Left half of circle C)​   Left half of circle D)​   Left half of circle E)​   Left half of circle  Left half of circle
B)​  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  ​</strong> A)​   Left half of circle B)​   Left half of circle C)​   Left half of circle D)​   Left half of circle E)​   Left half of circle  Left half of circle
C)​  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  ​</strong> A)​   Left half of circle B)​   Left half of circle C)​   Left half of circle D)​   Left half of circle E)​   Left half of circle  Left half of circle
D)​  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  ​</strong> A)​   Left half of circle B)​   Left half of circle C)​   Left half of circle D)​   Left half of circle E)​   Left half of circle  Left half of circle
E)​  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.​  \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  ​</strong> A)​   Left half of circle B)​   Left half of circle C)​   Left half of circle D)​   Left half of circle E)​   Left half of circle  Left half of circle
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
38
Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=cscθr = \csc \theta

A) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \csc \theta  ​</strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }
B) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \csc \theta  ​</strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }
C) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \csc \theta  ​</strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }
D) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \csc \theta  ​</strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }
E) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = \csc \theta  ​</strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
39
Select the graph of the equation.​ r=2sin(θπ4)r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)

A)​  <strong>Select the graph of the equation.​  r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of the equation.​  r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of the equation.​  r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of the equation.​  r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of the equation.​  r = 2 - \sin \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
40
Select the graph of the equation.​ r=2sec(θπ4)r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)

A)​  <strong>Select the graph of the equation.​  r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   ​ C)​   D)​   E)​
B)​  <strong>Select the graph of the equation.​  r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   ​ C)​   D)​   E)​
C)​  <strong>Select the graph of the equation.​  r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   ​ C)​   D)​   E)​
D)​  <strong>Select the graph of the equation.​  r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   ​ C)​   D)​   E)​
E)​  <strong>Select the graph of the equation.​  r = 2 \sec \left( \theta - \frac { \pi } { 4 } \right)  ​</strong> A)​   B)​   ​ C)​   D)​   E)​
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
41
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r2=4θr ^ { 2 } = \frac { 4 } { \theta }

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = \frac { 4 } { \theta }  ​</strong> A)​    0 < \theta < \infty  B)​    0 < \theta < \infty  C)​    0 < \theta < \infty  D)​    0 < \theta < \infty  E)​    0 < \theta < \infty   0<θ<0 < \theta < \infty
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = \frac { 4 } { \theta }  ​</strong> A)​    0 < \theta < \infty  B)​    0 < \theta < \infty  C)​    0 < \theta < \infty  D)​    0 < \theta < \infty  E)​    0 < \theta < \infty   0<θ<0 < \theta < \infty
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = \frac { 4 } { \theta }  ​</strong> A)​    0 < \theta < \infty  B)​    0 < \theta < \infty  C)​    0 < \theta < \infty  D)​    0 < \theta < \infty  E)​    0 < \theta < \infty   0<θ<0 < \theta < \infty
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = \frac { 4 } { \theta }  ​</strong> A)​    0 < \theta < \infty  B)​    0 < \theta < \infty  C)​    0 < \theta < \infty  D)​    0 < \theta < \infty  E)​    0 < \theta < \infty   0<θ<0 < \theta < \infty
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = \frac { 4 } { \theta }  ​</strong> A)​    0 < \theta < \infty  B)​    0 < \theta < \infty  C)​    0 < \theta < \infty  D)​    0 < \theta < \infty  E)​    0 < \theta < \infty   0<θ<0 < \theta < \infty
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
42
Select the correct graph of the polar equation.Describe your viewing window.​ r=74r = \frac { 7 } { 4 }

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
43
Select the correct graph of the polar equation.Describe your viewing window.​ r=9π2r = \frac { 9 \pi } { 2 }

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 9 \pi } { 2 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  B)​    \begin{array}{l} \theta_{\min }=0 \\ \theta_{\max }=2 \pi \\ \theta_{s t e p}=\pi / 24 \\ X_{\min }=-18 \\ X_{\max }=18 \\ X_{s c l}=3 \\ Y_{\min }=-18 \\ Y_{\max }=18 \\ Y_{s c l}=3 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=18Xmax=18Xscl=3Ymin=18Ymax=18Yscl=3\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 18 \\X _ { \max } = 18 \\X _ { s c l } = 3 \\Y _ { \min } = - 18 \\Y _ { \max } = 18 \\Y _ { s c l } = 3\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 9 \pi } { 2 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  B)​    \begin{array}{l} \theta_{\min }=0 \\ \theta_{\max }=2 \pi \\ \theta_{s t e p}=\pi / 24 \\ X_{\min }=-18 \\ X_{\max }=18 \\ X_{s c l}=3 \\ Y_{\min }=-18 \\ Y_{\max }=18 \\ Y_{s c l}=3 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=18Xmax=18Xscl=3Ymin=18Ymax=18Yscl=3\begin{array}{l}\theta_{\min }=0 \\\theta_{\max }=2 \pi \\\theta_{s t e p}=\pi / 24 \\X_{\min }=-18 \\X_{\max }=18 \\X_{s c l}=3 \\Y_{\min }=-18 \\Y_{\max }=18 \\Y_{s c l}=3\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 9 \pi } { 2 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  B)​    \begin{array}{l} \theta_{\min }=0 \\ \theta_{\max }=2 \pi \\ \theta_{s t e p}=\pi / 24 \\ X_{\min }=-18 \\ X_{\max }=18 \\ X_{s c l}=3 \\ Y_{\min }=-18 \\ Y_{\max }=18 \\ Y_{s c l}=3 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=18Xmax=18Xscl=3Ymin=18Ymax=18Yscl=3\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 18 \\X _ { \max } = 18 \\X _ { s c l } = 3 \\Y _ { \min } = - 18 \\Y _ { \max } = 18 \\Y _ { s c l } = 3\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 9 \pi } { 2 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  B)​    \begin{array}{l} \theta_{\min }=0 \\ \theta_{\max }=2 \pi \\ \theta_{s t e p}=\pi / 24 \\ X_{\min }=-18 \\ X_{\max }=18 \\ X_{s c l}=3 \\ Y_{\min }=-18 \\ Y_{\max }=18 \\ Y_{s c l}=3 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=18Xmax=18Xscl=3Ymin=18Ymax=18Yscl=3\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 18 \\X _ { \max } = 18 \\X _ { s c l } = 3 \\Y _ { \min } = - 18 \\Y _ { \max } = 18 \\Y _ { s c l } = 3\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 9 \pi } { 2 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  B)​    \begin{array}{l} \theta_{\min }=0 \\ \theta_{\max }=2 \pi \\ \theta_{s t e p}=\pi / 24 \\ X_{\min }=-18 \\ X_{\max }=18 \\ X_{s c l}=3 \\ Y_{\min }=-18 \\ Y_{\max }=18 \\ Y_{s c l}=3 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 18 \\ X _ { \max } = 18 \\ X _ { s c l } = 3 \\ Y _ { \min } = - 18 \\ Y _ { \max } = 18 \\ Y _ { s c l } = 3 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=18Xmax=18Xscl=3Ymin=18Ymax=18Yscl=3\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 18 \\X _ { \max } = 18 \\X _ { s c l } = 3 \\Y _ { \min } = - 18 \\Y _ { \max } = 18 \\Y _ { s c l } = 3\end{array}
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
44
Select the correct graph of the polar equation.Describe your viewing window.​ r=8sinθcos2θr = 8 \sin \theta \cos ^ { 2 } \theta

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 8 \sin \theta \cos ^ { 2 } \theta  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 8 \sin \theta \cos ^ { 2 } \theta  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 8 \sin \theta \cos ^ { 2 } \theta  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 8 \sin \theta \cos ^ { 2 } \theta  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 8 \sin \theta \cos ^ { 2 } \theta  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 3 \\ X _ { \max } = 3 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 3 \\ Y _ { \max } = 3 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=3Xmax=3Xscl=1Ymin=3Ymax=3Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 3 \\X _ { \max } = 3 \\X _ { s c l } = 1 \\Y _ { \min } = - 3 \\Y _ { \max } = 3 \\Y _ { s c l } = 1\end{array}
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
45
Select the correct graph of the polar equation.Describe your viewing window.​ r=74r = \frac { 7 } { 4 }

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { 7 } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
46
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r=4sin(5θ2)r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi   0θ<4π0 \leq \theta < 4 \pi
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi   0θ<4π0 \leq \theta < 4 \pi
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi   0θ<4π0 \leq \theta < 4 \pi
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi   0θ<4π0 \leq \theta < 4 \pi
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r = 4 \sin \left( \frac { 5 \theta } { 2 } \right)  ​</strong> A)​    0 \leq \theta < 4 \pi  B)​    0 \leq \theta < 4 \pi  C)​    0 \leq \theta < 4 \pi  D)​    0 \leq \theta < 4 \pi  E)​    0 \leq \theta < 4 \pi   0θ<4π0 \leq \theta < 4 \pi
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
47
Select the correct graph of the polar equation.Find an interval for θ\theta for which the graph is traced only once.​ r2=4sin2θr ^ { 2 } = 4 \sin 2 \theta

A)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = 4 \sin 2 \theta  ​</strong> A)​    0 \leq \theta < \pi  B)​    0 \leq \theta < \pi  C)​    0 \leq \theta < \pi  D)​    0 \leq \theta < \pi  E)​    0 \leq \theta < \pi   0θ<π0 \leq \theta < \pi
B)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = 4 \sin 2 \theta  ​</strong> A)​    0 \leq \theta < \pi  B)​    0 \leq \theta < \pi  C)​    0 \leq \theta < \pi  D)​    0 \leq \theta < \pi  E)​    0 \leq \theta < \pi   0θ<π0 \leq \theta < \pi
C)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = 4 \sin 2 \theta  ​</strong> A)​    0 \leq \theta < \pi  B)​    0 \leq \theta < \pi  C)​    0 \leq \theta < \pi  D)​    0 \leq \theta < \pi  E)​    0 \leq \theta < \pi   0θ<π0 \leq \theta < \pi
D)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = 4 \sin 2 \theta  ​</strong> A)​    0 \leq \theta < \pi  B)​    0 \leq \theta < \pi  C)​    0 \leq \theta < \pi  D)​    0 \leq \theta < \pi  E)​    0 \leq \theta < \pi   0θ<π0 \leq \theta < \pi
E)​  <strong>Select the correct graph of the polar equation.Find an interval for  \theta  for which the graph is traced only once.​  r ^ { 2 } = 4 \sin 2 \theta  ​</strong> A)​    0 \leq \theta < \pi  B)​    0 \leq \theta < \pi  C)​    0 \leq \theta < \pi  D)​    0 \leq \theta < \pi  E)​    0 \leq \theta < \pi   0θ<π0 \leq \theta < \pi
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
48
Select the correct graph of the polar equation.Describe your viewing window.​ r=2cscθ+5r = 2 \csc \theta + 5

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 2 \csc \theta + 5  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 2 \csc \theta + 5  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 2 \csc \theta + 5  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 2 \csc \theta + 5  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = 2 \csc \theta + 5  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 12 \\ X _ { \max } = 12 \\ X _ { s c l } = 2 \\ Y _ { \min } = - 12 \\ Y _ { \max } = 12 \\ Y _ { s c l } = 2 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=12Xmax=12Xscl=2Ymin=12Ymax=12Yscl=2\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 12 \\X _ { \max } = 12 \\X _ { s c l } = 2 \\Y _ { \min } = - 12 \\Y _ { \max } = 12 \\Y _ { s c l } = 2\end{array}
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
49
Select the correct graph of the polar equation.Describe your viewing window.​ r=π4r = \frac { \pi } { 4 }

A)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
B)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
C)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
D)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
E)​  <strong>Select the correct graph of the polar equation.Describe your viewing window.​  r = \frac { \pi } { 4 }  ​</strong> A)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  B)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  C)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  D)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}  E)​    \begin{array} { l } \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 2 \\ X _ { \max } = 2 \\ X _ { s c l } = 0.5 \\ Y _ { \min } = - 2 \\ Y _ { \max } = 2 \\ Y _ { s c l } = 0.5 \end{array}   θmin=0θmax=2πθstep=π/24Xmin=2Xmax=2Xscl=0.5Ymin=2Ymax=2Yscl=0.5\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 2 \\X _ { \max } = 2 \\X _ { s c l } = 0.5 \\Y _ { \min } = - 2 \\Y _ { \max } = 2 \\Y _ { s c l } = 0.5\end{array}
Unlock Deck
Unlock for access to all 49 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 49 flashcards in this deck.