Deck 25: Right Triangle Trigonometry

Full screen (f)
exit full mode
Question
Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )  <strong>Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )  </strong> A)sin ? =  \frac { 85 } { 13 }  csc ? =  \frac { 13 } { 85 }  Cos ? =  \frac { 85 } { 84 }  Sec ? =  \frac { 84 } { 85 }  Tan ? =  \frac { 84 } { 13 }  Cot ? =  \frac { 13 } { 84 }  ? B)sin ? =  \frac { 84 } { 13 }  csc ? =  \frac { 13 } { 84 }  Cos ? =  \frac { 85 } { 84 }  Sec ? =  \frac { 13 } { 85 }  Tan ? =  \frac { 85 } { 13 }  Cot ? =  \frac { 84 } { 85 }  ? C)sin ? =  \frac { 84 } { 85 }  csc ? =  \frac { 13 } { 84 }  Cos ? =  \frac { 13 } { 85 }  Sec ? =  \frac { 84 } { 13 }  Tan ? =  \frac { 85 } { 13 }  Cot ? =  \frac { 85 } { 84 }  ? D)sin ? =  \frac { 85 } { 84 }  csc ? =  \frac { 85 } { 13 }  Cos ? =  \frac { 84 } { 13 }  Sec ? =  \frac { 13 } { 85 }  Tan ? =  \frac { 13 } { 84 }  Cot ? =  \frac { 84 } { 85 }  ? E)sin ? =  \frac { 13 } { 85 }  csc ? =  \frac { 85 } { 13 }  Cos ? =  \frac { 84 } { 85 }  Sec ? =  \frac { 85 } { 84 }  Tan ? =  \frac { 13 } { 84 }  Cot ? =  \frac { 84 } { 13 }  ? <div style=padding-top: 35px>

A)sin ? = 8513\frac { 85 } { 13 } csc ? = 1385\frac { 13 } { 85 }
Cos ? = 8584\frac { 85 } { 84 }
Sec ? = 8485\frac { 84 } { 85 }
Tan ? = 8413\frac { 84 } { 13 }
Cot ? = 1384\frac { 13 } { 84 }
?
B)sin ? = 8413\frac { 84 } { 13 } csc ? = 1384\frac { 13 } { 84 }
Cos ? = 8584\frac { 85 } { 84 }
Sec ? = 1385\frac { 13 } { 85 }
Tan ? = 8513\frac { 85 } { 13 }
Cot ? = 8485\frac { 84 } { 85 }
?
C)sin ? = 8485\frac { 84 } { 85 } csc ? = 1384\frac { 13 } { 84 }
Cos ? = 1385\frac { 13 } { 85 }
Sec ? = 8413\frac { 84 } { 13 }
Tan ? = 8513\frac { 85 } { 13 }
Cot ? = 8584\frac { 85 } { 84 }
?
D)sin ? = 8584\frac { 85 } { 84 } csc ? = 8513\frac { 85 } { 13 }
Cos ? = 8413\frac { 84 } { 13 }
Sec ? = 1385\frac { 13 } { 85 }
Tan ? = 1384\frac { 13 } { 84 }
Cot ? = 8485\frac { 84 } { 85 }
?
E)sin ? = 1385\frac { 13 } { 85 } csc ? = 8513\frac { 85 } { 13 }
Cos ? = 8485\frac { 84 } { 85 }
Sec ? = 8584\frac { 85 } { 84 }
Tan ? = 1384\frac { 13 } { 84 }
Cot ? = 8413\frac { 84 } { 13 }
?
Use Space or
up arrow
down arrow
to flip the card.
Question
Evaluate each function.Round your answers to four decimal places.? sec(π22)\sec \left( \frac { \pi } { 2 } - 2 \right) and cot(π213)\cot \left( \frac { \pi } { 2 } - \frac { 1 } { 3 } \right) ?

A)1.1998 and 0.4463
B)1.2998 and 0.5463
C)1.1498 and 0.3963
D)1.0998 and 0.3463
E)1.2498 and 0.4963
Question
Find the exact values of the six trigonometric functions of the angle ? for each of the two triangles.  <strong>Find the exact values of the six trigonometric functions of the angle ? for each of the two triangles.     ?</strong> A)sin ? =  \frac { 15 } { 8 }  csc ? =  \frac { 8 } { 17 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 8 } { 15 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 15 } { 17 }  ? B)sin ? =  \frac { 17 } { 15 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 8 }  Sec ? =  \frac { 8 } { 17 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 17 }  ? C)sin ? =  \frac { 8 } { 17 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 17 }  Sec ? =  \frac { 17 } { 15 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 8 }  ? D)sin ? =  \frac { 15 } { 8 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 15 } { 17 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 8 } { 17 }  ? E)sin ? =  \frac { 15 } { 17 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 8 } { 17 }  Sec ? =  \frac { 15 } { 8 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 17 } { 15 }  ? <div style=padding-top: 35px>   <strong>Find the exact values of the six trigonometric functions of the angle ? for each of the two triangles.     ?</strong> A)sin ? =  \frac { 15 } { 8 }  csc ? =  \frac { 8 } { 17 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 8 } { 15 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 15 } { 17 }  ? B)sin ? =  \frac { 17 } { 15 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 8 }  Sec ? =  \frac { 8 } { 17 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 17 }  ? C)sin ? =  \frac { 8 } { 17 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 17 }  Sec ? =  \frac { 17 } { 15 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 8 }  ? D)sin ? =  \frac { 15 } { 8 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 15 } { 17 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 8 } { 17 }  ? E)sin ? =  \frac { 15 } { 17 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 8 } { 17 }  Sec ? =  \frac { 15 } { 8 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 17 } { 15 }  ? <div style=padding-top: 35px>  ?

A)sin ? = 158\frac { 15 } { 8 } csc ? = 817\frac { 8 } { 17 }
Cos ? = 1715\frac { 17 } { 15 }
Sec ? = 815\frac { 8 } { 15 }
Tan ? = 178\frac { 17 } { 8 }
Cot ? = 1517\frac { 15 } { 17 }
?
B)sin ? = 1715\frac { 17 } { 15 } csc ? = 178\frac { 17 } { 8 }
Cos ? = 158\frac { 15 } { 8 }
Sec ? = 817\frac { 8 } { 17 }
Tan ? = 815\frac { 8 } { 15 }
Cot ? = 1517\frac { 15 } { 17 }
?
C)sin ? = 817\frac { 8 } { 17 } csc ? = 178\frac { 17 } { 8 }
Cos ? = 1517\frac { 15 } { 17 }
Sec ? = 1715\frac { 17 } { 15 }
Tan ? = 815\frac { 8 } { 15 }
Cot ? = 158\frac { 15 } { 8 }
?
D)sin ? = 158\frac { 15 } { 8 } csc ? = 815\frac { 8 } { 15 }
Cos ? = 1715\frac { 17 } { 15 }
Sec ? = 1517\frac { 15 } { 17 }
Tan ? = 178\frac { 17 } { 8 }
Cot ? = 817\frac { 8 } { 17 }
?
E)sin ? = 1517\frac { 15 } { 17 } csc ? = 815\frac { 8 } { 15 }
Cos ? = 817\frac { 8 } { 17 }
Sec ? = 158\frac { 15 } { 8 }
Tan ? = 178\frac { 17 } { 8 }
Cot ? = 1715\frac { 17 } { 15 }
?
Question
Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ?
Tan ? = 512\frac { 5 } { 12 } ?
?
Sin ? = 513\frac { 5 } { 13 } csc ? = 135\frac { 13 } { 5 } cos ? = 1213\frac { 12 } { 13 } sec ? = 1312\frac { 13 } { 12 } tan ? = 512\frac { 5 } { 12 } cot ? = 125\frac { 12 } { 5 } ?

A)?  <strong>Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ? Tan ? =  \frac { 5 } { 12 }  ? ? Sin ? =  \frac { 5 } { 13 }  csc ? =  \frac { 13 } { 5 }  cos ? =  \frac { 12 } { 13 }  sec ? =  \frac { 13 } { 12 }  tan ? =  \frac { 5 } { 12 }  cot ? =  \frac { 12 } { 5 }  ?</strong> A)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 13 } { 12 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 5 }  ? B)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 12 } { 5 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 13 } { 12 }  ? C)?   sin ? =  \frac { 13 } { 12 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 5 }  Sec ? =  \frac { 5 } { 13 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 13 }  ? D)?   sin ? =  \frac { 13 } { 5 }  Csc ? =  \frac { 5 } { 13 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 12 } { 5 }  Cot ? =  \frac { 5 } { 12 }  ? E)?   sin ? =  \frac { 12 } { 5 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 5 } { 13 }  ? <div style=padding-top: 35px>  sin ? = 513\frac { 5 } { 13 }
Csc ? = 135\frac { 13 } { 5 }
Cos ? = 1213\frac { 12 } { 13 }
Sec ? = 1312\frac { 13 } { 12 }
Tan ? = 512\frac { 5 } { 12 }
Cot ? = 125\frac { 12 } { 5 }
?
B)?  <strong>Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ? Tan ? =  \frac { 5 } { 12 }  ? ? Sin ? =  \frac { 5 } { 13 }  csc ? =  \frac { 13 } { 5 }  cos ? =  \frac { 12 } { 13 }  sec ? =  \frac { 13 } { 12 }  tan ? =  \frac { 5 } { 12 }  cot ? =  \frac { 12 } { 5 }  ?</strong> A)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 13 } { 12 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 5 }  ? B)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 12 } { 5 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 13 } { 12 }  ? C)?   sin ? =  \frac { 13 } { 12 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 5 }  Sec ? =  \frac { 5 } { 13 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 13 }  ? D)?   sin ? =  \frac { 13 } { 5 }  Csc ? =  \frac { 5 } { 13 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 12 } { 5 }  Cot ? =  \frac { 5 } { 12 }  ? E)?   sin ? =  \frac { 12 } { 5 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 5 } { 13 }  ? <div style=padding-top: 35px>  sin ? = 513\frac { 5 } { 13 }
Csc ? = 512\frac { 5 } { 12 }
Cos ? = 1213\frac { 12 } { 13 }
Sec ? = 125\frac { 12 } { 5 }
Tan ? = 135\frac { 13 } { 5 }
Cot ? = 1312\frac { 13 } { 12 }
?
C)?  <strong>Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ? Tan ? =  \frac { 5 } { 12 }  ? ? Sin ? =  \frac { 5 } { 13 }  csc ? =  \frac { 13 } { 5 }  cos ? =  \frac { 12 } { 13 }  sec ? =  \frac { 13 } { 12 }  tan ? =  \frac { 5 } { 12 }  cot ? =  \frac { 12 } { 5 }  ?</strong> A)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 13 } { 12 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 5 }  ? B)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 12 } { 5 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 13 } { 12 }  ? C)?   sin ? =  \frac { 13 } { 12 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 5 }  Sec ? =  \frac { 5 } { 13 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 13 }  ? D)?   sin ? =  \frac { 13 } { 5 }  Csc ? =  \frac { 5 } { 13 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 12 } { 5 }  Cot ? =  \frac { 5 } { 12 }  ? E)?   sin ? =  \frac { 12 } { 5 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 5 } { 13 }  ? <div style=padding-top: 35px>  sin ? = 1312\frac { 13 } { 12 }
Csc ? = 135\frac { 13 } { 5 }
Cos ? = 125\frac { 12 } { 5 }
Sec ? = 513\frac { 5 } { 13 }
Tan ? = 512\frac { 5 } { 12 }
Cot ? = 1213\frac { 12 } { 13 }
?
D)?  <strong>Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ? Tan ? =  \frac { 5 } { 12 }  ? ? Sin ? =  \frac { 5 } { 13 }  csc ? =  \frac { 13 } { 5 }  cos ? =  \frac { 12 } { 13 }  sec ? =  \frac { 13 } { 12 }  tan ? =  \frac { 5 } { 12 }  cot ? =  \frac { 12 } { 5 }  ?</strong> A)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 13 } { 12 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 5 }  ? B)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 12 } { 5 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 13 } { 12 }  ? C)?   sin ? =  \frac { 13 } { 12 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 5 }  Sec ? =  \frac { 5 } { 13 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 13 }  ? D)?   sin ? =  \frac { 13 } { 5 }  Csc ? =  \frac { 5 } { 13 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 12 } { 5 }  Cot ? =  \frac { 5 } { 12 }  ? E)?   sin ? =  \frac { 12 } { 5 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 5 } { 13 }  ? <div style=padding-top: 35px>  sin ? = 135\frac { 13 } { 5 }
Csc ? = 513\frac { 5 } { 13 }
Cos ? = 1312\frac { 13 } { 12 }
Sec ? = 1213\frac { 12 } { 13 }
Tan ? = 125\frac { 12 } { 5 }
Cot ? = 512\frac { 5 } { 12 }
?
E)?  <strong>Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ? Tan ? =  \frac { 5 } { 12 }  ? ? Sin ? =  \frac { 5 } { 13 }  csc ? =  \frac { 13 } { 5 }  cos ? =  \frac { 12 } { 13 }  sec ? =  \frac { 13 } { 12 }  tan ? =  \frac { 5 } { 12 }  cot ? =  \frac { 12 } { 5 }  ?</strong> A)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 13 } { 12 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 5 }  ? B)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 12 } { 5 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 13 } { 12 }  ? C)?   sin ? =  \frac { 13 } { 12 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 5 }  Sec ? =  \frac { 5 } { 13 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 13 }  ? D)?   sin ? =  \frac { 13 } { 5 }  Csc ? =  \frac { 5 } { 13 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 12 } { 5 }  Cot ? =  \frac { 5 } { 12 }  ? E)?   sin ? =  \frac { 12 } { 5 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 5 } { 13 }  ? <div style=padding-top: 35px>  sin ? = 125\frac { 12 } { 5 }
Csc ? = 512\frac { 5 } { 12 }
Cos ? = 1312\frac { 13 } { 12 }
Sec ? = 1213\frac { 12 } { 13 }
Tan ? = 135\frac { 13 } { 5 }
Cot ? = 513\frac { 5 } { 13 }
?
Question
Evaluate each function.Round your answers to four decimal places. ?
Csc3 and tan15\tan \frac { 1 } { 5 } ?

A)7.0862 and 0.2027
B)7.1862 and 0.3027
C)7.2362 and 0.3527
D)7.1362 and 0.2527
E)7.2862 and 0.4027
Question
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right) Function  Function θ( deg )θ( rad ) Function Value sin45\begin{array} { | c | c | l | l | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \sin & 45 ^ { \circ } & & \\\hline\end{array}

A)?  Function θ(deg)θ(rad) Function Value sin45π422\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 4 } & \frac { \sqrt { 2 } } { 2 } \\\\\hline\end{array}
B)?  Function θ( deg )θ( rad ) Function Value sin45π332\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 3 } & \frac { \sqrt { 3 } } { 2 } \\\\\hline\end{array}
C)?  Function θ(deg)θ(rad) Function Value sin4500\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \sin & 45 & 0 & 0 \\\hline\end{array}
D)?  Function θ(deg)θ( rad ) Function Value sin45π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 2 } & 1\end{array}
E)?  Function θ(deg)θ(rad) Function Value sin45π612\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 6 } & \frac { 1 } { 2 } \\\hline\end{array}
Question
Evaluate each function.Round your answers to four decimal places.? cot(π15)\cot \left( \frac { \pi } { 15 } \right) and tanπ15\tan \frac { \pi } { 15 } ?

A)4.7046 and 0.2126
B)4.7546 and 0.2626
C)4.8546 and 0.3626
D)4.8046 and 0.3126
E)4.9046 and 0.4126
Question
Evaluate each function.Round your answers to four decimal places. ​
Cos17°36' and sin67°23'

A)1.0032 and 0.9731
B)1.0532 and 1.0231
C)1.1532 and 1.1231
D)1.1032 and 1.0731
E)0.9532 and 0.9231
Question
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg)θ(rad) Function Value cscπ6\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \mathrm { csc } & & \frac { \pi } { 6 } & \\& & & \\\hline\end{array}

A)?  Function θ(deg)θ(rad) Function Value csc30π62\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \csc & 30 ^ { \circ } & \frac { \pi } { 6 } & 2 \\\hline\end{array}
B)?  Function θ(deg)θ( rad ) Function Value csc90π61\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \csc & 90 ^ { \circ } & \frac { \pi } { 6 } & 1 \\\hline\end{array}
C)?  Function θ( deg )θ(rad) Function Value csc45π62\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \csc & 45 ^ { \circ } & \frac { \pi } { 6 } & \sqrt { 2 } \\\hline\end{array} ?
D)?  Function θ(deg)θ(rad) Function Value csc0π60\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \mathrm { csc } & 0 ^ { \circ } & \frac { \pi } { 6 } & 0 \\\hline\end{array}
E)?  Function θ( deg )θ( rad ) Function Value csc30π6233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \csc & 30 ^ { \circ } & \frac { \pi } { 6 } & \frac { 2 \sqrt { 3 } } { 3 } \\\hline\end{array}
Question
Evaluate each function.Round your answers to four decimal places. ​
Sec0.74 and cos0.74

A)1.4042 and 0.7885
B)1.5542 and 0.9385
C)1.3542 and 0.7385
D)1.4542 and 0.8385
E)1.5042 and 0.8885
Question
Find the exact values of the six trigonometric functions of the angle ? for the triangle.  <strong>Find the exact values of the six trigonometric functions of the angle ? for the triangle.   ?</strong> A)? sin ? =  \frac { 3 } { 5 }  Csc ? =  \frac { 5 } { 3 }  Cos ? =  \frac { 4 } { 5 }  Sec ? =  \frac { 5 } { 4 }  Tan ? =  \frac { 3 } { 4 }  Cot ? =  \frac { 4 } { 3 }  ? B)sin ? =  \frac { 4 } { 3 }  csc ? =  \frac { 3 } { 4 }  Cos ? =  \frac { 5 } { 4 }  Sec ? =  \frac { 4 } { 5 }  Tan ? =  \frac { 5 } { 3 }  Cot ? =  \frac { 3 } { 5 }  ? C)sin ? =  \frac { 4 } { 3 }  csc ? =  \frac { 5 } { 3 }  Cos ? =  \frac { 5 } { 4 }  Sec ? =  \frac { 3 } { 5 }  Tan ? =  \frac { 3 } { 4 }  Cot ? =  \frac { 4 } { 5 }  ? D)sin ? =  \frac { 4 } { 5 }  csc ? =  \frac { 3 } { 4 }  Cos ? =  \frac { 3 } { 5 }  Sec ? =  \frac { 4 } { 3 }  Tan ? =  \frac { 5 } { 3 }  Cot ? =  \frac { 5 } { 4 }  ? E)sin ? =  \frac { 4 } { 3 }  csc ? =  \frac { 3 } { 5 }  Cos ? =  \frac { 5 } { 4 }  Sec ? =  \frac { 4 } { 5 }  Tan ? =  \frac { 5 } { 3 }  Cot ? =  \frac { 3 } { 4 }  <div style=padding-top: 35px>  ?

A)? sin ? = 35\frac { 3 } { 5 }
Csc ? = 53\frac { 5 } { 3 }
Cos ? = 45\frac { 4 } { 5 }
Sec ? = 54\frac { 5 } { 4 }
Tan ? = 34\frac { 3 } { 4 }
Cot ? = 43\frac { 4 } { 3 }
?
B)sin ? = 43\frac { 4 } { 3 } csc ? = 34\frac { 3 } { 4 }
Cos ? = 54\frac { 5 } { 4 }
Sec ? = 45\frac { 4 } { 5 }
Tan ? = 53\frac { 5 } { 3 }
Cot ? = 35\frac { 3 } { 5 }
?
C)sin ? = 43\frac { 4 } { 3 } csc ? = 53\frac { 5 } { 3 }
Cos ? = 54\frac { 5 } { 4 }
Sec ? = 35\frac { 3 } { 5 }
Tan ? = 34\frac { 3 } { 4 }
Cot ? = 45\frac { 4 } { 5 }
?
D)sin ? = 45\frac { 4 } { 5 } csc ? = 34\frac { 3 } { 4 }
Cos ? = 35\frac { 3 } { 5 }
Sec ? = 43\frac { 4 } { 3 }
Tan ? = 53\frac { 5 } { 3 }
Cot ? = 54\frac { 5 } { 4 }
?
E)sin ? = 43\frac { 4 } { 3 } csc ? = 35\frac { 3 } { 5 }
Cos ? = 54\frac { 5 } { 4 }
Sec ? = 45\frac { 4 } { 5 }
Tan ? = 53\frac { 5 } { 3 }
Cot ? = 34\frac { 3 } { 4 }
Question
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg)θ( rad ) Function Value tanπ2\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \tan & & \frac { \pi } { 2 } & \\\hline\end{array}
?

A)?  Function θ(deg)θ(rad) Function Value tan90π2 Not defined \begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \tan & 90 ^ { \circ } & \frac { \pi } { 2 } & \text { Not defined } \\\hline\end{array}
B)?  Function θ(deg)θ(rad) Function Value tan45π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \tan & 45 ^ { \circ } & \frac { \pi } { 2 } & 1 \\\hline\end{array}
C)?  Function θ( deg )θ( rad ) Function Value tan60π23\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \tan & 60 ^ { \circ } & \frac { \pi } { 2 } & \sqrt { 3 } \\\hline\end{array}
D)?  Function θ(deg)θ(rad) Function Value tan0π20\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \tan & 0 ^ { \circ } & \frac { \pi } { 2 } & 0 \\\hline\end{array}
E)?  Function θ(deg)θ(rad) Function Value tan30π233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \tan & 30 ^ { \circ } & \frac { \pi } { 2 } & \frac { \sqrt { 3 } } { 3 } \\\hline\end{array}
Question
Evaluate each function.Round your answers to four decimal places. ​
Sec48°38' and csc31°57'

A)1.7131 and 2.0897
B)1.6131 and 1.9897
C)1.5631 and 1.9397
D)1.5131 and 1.8897
E)1.6631 and 2.0397
Question
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg)θ( rad ) Function Value secπ3\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \mathrm { sec } & & \frac { \pi } { 3 } & \\\hline\end{array}

A)?  Function θ( deg )θ( rad ) Function Value  sec 45π32\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \text { sec } & 45 ^ { \circ } & \frac { \pi } { 3 } & \sqrt { 2 } \\\hline\end{array}
B)?  Function θ(deg)θ(rad) Function Value  sec 90π3 Not defined \begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \text { sec } & 90 ^ { \circ } & \frac { \pi } { 3 } & \text { Not defined } \\\hline\end{array}
C)?  Function θ(deg)θ(rad) Function Value sec60π32\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \mathrm { sec } & 60 ^ { \circ } & \frac { \pi } { 3 } & 2 \\\hline\end{array}
D)?  Function θ(deg)θ(rad) Function Value sec0π31\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \mathrm { sec } & 0 ^ { \circ } & \frac { \pi } { 3 } & 1 \\\hline\end{array}
E)?  Function θ(deg)θ( rad ) Function Value sec30π3233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \mathrm { sec } & 30 ^ { \circ } & \frac { \pi } { 3 } & \frac { 2 \sqrt { 3 } } { 3 } \\\hline\end{array}
Question
Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )  <strong>Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )   ?</strong> A)sin ? =  \frac { 15 } { 8 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 15 } { 17 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 8 } { 17 }  ? B)sin ? =  \frac { 17 } { 8 }  csc ? =  \frac { 8 } { 17 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 15 } { 17 }  Tan ? =  \frac { 15 } { 8 }  Cot ? =  \frac { 8 } { 15 }  ? C)sin ? =  \frac { 8 } { 17 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 17 }  Sec ? =  \frac { 17 } { 15 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 8 }  ? D)sin ? =  \frac { 17 } { 15 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 8 }  Sec ? =  \frac { 8 } { 17 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 17 }  ? E)sin ? =  \frac { 15 } { 17 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 8 } { 17 }  Sec ? =  \frac { 15 } { 8 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 17 } { 15 }  ? <div style=padding-top: 35px>  ?

A)sin ? = 158\frac { 15 } { 8 } csc ? = 815\frac { 8 } { 15 }
Cos ? = 1715\frac { 17 } { 15 }
Sec ? = 1517\frac { 15 } { 17 }
Tan ? = 178\frac { 17 } { 8 }
Cot ? = 817\frac { 8 } { 17 }
?
B)sin ? = 178\frac { 17 } { 8 } csc ? = 817\frac { 8 } { 17 }
Cos ? = 1715\frac { 17 } { 15 }
Sec ? = 1517\frac { 15 } { 17 }
Tan ? = 158\frac { 15 } { 8 }
Cot ? = 815\frac { 8 } { 15 }
?
C)sin ? = 817\frac { 8 } { 17 } csc ? = 178\frac { 17 } { 8 }
Cos ? = 1517\frac { 15 } { 17 }
Sec ? = 1715\frac { 17 } { 15 }
Tan ? = 815\frac { 8 } { 15 }
Cot ? = 158\frac { 15 } { 8 }
?
D)sin ? = 1715\frac { 17 } { 15 } csc ? = 178\frac { 17 } { 8 }
Cos ? = 158\frac { 15 } { 8 }
Sec ? = 817\frac { 8 } { 17 }
Tan ? = 815\frac { 8 } { 15 }
Cot ? = 1517\frac { 15 } { 17 }
?
E)sin ? = 1517\frac { 15 } { 17 } csc ? = 815\frac { 8 } { 15 }
Cos ? = 817\frac { 8 } { 17 }
Sec ? = 158\frac { 15 } { 8 }
Tan ? = 178\frac { 17 } { 8 }
Cot ? = 1715\frac { 17 } { 15 }
?
Question
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg)θ(rad) Function Value cos30\begin{array} { | c | c | l | l | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cos & 30 ^ { \circ } & & \\\hline\end{array}

A)?  Function θ(deg)θ(rad) Function Value cos30π332\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cos & 30 & \frac { \pi } { 3 } & \frac { \sqrt { 3 } } { 2 } \\\hline\end{array}
B)?  Function θ( deg )θ( rad ) Function Value cos30π422\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \cos & 30 & \frac { \pi } { 4 } & \frac { \sqrt { 2 } } { 2 } \\\hline\end{array}
C)?  Function θ(deg)θ(rad) Function Value cos3000\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cos & 30 & 0 & 0 \\\hline\end{array}
D)?  Function θ( deg )θ(rad) Function Value cos30π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cos & 30 & \frac { \pi } { 2 } & 1 \\\hline\end{array}
?E)?  Function θ(deg)θ(rad) Function Value cos30π612\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cos & 30 & \frac { \pi } { 6 } & \frac { 1 } { 2 } \\\hline\end{array}
Question
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg)θ(rad) Function Value cotπ2\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & & \frac { \pi } { 2 } & \\\hline\end{array}
?

A)?  Function θ( deg )θ(rad) Function Value cot30π23\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 30 ^ { \circ } & \frac { \pi } { 2 } & \sqrt { 3 } \\\hline\end{array}
B)?  Function θ(deg)θ(rad) Function Value cot45π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 45 ^ { \circ } & \frac { \pi } { 2 } & 1 \\\hline\end{array}
C)?  Function θ(deg)θ(rad) Function Value  cot 90π20\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \text { cot } & 90 ^ { \circ } & \frac { \pi } { 2 } & 0 \\\hline\end{array}
D)?  Function θ(deg)θ(rad) Function Value cot0π2 Not defined \begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 0 ^ { \circ } & \frac { \pi } { 2 } & \text { Not defined } \\\hline\end{array}
E)?  Function θ(deg)θ(rad) Function Value cot60π233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \\\cot & 60 ^ { \circ } & \frac { \pi } { 2 } & \frac { \sqrt { 3 } } { 3 } \\\\\hline\end{array}
Question
Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )  <strong>Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )   ?</strong> A)sin ? =  \frac { 5 } { 3 }  csc ? =  \frac { 3 } { 5 }  Cos ? =  \frac { 5 } { 4 }  Sec ? =  \frac { 4 } { 5 }  Tan ? =  \frac { 4 } { 3 }  Cot ? =  \frac { 3 } { 4 }  ? B)sin ? =  \frac { 4 } { 3 }  ? csc ? =  \frac { 3 } { 4 }  ? Cos ? =  \frac { 5 } { 4 }  ? Sec ? =  \frac { 4 } { 5 }  ? Tan ? =  \frac { 5 } { 3 }  ? Cot ? =  \frac { 3 } { 5 }  ? ? C)sin ? =  \frac { 4 } { 5 }  ? csc ? =  \frac { 3 } { 4 }  ? Cos ? =  \frac { 3 } { 5 }  Sec ? =  \frac { 4 } { 3 }  Tan ? =  \frac { 5 } { 3 }  Cot ? =  \frac { 5 } { 4 }  ? D)sin ? =  \frac { 3 } { 5 }  csc ? =  \frac { 5 } { 3 }  Cos ? =  \frac { 4 } { 5 }  Sec ? =  \frac { 5 } { 4 }  Tan ? =  \frac { 3 } { 4 }  Cot ? =  \frac { 4 } { 3 }  ? E)sin ? =  \frac { 4 } { 3 }  csc ? =  \frac { 5 } { 3 }  Cos ? =  \frac { 5 } { 4 }  Sec ? =  \frac { 3 } { 5 }  Tan ? =  \frac { 3 } { 4 }  Cot ? =  \frac { 4 } { 5 }  ? <div style=padding-top: 35px>  ?

A)sin ? = 53\frac { 5 } { 3 } csc ? = 35\frac { 3 } { 5 }
Cos ? = 54\frac { 5 } { 4 }
Sec ? = 45\frac { 4 } { 5 }
Tan ? = 43\frac { 4 } { 3 }
Cot ? = 34\frac { 3 } { 4 }
?
B)sin ? = 43\frac { 4 } { 3 } ? csc ? = 34\frac { 3 } { 4 } ?
Cos ? = 54\frac { 5 } { 4 } ?
Sec ? = 45\frac { 4 } { 5 } ?
Tan ? = 53\frac { 5 } { 3 } ?
Cot ? = 35\frac { 3 } { 5 } ?
?
C)sin ? = 45\frac { 4 } { 5 } ? csc ? = 34\frac { 3 } { 4 } ?
Cos ? = 35\frac { 3 } { 5 }
Sec ? = 43\frac { 4 } { 3 }
Tan ? = 53\frac { 5 } { 3 }
Cot ? = 54\frac { 5 } { 4 }
?
D)sin ? = 35\frac { 3 } { 5 } csc ? = 53\frac { 5 } { 3 }
Cos ? = 45\frac { 4 } { 5 }
Sec ? = 54\frac { 5 } { 4 }
Tan ? = 34\frac { 3 } { 4 }
Cot ? = 43\frac { 4 } { 3 }
?
E)sin ? = 43\frac { 4 } { 3 } csc ? = 53\frac { 5 } { 3 }
Cos ? = 54\frac { 5 } { 4 }
Sec ? = 35\frac { 3 } { 5 }
Tan ? = 34\frac { 3 } { 4 }
Cot ? = 45\frac { 4 } { 5 }
?
Question
Evaluate each function.Round your answers to four decimal places. ​
Sin22.3° and csc22.3°

A)0.5795 and 2.8354
B)0.3795 and 2.6354
C)0.4795 and 2.7354
D)0.4295 and 2.6854
E)0.5295 and 2.7854
Question
Evaluate each function.Round your answers to four decimal places. ​
Tan15.7° and cot74.3°

A)0.4811 and 0.4811
B)0.3311 and 0.3311
C)0.2811 and 0.2811
D)0.3811 and 0.3811
E)0.4311 and 0.4311
Question
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions. ?sin 30° = 12\frac { 1 } { 2 } ,cos 30° = 32\frac { \sqrt { 3 } } { 2 } ?
?sin 60° and cos 60°

A)?sin 60° = 2 and cos 60° = 12\frac { 1 } { 2 }
B)?sin 60° = 3\sqrt { 3 } and cos 60° = 12\frac { 1 } { 2 }
C)?sin 60° = 32\frac { \sqrt { 3 } } { 2 } and cos 60° = 2\sqrt { 2 }
D)?sin 60° = 32\frac { \sqrt { 3 } } { 2 } and cos 60° = 12\frac { 1 } { 2 }
E)?sin 60° = 32\frac { \sqrt { 3 } } { 2 } and cos 60° = 2
Question
Use a graphing utility to complete the table. θ2030405060cosθsin(90θ)\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & & & & & \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & & & & & \\\hline\end{array}

A) θ2030405060cosθ0.940.50.770.870.5sin(90θ)0.940.50.770.870.5\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & 0.94 & 0.5 & 0.77 & 0.87 & 0.5 \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & 0.94 & 0.5 & 0.77 & 0.87 & 0.5 \\\hline\end{array}
B) θ2030405060cosθ0.50.640.770.870.94sin(90θ)0.940.870.770.640.5\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & 0.5 & 0.64 & 0.77 & 0.87 & 0.94 \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & 0.94 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline\end{array}
C) θ2030405060cosθ0.940.870.770.640.5sin(90θ)0.940.870.770.640.5\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & 0.94 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & 0.94 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline\end{array}
D) θ2030405060cosθ0.940.870.770.640.5sin(90θ)0.50.640.770.870.94\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & 0.94 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & 0.5 & 0.64 & 0.77 & 0.87 & 0.94 \\\hline\end{array}
E) θ2030405060cosθ00.870.770.640.5sin(90θ)00.870.770.640.5\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & 0 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & 0 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline\end{array}
Question
Use a compass to sketch a quarter of a circle of radius 10 centimeters.Using a protractor, construct an angle of a=10a = 10 ^ { \circ } in standard position (see figure).Drop a perpendicular line from the point of intersection of the terminal side of the angle and the arc of the circle.By actual measurement,calculate the coordinates (x,y)( x , y ) of the point of intersection and use these measurements to approximate the six trigonometric functions of a  "a" \text { "a" } angle.(Round your answer to two decimal places. )?  <strong>Use a compass to sketch a quarter of a circle of radius 10 centimeters.Using a protractor, construct an angle of  a = 10 ^ { \circ }  in standard position (see figure).Drop a perpendicular line from the point of intersection of the terminal side of the angle and the arc of the circle.By actual measurement,calculate the coordinates  ( x , y )  of the point of intersection and use these measurements to approximate the six trigonometric functions of a  \text { a }  angle.(Round your answer to two decimal places. )?   ?</strong> A)sin10° ? 0.98,cos10° ? 0.17,tan10° ? 5.76, csc10° ? 0.18,sec10° ? 1.02,cot10° ? 5.67 B)sin10° ? 5.67,cos10° ? 1.02,tan10° ? 5.76, csc10° ? 0.18,sec10° ? 0.98,cot10° ? 5.67 ? C)sin10° ? 0.17,cos10° ? 0.98,tan10° ? 0.18, csc10° ? 5.76,sec10° ? 1.02,cot10° ? 5.67 ? D)sin10° ? 0.18,cos10° ? 0.98,tan10° ? 0.17, csc10° ? 10,sec10° ? 0.98,cot10° ? 5.76 ? E)sin10° ? 0.17,cos10° ? 0.98,tan10° ? 0.18, csc10° ? 5.76,sec10° ? 5.67,cot10° ? 1.02 <div style=padding-top: 35px>  ?

A)sin10° ? 0.98,cos10° ? 0.17,tan10° ? 5.76, csc10° ? 0.18,sec10° ? 1.02,cot10° ? 5.67
B)sin10° ? 5.67,cos10° ? 1.02,tan10° ? 5.76, csc10° ? 0.18,sec10° ? 0.98,cot10° ? 5.67
?
C)sin10° ? 0.17,cos10° ? 0.98,tan10° ? 0.18, csc10° ? 5.76,sec10° ? 1.02,cot10° ? 5.67
?
D)sin10° ? 0.18,cos10° ? 0.98,tan10° ? 0.17, csc10° ? 10,sec10° ? 0.98,cot10° ? 5.76
?
E)sin10° ? 0.17,cos10° ? 0.98,tan10° ? 0.18, csc10° ? 5.76,sec10° ? 5.67,cot10° ? 1.02
Question
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions.? cosβ=54\cos \beta = \frac { \sqrt { 5 } } { 4 } ? secβ and sin(90β)\sec \beta \text { and } \sin \left( 90 ^ { \circ } - \beta \right) ?

A) secβ=455\sec \beta = \frac { 4 \sqrt { 5 } } { 5 } and sin(90β)=54\sin \left( 90 ^ { \circ } - \beta \right) = \frac { \sqrt { 5 } } { 4 }
B)? secβ=5\sec \beta = \sqrt { 5 } and sin(90β)=4\sin \left( 90 ^ { \circ } - \beta \right) = 4
C)? secβ=54\sec \beta = \frac { \sqrt { 5 } } { 4 } and sin(90β)=54\sin \left( 90 ^ { \circ } - \beta \right) = \frac { \sqrt { 5 } } { 4 }
D)? secβ=54\sec \beta = \frac { \sqrt { 5 } } { 4 } and sin(90β)=455\sin \left( 90 ^ { \circ } - \beta \right) = \frac { 4 \sqrt { 5 } } { 5 }
E)? secβ=455\sec \beta = \frac { 4 \sqrt { 5 } } { 5 } and sin(90β)=455\sin \left( 90 ^ { \circ } - \beta \right) = \frac { 4 \sqrt { 5 } } { 5 }
Question
Find the values of ? in degrees (0θ90)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } \right) and radians (0<θ<π2)\left( 0 < \theta < \frac { \pi } { 2 } \right) without the aid of a calculator. ?sin ? = 1 and csc ? = 1
?
?

A)90° = π2\frac { \pi } { 2 }
B)?30° = π6\frac { \pi } { 6 }
C)?0° = 0
D)?60° = π3\frac { \pi } { 3 }
E)?45° = π4\frac { \pi } { 4 }
Question
A biologist wants to know the width w of a river so that instruments for studying the pollutants in the water can be set properly.From point A the biologist walks downstream x=140x = 140 feet and sights to point C (see figure).From this sighting,it is determined that ? = 54°.How wide is the river??  <strong>A biologist wants to know the width w of a river so that instruments for studying the pollutants in the water can be set properly.From point A the biologist walks downstream  x = 140  feet and sights to point C (see figure).From this sighting,it is determined that ? = 54°.How wide is the river??   (Round your answer to three decimal places. ) ?</strong> A)212.693 B)197.693 C)207.693 D)202.693 E)192.693 <div style=padding-top: 35px>  (Round your answer to three decimal places. ) ?

A)212.693
B)197.693
C)207.693
D)202.693
E)192.693
Question
You are skiing down a mountain with a vertical height of 1250 feet.The distance from the top of the mountain to the base is 2500 feet.What is the angle of elevation from the base to the top of the mountain? ?

A)60° = π3\frac { \pi } { 3 }
B)30° = π6\frac { \pi } { 6 }
C)0° = 0
D)90° = π2\frac { \pi } { 2 }
E)45° = π4\frac { \pi } { 4 }
Question
In traveling across flat land,you notice a mountain directly in front of you.Its angle of elevation (to the peak)is 3.5°.After you drive x=23x = 23 miles closer to the mountain,the angle of elevation is 9°.Approximate the height of the mountain.(Round your answer upto one decimal place. )?  <strong>In traveling across flat land,you notice a mountain directly in front of you.Its angle of elevation (to the peak)is 3.5°.After you drive  x = 23  miles closer to the mountain,the angle of elevation is 9°.Approximate the height of the mountain.(Round your answer upto one decimal place. )?   ?</strong> A)10.3 mi B)2.3 mi C)4.3 mi D)8.3 mi E)6.3 mi <div style=padding-top: 35px>  ?

A)10.3 mi
B)2.3 mi
C)4.3 mi
D)8.3 mi
E)6.3 mi
Question
Find the values of ? in degrees (0θ90)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } \right) and radians (0<θ<π2)\left( 0 < \theta < \frac { \pi } { 2 } \right) without the aid of a calculator. cos ? = 0 and tan ? = Not defined
?
?

A)90° = π2\frac { \pi } { 2 }
B)?60° = π3\frac { \pi } { 3 }
C)?0° = 0
D)?30° = π6\frac { \pi } { 6 }
E)?45° = π4\frac { \pi } { 4 }
Question
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions. ​
​sin 90° = 1,tan 90° = Not defined
Sin 0° and tan 0°

A)​sin 0° = 0 and tan 0° = 0
B)sin 0° = 1 and tan 0° = 1
C)​sin 0° = Not defined and tan 0° = Not defined
D)​sin 0° = Not defined and tan 0° = 1
E)​sin 0° = 1 and tan 0° = Not defined
Question
A 20-meter line is used to tether a helium-filled balloon.Because of a breeze,the line makes an angle of approximately 85° with the ground.Use a trigonometric function to write an equation involving the unknown quantity. ?

A) sin85=h20\sin 85 ^ { \circ } = \frac { h } { 20 } (where h is height. )
B) cos85=h20\cos 85 ^ { \circ } = \frac { h } { 20 } (where h is height. )
C) cos85=20h\cos 85 ^ { \circ } = \frac { 20 } { h } (where h is height. )
D) sin85=20h\sin 85 ^ { \circ } = \frac { 20 } { h } (where h is height. )
E) tan85=h20\tan 85 ^ { \circ } = \frac { h } { 20 } (where h is height. )
Question
Find the values of ? in degrees (0θ90)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } \right) and radians (0<θ<π2)\left( 0 < \theta < \frac { \pi } { 2 } \right) without the aid of a calculator. sec ? = 2\sqrt { 2 } and cot ? = 1
?
?

A)45° = π4\frac { \pi } { 4 }
B)?90° = π2\frac { \pi } { 2 }
C)?0° = 0
D)?60° = π3\frac { \pi } { 3 }
E)?30° = π6\frac { \pi } { 6 }
Question
Complete the table.
θ0.80.911.11.2sinθ\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & & & & & \\\hline\end{array}
(Round your answer to four decimal places. )

A) θ0.80.911.11.2sinθ0.71740.78330.84150.89120.932\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & 0.7174 & 0.7833 & 0.8415 & 0.8912 & 0.932 \\\hline\end{array}
B) θ0.80.911.11.2sinθ01234\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & 0 & 1 & 2 & 3 & 4 \\\hline\end{array}
C) θ0.80.911.11.2sinθ0.9320.89120.84150.78330.7174\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & 0.932 & 0.8912 & 0.8415 & 0.7833 & 0.7174 \\\hline\end{array}
D) θ0.80.911.11.2sinθ0.71740.71740.84150.71740.932\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & 0.7174 & 0.7174 & 0.8415 & 0.7174 & 0.932 \\\hline\end{array}
E) θ0.80.911.11.2sinθ0.80.911.11.2\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline\end{array}
Question
A 10-meter line is used to tether a helium-filled balloon.Complete the table,which shows the heights (in meters)of the balloon for decreasing angle measures θ\theta .(Round your answers to one decimal places. )  Angle, θ5040302010 Height \begin{array} { | c | c | c | c | c | c | } \hline \text { Angle, } \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & & & & & \\\hline\end{array}

A)  Angle, θ5040302010 Height 5.76.453.41.7\begin{array} { | c | c | c | c | c | c | } \hline \text { Angle, } \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & 5.7 & 6.4 & 5 & 3.4 & 1.7 \\\hline\end{array}
B)  Angle ,θ5040302010 Height 7.76.453.41.7\begin{array} { | c | c | c | c | c | c | } \hline \text { Angle } , \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & 7.7 & 6.4 & 5 & 3.4 & 1.7 \\\hline\end{array}
C)  Angle, θ5040302010 Height 4.76.453.41.7\begin{array} { | c | c | c | c | c | c | } \hline \text { Angle, } \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & 4.7 & 6.4 & 5 & 3.4 & 1.7 \\\hline\end{array}
D)  Angle, θ5040302010 Height 3.76.453.41.7\begin{array} { | c | c | c | c | c | c | } \hline \text { Angle, } \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & 3.7 & 6.4 & 5 & 3.4 & 1.7 \\\hline\end{array}
E)  Angle, θ5040302010 Height 6.76.453.41.7\begin{array} { | c | c | c | c | c | c | } \hline \text { Angle, } \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & 6.7 & 6.4 & 5 & 3.4 & 1.7 \\\hline\end{array}
Question
A tapered shaft has a diameter of x=9x = 9 centimeters at the small end and is 15 centimeters long (see figure).The taper is 3°.Find the diameter d of the large end of the shaft.(Round your answer to two decimal places. )?  <strong>A tapered shaft has a diameter of  x = 9  centimeters at the small end and is 15 centimeters long (see figure).The taper is 3°.Find the diameter d of the large end of the shaft.(Round your answer to two decimal places. )?   ? ?</strong> A)10.57 cm B)14.57 cm C)12.57 cm D)18.57 cm E)16.57 cm <div style=padding-top: 35px>  ? ?

A)10.57 cm
B)14.57 cm
C)12.57 cm
D)18.57 cm
E)16.57 cm
Question
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions.? cosθ=15\cos \theta = \frac { 1 } { 5 } ? sec ? and csc(90° - ?)
?

A)? secθ=15\sec \theta = \frac { 1 } { 5 } and csc(90θ)=15\csc \left( 90 ^ { \circ } - \theta \right) = \frac { 1 } { 5 }
B) secθ=5\sec \theta = 5 and csc(90θ)=5\csc \left( 90 ^ { \circ } - \theta \right) = 5
C)? secθ=15\sec \theta = \frac { 1 } { 5 } and csc(90θ)=5\csc \left( 90 ^ { \circ } - \theta \right) = 5
D)? secθ=5\sec \theta = 5 and csc(90θ)=15\csc \left( 90 ^ { \circ } - \theta \right) = \frac { 1 } { 5 }
E)? secθ=5\sec \theta = - 5 and csc(90θ)=5\csc \left( 90 ^ { \circ } - \theta \right) = - 5
Question
A guy wire runs from the ground to a cell tower.The wire is attached to the cell tower x=100x = 100 feet above the ground.The angle formed between the wire and the ground is 43° (see figure).How long is the guy wire. ??  <strong>A guy wire runs from the ground to a cell tower.The wire is attached to the cell tower  x = 100  feet above the ground.The angle formed between the wire and the ground is 43° (see figure).How long is the guy wire. ??   ?</strong> A)166.6 ft B)?146.6 ft C)?156.6 ft D)?161.6 ft E)?151.6 ft <div style=padding-top: 35px>  ?

A)166.6 ft
B)?146.6 ft
C)?156.6 ft
D)?161.6 ft
E)?151.6 ft
Question
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions.? secθ=9\sec \theta = 9 ? cos ?
?

A) cosθ=9\cos \theta = 9
B)? cosθ=19\cos \theta = \frac { 1 } { 9 }
C)? cosθ=19\cos \theta = - \frac { 1 } { 9 }
D)? cosθ=9\cos \theta = - 9
E)? cosθ=0\cos \theta = 0
Question
A 50-meter line is used to tether a helium-filled balloon.Because of a breeze,the line makes an angle of approximately 55° with the ground.What is the height of the balloon? (Round the answer to one decimal place. ) ​

A)45 m
B)41 m
C)43 m
D)49 m
E)47 m
Question
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions. ?? cotα=3\cot \alpha = 3 ? tanα and cot(90α)\tan \alpha \text { and } \cot \left( 90 ^ { \circ } - \alpha \right) ?

A)? tanα=13\tan \alpha = - \frac { 1 } { 3 } and cot(90α)=13\cot \left( 90 ^ { \circ } - \alpha \right) = - \frac { 1 } { 3 }
B)? tanα=13\tan \alpha = \frac { 1 } { 3 } and cot(90α)=3\cot \left( 90 ^ { \circ } - \alpha \right) = 3
C) tanα=13\tan \alpha = \frac { 1 } { 3 } and cot(90α)=13\cot \left( 90 ^ { \circ } - \alpha \right) = \frac { 1 } { 3 }
D)? tanα=3\tan \alpha = 3 and cot(90α)=3\cot \left( 90 ^ { \circ } - \alpha \right) = 3
E)? tanα=3\tan \alpha = 3 and cot(90α)=13\cot \left( 90 ^ { \circ } - \alpha \right) = \frac { 1 } { 3 }
Question
If sinθ=22\sin \theta = \frac { \sqrt { 2 } } { 2 } ,find the value of ? in degrees (0<θ<90)\left( 0 ^ { \circ } < \theta < 90 ^ { \circ } \right) without the aid of a calculator.

A)? = 30°
B)?? = 45°
C)??? = 90°
D)??? = 75°
E)??? = 15°
Question
Use a calculator to evaluate tan 49°34´.Round your answer to four decimal places.

A)-1.3283
B)0.0423
C)-0.8403
D)1.1643
E)1.1736
Question
Use a calculator to evaluate tan 68°23'.Round your answer to four decimal places.

A)2.5236
B)2.5040
C)-1.2222
D)-0.8980
E)0.7269
Question
Find the exact value of csc ?,using the triangle shown in the figure below,if a = 3 and b = 4.  <strong>Find the exact value of csc ?,using the triangle shown in the figure below,if a = 3 and b = 4.  </strong> A)  \frac { 5 } { 4 }  B)?  \frac { 5 } { 3 }  C)?  \frac { 3 } { 4 }  D)?  \frac { 4 } { 5 }  E)?  \frac { 3 } { 5 }  <div style=padding-top: 35px>

A) 54\frac { 5 } { 4 }
B)? 53\frac { 5 } { 3 }
C)? 34\frac { 3 } { 4 }
D)? 45\frac { 4 } { 5 }
E)? 35\frac { 3 } { 5 }
Question
Use a calculator to evaluate csc(π10)\csc \left( \frac { \pi } { 10 } \right) .Round your answer to four decimal places.

A)-1.8382
B)-24.0997
C)0.3090
D)3.2361
E)-0.0415
Question
If sinθ=22\sin \theta = \frac { \sqrt { 2 } } { 2 } ,find the value of ? in degrees (0<θ<90)\left( 0 < \theta < 90 ^ { \circ } \right) without the aid of a calculator.

A)?? = 45°
B)?? = 30°
C)?? = 15°
D)?? = 90°
E)?? = 75°
Question
Will Barrow wanted to know how tall the flagpole was in front of his school.To find its height,he drove a stake into the ground at the tip of the flagpole's shadow and recorded the angle of elevation at two different times during the day.He then measured the distance between the stakes.Will's data is below: Stake
Time
Angle of Elevation
A
2:00 PM
82°
B
3:00 PM
​61°
Distance between stakes A & B
10 feet <strong>Will Barrow wanted to know how tall the flagpole was in front of his school.To find its height,he drove a stake into the ground at the tip of the flagpole's shadow and recorded the angle of elevation at two different times during the day.He then measured the distance between the stakes.Will's data is below: Stake Time Angle of Elevation A 2:00 PM 82° B 3:00 PM ​61° Distance between stakes A & B 10 feet   Determine the height of the flagpole.Round your answer to nearest foot.</strong> A)22 feet B)24 feet C)20 feet D)26 feet E)18 feet <div style=padding-top: 35px> Determine the height of the flagpole.Round your answer to nearest foot.

A)22 feet
B)24 feet
C)20 feet
D)26 feet
E)18 feet
Question
Given secθ=10\sec \theta = \sqrt { 10 } and tan ? = 3,determine the following. ?
Cos(90° - ?)
?

A)?cos(90° - ?)= 13\frac { 1 } { 3 }
B)?cos(90° - ?)= 31010\frac { 3 \sqrt { 10 } } { 10 }
C)?cos(90° - ?)= 1010\frac { \sqrt { 10 } } { 10 }
D)?cos(90° - ?)= 3
E)undefined
Question
Find the exact value of csc ?,using the triangle shown in the figure below,if a=4a = 4 and b=3b = 3 .  <strong>Find the exact value of csc ?,using the triangle shown in the figure below,if  a = 4  and  b = 3  .  </strong> A)?  \frac { 3 } { 5 }  B)?  \frac { 4 } { 3 }  C)?  \frac { 5 } { 4 }  D)?  \frac { 4 } { 5 }  E)?  \frac { 5 } { 3 }  <div style=padding-top: 35px>

A)? 35\frac { 3 } { 5 }
B)? 43\frac { 4 } { 3 }
C)? 54\frac { 5 } { 4 }
D)? 45\frac { 4 } { 5 }
E)? 53\frac { 5 } { 3 }
Question
If ? is an acute angle and cotθ=14\cot \theta = \frac { 1 } { 4 } ,determine sin ?.

A) sinθ=174\sin \theta = \frac { \sqrt { 17 } } { 4 }
B)? sinθ=17\sin \theta = \sqrt { 17 }
C)? sinθ=4\sin \theta = 4
D)? sinθ=1717\sin \theta = \frac { \sqrt { 17 } } { 17 }
E)? sinθ=41717\sin \theta = \frac { 4 \sqrt { 17 } } { 17 }
Question
Given sin30=12\sin 30 ^ { \circ } = \frac { 1 } { 2 } and cos30=32\cos 30 ^ { \circ } = \frac { \sqrt { 3 } } { 2 } ,determine the following: ?sec 30°
?

A)?sec 30° = 1
B)?sec 30° = 3\sqrt { 3 }
C)?sec 30° = 233\frac { 2 \sqrt { 3 } } { 3 }
D)?sec 30° = 22\frac { \sqrt { 2 } } { 2 }
E)undefined
Question
Using the figure below,if ? = 26° and y = 6,determine the exact value of x.  <strong>Using the figure below,if ? = 26° and y = 6,determine the exact value of x.  </strong> A)?  x = \frac { 6 } { \cot 26 ^ { \circ } }  B)?  x = \frac { 26 } { \csc 6 ^ { \circ } }  C)  x = \frac { 6 } { \tan 26 ^ { \circ } }  D)?  x = \frac { 3 } { \sin 13 ^ { \circ } }  E)?  x = \frac { 13 } { \tan 3 ^ { \circ } }  <div style=padding-top: 35px>

A)? x=6cot26x = \frac { 6 } { \cot 26 ^ { \circ } }
B)? x=26csc6x = \frac { 26 } { \csc 6 ^ { \circ } }
C) x=6tan26x = \frac { 6 } { \tan 26 ^ { \circ } }
D)? x=3sin13x = \frac { 3 } { \sin 13 ^ { \circ } }
E)? x=13tan3x = \frac { 13 } { \tan 3 ^ { \circ } }
Question
Given sin 30° = 12\frac { 1 } { 2 } and cos 30° = 32\frac { \sqrt { 3 } } { 2 } ,determine the following: ?cot 30°

A)?cot 30° = 22\frac { \sqrt { 2 } } { 2 }
B)undefined
C)?cot 30° = 33\frac { \sqrt { 3 } } { 3 }
D)?cot 30° = 3\sqrt { 3 }
E)?cot 30° = 2
Question
Using the figure below,if ? = 33° and y = 9,determine the exact value of x.  <strong>Using the figure below,if ? = 33° and y = 9,determine the exact value of x.  </strong> A)  x = \frac { 3 } { \sin 11 ^ { \circ } }  B)?  x = \frac { 9 } { \tan 33 ^ { \circ } }  C)?  x = \frac { 11 } { \tan 3 ^ { \circ } }  D)?  x = \frac { 9 } { \cot 33 ^ { \circ } }  E)?  x = \frac { 33 } { \csc 9 ^ { \circ } }  <div style=padding-top: 35px>

A) x=3sin11x = \frac { 3 } { \sin 11 ^ { \circ } }
B)? x=9tan33x = \frac { 9 } { \tan 33 ^ { \circ } }
C)? x=11tan3x = \frac { 11 } { \tan 3 ^ { \circ } }
D)? x=9cot33x = \frac { 9 } { \cot 33 ^ { \circ } }
E)? x=33csc9x = \frac { 33 } { \csc 9 ^ { \circ } }
Question
Using the figure below,if ? = 20° and y = 16,determine the exact value of r.  <strong>Using the figure below,if ? = 20° and y = 16,determine the exact value of r.  </strong> A)  r = \frac { 5 } { \cos 4 ^ { \circ } }  B)?  r = \frac { 16 } { \cos 20 ^ { \circ } }  C)?  r = \frac { 4 } { \csc 5 ^ { \circ } }  D)?  r = \frac { 16 } { \tan 20 ^ { \circ } }  E)?  r = \frac { 16 } { \sin 20 ^ { \circ } }  <div style=padding-top: 35px>

A) r=5cos4r = \frac { 5 } { \cos 4 ^ { \circ } }
B)? r=16cos20r = \frac { 16 } { \cos 20 ^ { \circ } }
C)? r=4csc5r = \frac { 4 } { \csc 5 ^ { \circ } }
D)? r=16tan20r = \frac { 16 } { \tan 20 ^ { \circ } }
E)? r=16sin20r = \frac { 16 } { \sin 20 ^ { \circ } }
Question
Using trigonometric identities,determine which of the following is equivalent to the following expression. ?
Tan ? + cot ?  <strong>Using trigonometric identities,determine which of the following is equivalent to the following expression. ? Tan ? + cot ?   ?</strong> A)?1 B)?csc ? sec ? C)  \mathrm { csc }  ? ? +  \sin  ? D)?cos ? + sec ? E)?sec ? + csc ? <div style=padding-top: 35px>  ?

A)?1
B)?csc ? sec ?
C) csc\mathrm { csc } ? ? + sin\sin ?
D)?cos ? + sec ?
E)?sec ? + csc ?
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/56
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 25: Right Triangle Trigonometry
1
Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )  <strong>Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )  </strong> A)sin ? =  \frac { 85 } { 13 }  csc ? =  \frac { 13 } { 85 }  Cos ? =  \frac { 85 } { 84 }  Sec ? =  \frac { 84 } { 85 }  Tan ? =  \frac { 84 } { 13 }  Cot ? =  \frac { 13 } { 84 }  ? B)sin ? =  \frac { 84 } { 13 }  csc ? =  \frac { 13 } { 84 }  Cos ? =  \frac { 85 } { 84 }  Sec ? =  \frac { 13 } { 85 }  Tan ? =  \frac { 85 } { 13 }  Cot ? =  \frac { 84 } { 85 }  ? C)sin ? =  \frac { 84 } { 85 }  csc ? =  \frac { 13 } { 84 }  Cos ? =  \frac { 13 } { 85 }  Sec ? =  \frac { 84 } { 13 }  Tan ? =  \frac { 85 } { 13 }  Cot ? =  \frac { 85 } { 84 }  ? D)sin ? =  \frac { 85 } { 84 }  csc ? =  \frac { 85 } { 13 }  Cos ? =  \frac { 84 } { 13 }  Sec ? =  \frac { 13 } { 85 }  Tan ? =  \frac { 13 } { 84 }  Cot ? =  \frac { 84 } { 85 }  ? E)sin ? =  \frac { 13 } { 85 }  csc ? =  \frac { 85 } { 13 }  Cos ? =  \frac { 84 } { 85 }  Sec ? =  \frac { 85 } { 84 }  Tan ? =  \frac { 13 } { 84 }  Cot ? =  \frac { 84 } { 13 }  ?

A)sin ? = 8513\frac { 85 } { 13 } csc ? = 1385\frac { 13 } { 85 }
Cos ? = 8584\frac { 85 } { 84 }
Sec ? = 8485\frac { 84 } { 85 }
Tan ? = 8413\frac { 84 } { 13 }
Cot ? = 1384\frac { 13 } { 84 }
?
B)sin ? = 8413\frac { 84 } { 13 } csc ? = 1384\frac { 13 } { 84 }
Cos ? = 8584\frac { 85 } { 84 }
Sec ? = 1385\frac { 13 } { 85 }
Tan ? = 8513\frac { 85 } { 13 }
Cot ? = 8485\frac { 84 } { 85 }
?
C)sin ? = 8485\frac { 84 } { 85 } csc ? = 1384\frac { 13 } { 84 }
Cos ? = 1385\frac { 13 } { 85 }
Sec ? = 8413\frac { 84 } { 13 }
Tan ? = 8513\frac { 85 } { 13 }
Cot ? = 8584\frac { 85 } { 84 }
?
D)sin ? = 8584\frac { 85 } { 84 } csc ? = 8513\frac { 85 } { 13 }
Cos ? = 8413\frac { 84 } { 13 }
Sec ? = 1385\frac { 13 } { 85 }
Tan ? = 1384\frac { 13 } { 84 }
Cot ? = 8485\frac { 84 } { 85 }
?
E)sin ? = 1385\frac { 13 } { 85 } csc ? = 8513\frac { 85 } { 13 }
Cos ? = 8485\frac { 84 } { 85 }
Sec ? = 8584\frac { 85 } { 84 }
Tan ? = 1384\frac { 13 } { 84 }
Cot ? = 8413\frac { 84 } { 13 }
?
sin ? = 1385\frac { 13 } { 85 } csc ? = 8513\frac { 85 } { 13 }
Cos ? = 8485\frac { 84 } { 85 }
Sec ? = 8584\frac { 85 } { 84 }
Tan ? = 1384\frac { 13 } { 84 }
Cot ? = 8413\frac { 84 } { 13 }
?
2
Evaluate each function.Round your answers to four decimal places.? sec(π22)\sec \left( \frac { \pi } { 2 } - 2 \right) and cot(π213)\cot \left( \frac { \pi } { 2 } - \frac { 1 } { 3 } \right) ?

A)1.1998 and 0.4463
B)1.2998 and 0.5463
C)1.1498 and 0.3963
D)1.0998 and 0.3463
E)1.2498 and 0.4963
1.0998 and 0.3463
3
Find the exact values of the six trigonometric functions of the angle ? for each of the two triangles.  <strong>Find the exact values of the six trigonometric functions of the angle ? for each of the two triangles.     ?</strong> A)sin ? =  \frac { 15 } { 8 }  csc ? =  \frac { 8 } { 17 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 8 } { 15 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 15 } { 17 }  ? B)sin ? =  \frac { 17 } { 15 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 8 }  Sec ? =  \frac { 8 } { 17 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 17 }  ? C)sin ? =  \frac { 8 } { 17 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 17 }  Sec ? =  \frac { 17 } { 15 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 8 }  ? D)sin ? =  \frac { 15 } { 8 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 15 } { 17 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 8 } { 17 }  ? E)sin ? =  \frac { 15 } { 17 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 8 } { 17 }  Sec ? =  \frac { 15 } { 8 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 17 } { 15 }  ?   <strong>Find the exact values of the six trigonometric functions of the angle ? for each of the two triangles.     ?</strong> A)sin ? =  \frac { 15 } { 8 }  csc ? =  \frac { 8 } { 17 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 8 } { 15 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 15 } { 17 }  ? B)sin ? =  \frac { 17 } { 15 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 8 }  Sec ? =  \frac { 8 } { 17 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 17 }  ? C)sin ? =  \frac { 8 } { 17 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 17 }  Sec ? =  \frac { 17 } { 15 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 8 }  ? D)sin ? =  \frac { 15 } { 8 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 15 } { 17 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 8 } { 17 }  ? E)sin ? =  \frac { 15 } { 17 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 8 } { 17 }  Sec ? =  \frac { 15 } { 8 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 17 } { 15 }  ?  ?

A)sin ? = 158\frac { 15 } { 8 } csc ? = 817\frac { 8 } { 17 }
Cos ? = 1715\frac { 17 } { 15 }
Sec ? = 815\frac { 8 } { 15 }
Tan ? = 178\frac { 17 } { 8 }
Cot ? = 1517\frac { 15 } { 17 }
?
B)sin ? = 1715\frac { 17 } { 15 } csc ? = 178\frac { 17 } { 8 }
Cos ? = 158\frac { 15 } { 8 }
Sec ? = 817\frac { 8 } { 17 }
Tan ? = 815\frac { 8 } { 15 }
Cot ? = 1517\frac { 15 } { 17 }
?
C)sin ? = 817\frac { 8 } { 17 } csc ? = 178\frac { 17 } { 8 }
Cos ? = 1517\frac { 15 } { 17 }
Sec ? = 1715\frac { 17 } { 15 }
Tan ? = 815\frac { 8 } { 15 }
Cot ? = 158\frac { 15 } { 8 }
?
D)sin ? = 158\frac { 15 } { 8 } csc ? = 815\frac { 8 } { 15 }
Cos ? = 1715\frac { 17 } { 15 }
Sec ? = 1517\frac { 15 } { 17 }
Tan ? = 178\frac { 17 } { 8 }
Cot ? = 817\frac { 8 } { 17 }
?
E)sin ? = 1517\frac { 15 } { 17 } csc ? = 815\frac { 8 } { 15 }
Cos ? = 817\frac { 8 } { 17 }
Sec ? = 158\frac { 15 } { 8 }
Tan ? = 178\frac { 17 } { 8 }
Cot ? = 1715\frac { 17 } { 15 }
?
sin ? = 817\frac { 8 } { 17 } csc ? = 178\frac { 17 } { 8 }
Cos ? = 1517\frac { 15 } { 17 }
Sec ? = 1715\frac { 17 } { 15 }
Tan ? = 815\frac { 8 } { 15 }
Cot ? = 158\frac { 15 } { 8 }
?
4
Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ?
Tan ? = 512\frac { 5 } { 12 } ?
?
Sin ? = 513\frac { 5 } { 13 } csc ? = 135\frac { 13 } { 5 } cos ? = 1213\frac { 12 } { 13 } sec ? = 1312\frac { 13 } { 12 } tan ? = 512\frac { 5 } { 12 } cot ? = 125\frac { 12 } { 5 } ?

A)?  <strong>Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ? Tan ? =  \frac { 5 } { 12 }  ? ? Sin ? =  \frac { 5 } { 13 }  csc ? =  \frac { 13 } { 5 }  cos ? =  \frac { 12 } { 13 }  sec ? =  \frac { 13 } { 12 }  tan ? =  \frac { 5 } { 12 }  cot ? =  \frac { 12 } { 5 }  ?</strong> A)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 13 } { 12 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 5 }  ? B)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 12 } { 5 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 13 } { 12 }  ? C)?   sin ? =  \frac { 13 } { 12 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 5 }  Sec ? =  \frac { 5 } { 13 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 13 }  ? D)?   sin ? =  \frac { 13 } { 5 }  Csc ? =  \frac { 5 } { 13 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 12 } { 5 }  Cot ? =  \frac { 5 } { 12 }  ? E)?   sin ? =  \frac { 12 } { 5 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 5 } { 13 }  ?  sin ? = 513\frac { 5 } { 13 }
Csc ? = 135\frac { 13 } { 5 }
Cos ? = 1213\frac { 12 } { 13 }
Sec ? = 1312\frac { 13 } { 12 }
Tan ? = 512\frac { 5 } { 12 }
Cot ? = 125\frac { 12 } { 5 }
?
B)?  <strong>Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ? Tan ? =  \frac { 5 } { 12 }  ? ? Sin ? =  \frac { 5 } { 13 }  csc ? =  \frac { 13 } { 5 }  cos ? =  \frac { 12 } { 13 }  sec ? =  \frac { 13 } { 12 }  tan ? =  \frac { 5 } { 12 }  cot ? =  \frac { 12 } { 5 }  ?</strong> A)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 13 } { 12 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 5 }  ? B)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 12 } { 5 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 13 } { 12 }  ? C)?   sin ? =  \frac { 13 } { 12 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 5 }  Sec ? =  \frac { 5 } { 13 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 13 }  ? D)?   sin ? =  \frac { 13 } { 5 }  Csc ? =  \frac { 5 } { 13 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 12 } { 5 }  Cot ? =  \frac { 5 } { 12 }  ? E)?   sin ? =  \frac { 12 } { 5 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 5 } { 13 }  ?  sin ? = 513\frac { 5 } { 13 }
Csc ? = 512\frac { 5 } { 12 }
Cos ? = 1213\frac { 12 } { 13 }
Sec ? = 125\frac { 12 } { 5 }
Tan ? = 135\frac { 13 } { 5 }
Cot ? = 1312\frac { 13 } { 12 }
?
C)?  <strong>Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ? Tan ? =  \frac { 5 } { 12 }  ? ? Sin ? =  \frac { 5 } { 13 }  csc ? =  \frac { 13 } { 5 }  cos ? =  \frac { 12 } { 13 }  sec ? =  \frac { 13 } { 12 }  tan ? =  \frac { 5 } { 12 }  cot ? =  \frac { 12 } { 5 }  ?</strong> A)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 13 } { 12 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 5 }  ? B)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 12 } { 5 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 13 } { 12 }  ? C)?   sin ? =  \frac { 13 } { 12 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 5 }  Sec ? =  \frac { 5 } { 13 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 13 }  ? D)?   sin ? =  \frac { 13 } { 5 }  Csc ? =  \frac { 5 } { 13 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 12 } { 5 }  Cot ? =  \frac { 5 } { 12 }  ? E)?   sin ? =  \frac { 12 } { 5 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 5 } { 13 }  ?  sin ? = 1312\frac { 13 } { 12 }
Csc ? = 135\frac { 13 } { 5 }
Cos ? = 125\frac { 12 } { 5 }
Sec ? = 513\frac { 5 } { 13 }
Tan ? = 512\frac { 5 } { 12 }
Cot ? = 1213\frac { 12 } { 13 }
?
D)?  <strong>Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ? Tan ? =  \frac { 5 } { 12 }  ? ? Sin ? =  \frac { 5 } { 13 }  csc ? =  \frac { 13 } { 5 }  cos ? =  \frac { 12 } { 13 }  sec ? =  \frac { 13 } { 12 }  tan ? =  \frac { 5 } { 12 }  cot ? =  \frac { 12 } { 5 }  ?</strong> A)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 13 } { 12 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 5 }  ? B)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 12 } { 5 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 13 } { 12 }  ? C)?   sin ? =  \frac { 13 } { 12 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 5 }  Sec ? =  \frac { 5 } { 13 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 13 }  ? D)?   sin ? =  \frac { 13 } { 5 }  Csc ? =  \frac { 5 } { 13 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 12 } { 5 }  Cot ? =  \frac { 5 } { 12 }  ? E)?   sin ? =  \frac { 12 } { 5 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 5 } { 13 }  ?  sin ? = 135\frac { 13 } { 5 }
Csc ? = 513\frac { 5 } { 13 }
Cos ? = 1312\frac { 13 } { 12 }
Sec ? = 1213\frac { 12 } { 13 }
Tan ? = 125\frac { 12 } { 5 }
Cot ? = 512\frac { 5 } { 12 }
?
E)?  <strong>Select a right triangle corresponding to the trigonometric function of the acute angle ?.Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of ?. ? Tan ? =  \frac { 5 } { 12 }  ? ? Sin ? =  \frac { 5 } { 13 }  csc ? =  \frac { 13 } { 5 }  cos ? =  \frac { 12 } { 13 }  sec ? =  \frac { 13 } { 12 }  tan ? =  \frac { 5 } { 12 }  cot ? =  \frac { 12 } { 5 }  ?</strong> A)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 13 } { 12 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 5 }  ? B)?   sin ? =  \frac { 5 } { 13 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 12 } { 13 }  Sec ? =  \frac { 12 } { 5 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 13 } { 12 }  ? C)?   sin ? =  \frac { 13 } { 12 }  Csc ? =  \frac { 13 } { 5 }  Cos ? =  \frac { 12 } { 5 }  Sec ? =  \frac { 5 } { 13 }  Tan ? =  \frac { 5 } { 12 }  Cot ? =  \frac { 12 } { 13 }  ? D)?   sin ? =  \frac { 13 } { 5 }  Csc ? =  \frac { 5 } { 13 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 12 } { 5 }  Cot ? =  \frac { 5 } { 12 }  ? E)?   sin ? =  \frac { 12 } { 5 }  Csc ? =  \frac { 5 } { 12 }  Cos ? =  \frac { 13 } { 12 }  Sec ? =  \frac { 12 } { 13 }  Tan ? =  \frac { 13 } { 5 }  Cot ? =  \frac { 5 } { 13 }  ?  sin ? = 125\frac { 12 } { 5 }
Csc ? = 512\frac { 5 } { 12 }
Cos ? = 1312\frac { 13 } { 12 }
Sec ? = 1213\frac { 12 } { 13 }
Tan ? = 135\frac { 13 } { 5 }
Cot ? = 513\frac { 5 } { 13 }
?
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
5
Evaluate each function.Round your answers to four decimal places. ?
Csc3 and tan15\tan \frac { 1 } { 5 } ?

A)7.0862 and 0.2027
B)7.1862 and 0.3027
C)7.2362 and 0.3527
D)7.1362 and 0.2527
E)7.2862 and 0.4027
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
6
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right) Function  Function θ( deg )θ( rad ) Function Value sin45\begin{array} { | c | c | l | l | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \sin & 45 ^ { \circ } & & \\\hline\end{array}

A)?  Function θ(deg)θ(rad) Function Value sin45π422\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 4 } & \frac { \sqrt { 2 } } { 2 } \\\\\hline\end{array}
B)?  Function θ( deg )θ( rad ) Function Value sin45π332\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 3 } & \frac { \sqrt { 3 } } { 2 } \\\\\hline\end{array}
C)?  Function θ(deg)θ(rad) Function Value sin4500\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \sin & 45 & 0 & 0 \\\hline\end{array}
D)?  Function θ(deg)θ( rad ) Function Value sin45π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 2 } & 1\end{array}
E)?  Function θ(deg)θ(rad) Function Value sin45π612\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \sin & 45 & \frac { \pi } { 6 } & \frac { 1 } { 2 } \\\hline\end{array}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate each function.Round your answers to four decimal places.? cot(π15)\cot \left( \frac { \pi } { 15 } \right) and tanπ15\tan \frac { \pi } { 15 } ?

A)4.7046 and 0.2126
B)4.7546 and 0.2626
C)4.8546 and 0.3626
D)4.8046 and 0.3126
E)4.9046 and 0.4126
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
8
Evaluate each function.Round your answers to four decimal places. ​
Cos17°36' and sin67°23'

A)1.0032 and 0.9731
B)1.0532 and 1.0231
C)1.1532 and 1.1231
D)1.1032 and 1.0731
E)0.9532 and 0.9231
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
9
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg)θ(rad) Function Value cscπ6\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \mathrm { csc } & & \frac { \pi } { 6 } & \\& & & \\\hline\end{array}

A)?  Function θ(deg)θ(rad) Function Value csc30π62\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \csc & 30 ^ { \circ } & \frac { \pi } { 6 } & 2 \\\hline\end{array}
B)?  Function θ(deg)θ( rad ) Function Value csc90π61\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \csc & 90 ^ { \circ } & \frac { \pi } { 6 } & 1 \\\hline\end{array}
C)?  Function θ( deg )θ(rad) Function Value csc45π62\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \csc & 45 ^ { \circ } & \frac { \pi } { 6 } & \sqrt { 2 } \\\hline\end{array} ?
D)?  Function θ(deg)θ(rad) Function Value csc0π60\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \mathrm { csc } & 0 ^ { \circ } & \frac { \pi } { 6 } & 0 \\\hline\end{array}
E)?  Function θ( deg )θ( rad ) Function Value csc30π6233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \csc & 30 ^ { \circ } & \frac { \pi } { 6 } & \frac { 2 \sqrt { 3 } } { 3 } \\\hline\end{array}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate each function.Round your answers to four decimal places. ​
Sec0.74 and cos0.74

A)1.4042 and 0.7885
B)1.5542 and 0.9385
C)1.3542 and 0.7385
D)1.4542 and 0.8385
E)1.5042 and 0.8885
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
11
Find the exact values of the six trigonometric functions of the angle ? for the triangle.  <strong>Find the exact values of the six trigonometric functions of the angle ? for the triangle.   ?</strong> A)? sin ? =  \frac { 3 } { 5 }  Csc ? =  \frac { 5 } { 3 }  Cos ? =  \frac { 4 } { 5 }  Sec ? =  \frac { 5 } { 4 }  Tan ? =  \frac { 3 } { 4 }  Cot ? =  \frac { 4 } { 3 }  ? B)sin ? =  \frac { 4 } { 3 }  csc ? =  \frac { 3 } { 4 }  Cos ? =  \frac { 5 } { 4 }  Sec ? =  \frac { 4 } { 5 }  Tan ? =  \frac { 5 } { 3 }  Cot ? =  \frac { 3 } { 5 }  ? C)sin ? =  \frac { 4 } { 3 }  csc ? =  \frac { 5 } { 3 }  Cos ? =  \frac { 5 } { 4 }  Sec ? =  \frac { 3 } { 5 }  Tan ? =  \frac { 3 } { 4 }  Cot ? =  \frac { 4 } { 5 }  ? D)sin ? =  \frac { 4 } { 5 }  csc ? =  \frac { 3 } { 4 }  Cos ? =  \frac { 3 } { 5 }  Sec ? =  \frac { 4 } { 3 }  Tan ? =  \frac { 5 } { 3 }  Cot ? =  \frac { 5 } { 4 }  ? E)sin ? =  \frac { 4 } { 3 }  csc ? =  \frac { 3 } { 5 }  Cos ? =  \frac { 5 } { 4 }  Sec ? =  \frac { 4 } { 5 }  Tan ? =  \frac { 5 } { 3 }  Cot ? =  \frac { 3 } { 4 }   ?

A)? sin ? = 35\frac { 3 } { 5 }
Csc ? = 53\frac { 5 } { 3 }
Cos ? = 45\frac { 4 } { 5 }
Sec ? = 54\frac { 5 } { 4 }
Tan ? = 34\frac { 3 } { 4 }
Cot ? = 43\frac { 4 } { 3 }
?
B)sin ? = 43\frac { 4 } { 3 } csc ? = 34\frac { 3 } { 4 }
Cos ? = 54\frac { 5 } { 4 }
Sec ? = 45\frac { 4 } { 5 }
Tan ? = 53\frac { 5 } { 3 }
Cot ? = 35\frac { 3 } { 5 }
?
C)sin ? = 43\frac { 4 } { 3 } csc ? = 53\frac { 5 } { 3 }
Cos ? = 54\frac { 5 } { 4 }
Sec ? = 35\frac { 3 } { 5 }
Tan ? = 34\frac { 3 } { 4 }
Cot ? = 45\frac { 4 } { 5 }
?
D)sin ? = 45\frac { 4 } { 5 } csc ? = 34\frac { 3 } { 4 }
Cos ? = 35\frac { 3 } { 5 }
Sec ? = 43\frac { 4 } { 3 }
Tan ? = 53\frac { 5 } { 3 }
Cot ? = 54\frac { 5 } { 4 }
?
E)sin ? = 43\frac { 4 } { 3 } csc ? = 35\frac { 3 } { 5 }
Cos ? = 54\frac { 5 } { 4 }
Sec ? = 45\frac { 4 } { 5 }
Tan ? = 53\frac { 5 } { 3 }
Cot ? = 34\frac { 3 } { 4 }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
12
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg)θ( rad ) Function Value tanπ2\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \tan & & \frac { \pi } { 2 } & \\\hline\end{array}
?

A)?  Function θ(deg)θ(rad) Function Value tan90π2 Not defined \begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \tan & 90 ^ { \circ } & \frac { \pi } { 2 } & \text { Not defined } \\\hline\end{array}
B)?  Function θ(deg)θ(rad) Function Value tan45π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \tan & 45 ^ { \circ } & \frac { \pi } { 2 } & 1 \\\hline\end{array}
C)?  Function θ( deg )θ( rad ) Function Value tan60π23\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \tan & 60 ^ { \circ } & \frac { \pi } { 2 } & \sqrt { 3 } \\\hline\end{array}
D)?  Function θ(deg)θ(rad) Function Value tan0π20\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \tan & 0 ^ { \circ } & \frac { \pi } { 2 } & 0 \\\hline\end{array}
E)?  Function θ(deg)θ(rad) Function Value tan30π233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \tan & 30 ^ { \circ } & \frac { \pi } { 2 } & \frac { \sqrt { 3 } } { 3 } \\\hline\end{array}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
13
Evaluate each function.Round your answers to four decimal places. ​
Sec48°38' and csc31°57'

A)1.7131 and 2.0897
B)1.6131 and 1.9897
C)1.5631 and 1.9397
D)1.5131 and 1.8897
E)1.6631 and 2.0397
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
14
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg)θ( rad ) Function Value secπ3\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \mathrm { sec } & & \frac { \pi } { 3 } & \\\hline\end{array}

A)?  Function θ( deg )θ( rad ) Function Value  sec 45π32\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \text { sec } & 45 ^ { \circ } & \frac { \pi } { 3 } & \sqrt { 2 } \\\hline\end{array}
B)?  Function θ(deg)θ(rad) Function Value  sec 90π3 Not defined \begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \text { sec } & 90 ^ { \circ } & \frac { \pi } { 3 } & \text { Not defined } \\\hline\end{array}
C)?  Function θ(deg)θ(rad) Function Value sec60π32\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \mathrm { sec } & 60 ^ { \circ } & \frac { \pi } { 3 } & 2 \\\hline\end{array}
D)?  Function θ(deg)θ(rad) Function Value sec0π31\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \mathrm { sec } & 0 ^ { \circ } & \frac { \pi } { 3 } & 1 \\\hline\end{array}
E)?  Function θ(deg)θ( rad ) Function Value sec30π3233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \mathrm { sec } & 30 ^ { \circ } & \frac { \pi } { 3 } & \frac { 2 \sqrt { 3 } } { 3 } \\\hline\end{array}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
15
Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )  <strong>Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )   ?</strong> A)sin ? =  \frac { 15 } { 8 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 15 } { 17 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 8 } { 17 }  ? B)sin ? =  \frac { 17 } { 8 }  csc ? =  \frac { 8 } { 17 }  Cos ? =  \frac { 17 } { 15 }  Sec ? =  \frac { 15 } { 17 }  Tan ? =  \frac { 15 } { 8 }  Cot ? =  \frac { 8 } { 15 }  ? C)sin ? =  \frac { 8 } { 17 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 17 }  Sec ? =  \frac { 17 } { 15 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 8 }  ? D)sin ? =  \frac { 17 } { 15 }  csc ? =  \frac { 17 } { 8 }  Cos ? =  \frac { 15 } { 8 }  Sec ? =  \frac { 8 } { 17 }  Tan ? =  \frac { 8 } { 15 }  Cot ? =  \frac { 15 } { 17 }  ? E)sin ? =  \frac { 15 } { 17 }  csc ? =  \frac { 8 } { 15 }  Cos ? =  \frac { 8 } { 17 }  Sec ? =  \frac { 15 } { 8 }  Tan ? =  \frac { 17 } { 8 }  Cot ? =  \frac { 17 } { 15 }  ?  ?

A)sin ? = 158\frac { 15 } { 8 } csc ? = 815\frac { 8 } { 15 }
Cos ? = 1715\frac { 17 } { 15 }
Sec ? = 1517\frac { 15 } { 17 }
Tan ? = 178\frac { 17 } { 8 }
Cot ? = 817\frac { 8 } { 17 }
?
B)sin ? = 178\frac { 17 } { 8 } csc ? = 817\frac { 8 } { 17 }
Cos ? = 1715\frac { 17 } { 15 }
Sec ? = 1517\frac { 15 } { 17 }
Tan ? = 158\frac { 15 } { 8 }
Cot ? = 815\frac { 8 } { 15 }
?
C)sin ? = 817\frac { 8 } { 17 } csc ? = 178\frac { 17 } { 8 }
Cos ? = 1517\frac { 15 } { 17 }
Sec ? = 1715\frac { 17 } { 15 }
Tan ? = 815\frac { 8 } { 15 }
Cot ? = 158\frac { 15 } { 8 }
?
D)sin ? = 1715\frac { 17 } { 15 } csc ? = 178\frac { 17 } { 8 }
Cos ? = 158\frac { 15 } { 8 }
Sec ? = 817\frac { 8 } { 17 }
Tan ? = 815\frac { 8 } { 15 }
Cot ? = 1517\frac { 15 } { 17 }
?
E)sin ? = 1517\frac { 15 } { 17 } csc ? = 815\frac { 8 } { 15 }
Cos ? = 817\frac { 8 } { 17 }
Sec ? = 158\frac { 15 } { 8 }
Tan ? = 178\frac { 17 } { 8 }
Cot ? = 1715\frac { 17 } { 15 }
?
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
16
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg)θ(rad) Function Value cos30\begin{array} { | c | c | l | l | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cos & 30 ^ { \circ } & & \\\hline\end{array}

A)?  Function θ(deg)θ(rad) Function Value cos30π332\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cos & 30 & \frac { \pi } { 3 } & \frac { \sqrt { 3 } } { 2 } \\\hline\end{array}
B)?  Function θ( deg )θ( rad ) Function Value cos30π422\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \cos & 30 & \frac { \pi } { 4 } & \frac { \sqrt { 2 } } { 2 } \\\hline\end{array}
C)?  Function θ(deg)θ(rad) Function Value cos3000\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cos & 30 & 0 & 0 \\\hline\end{array}
D)?  Function θ( deg )θ(rad) Function Value cos30π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cos & 30 & \frac { \pi } { 2 } & 1 \\\hline\end{array}
?E)?  Function θ(deg)θ(rad) Function Value cos30π612\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cos & 30 & \frac { \pi } { 6 } & \frac { 1 } { 2 } \\\hline\end{array}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
17
Construct an appropriate triangle to complete the table. (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg)θ(rad) Function Value cotπ2\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & & \frac { \pi } { 2 } & \\\hline\end{array}
?

A)?  Function θ( deg )θ(rad) Function Value cot30π23\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 30 ^ { \circ } & \frac { \pi } { 2 } & \sqrt { 3 } \\\hline\end{array}
B)?  Function θ(deg)θ(rad) Function Value cot45π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 45 ^ { \circ } & \frac { \pi } { 2 } & 1 \\\hline\end{array}
C)?  Function θ(deg)θ(rad) Function Value  cot 90π20\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \text { cot } & 90 ^ { \circ } & \frac { \pi } { 2 } & 0 \\\hline\end{array}
D)?  Function θ(deg)θ(rad) Function Value cot0π2 Not defined \begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 0 ^ { \circ } & \frac { \pi } { 2 } & \text { Not defined } \\\hline\end{array}
E)?  Function θ(deg)θ(rad) Function Value cot60π233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \\\cot & 60 ^ { \circ } & \frac { \pi } { 2 } & \frac { \sqrt { 3 } } { 3 } \\\\\hline\end{array}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
18
Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )  <strong>Find the exact values of the six trigonometric functions of the angle ? shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle. )   ?</strong> A)sin ? =  \frac { 5 } { 3 }  csc ? =  \frac { 3 } { 5 }  Cos ? =  \frac { 5 } { 4 }  Sec ? =  \frac { 4 } { 5 }  Tan ? =  \frac { 4 } { 3 }  Cot ? =  \frac { 3 } { 4 }  ? B)sin ? =  \frac { 4 } { 3 }  ? csc ? =  \frac { 3 } { 4 }  ? Cos ? =  \frac { 5 } { 4 }  ? Sec ? =  \frac { 4 } { 5 }  ? Tan ? =  \frac { 5 } { 3 }  ? Cot ? =  \frac { 3 } { 5 }  ? ? C)sin ? =  \frac { 4 } { 5 }  ? csc ? =  \frac { 3 } { 4 }  ? Cos ? =  \frac { 3 } { 5 }  Sec ? =  \frac { 4 } { 3 }  Tan ? =  \frac { 5 } { 3 }  Cot ? =  \frac { 5 } { 4 }  ? D)sin ? =  \frac { 3 } { 5 }  csc ? =  \frac { 5 } { 3 }  Cos ? =  \frac { 4 } { 5 }  Sec ? =  \frac { 5 } { 4 }  Tan ? =  \frac { 3 } { 4 }  Cot ? =  \frac { 4 } { 3 }  ? E)sin ? =  \frac { 4 } { 3 }  csc ? =  \frac { 5 } { 3 }  Cos ? =  \frac { 5 } { 4 }  Sec ? =  \frac { 3 } { 5 }  Tan ? =  \frac { 3 } { 4 }  Cot ? =  \frac { 4 } { 5 }  ?  ?

A)sin ? = 53\frac { 5 } { 3 } csc ? = 35\frac { 3 } { 5 }
Cos ? = 54\frac { 5 } { 4 }
Sec ? = 45\frac { 4 } { 5 }
Tan ? = 43\frac { 4 } { 3 }
Cot ? = 34\frac { 3 } { 4 }
?
B)sin ? = 43\frac { 4 } { 3 } ? csc ? = 34\frac { 3 } { 4 } ?
Cos ? = 54\frac { 5 } { 4 } ?
Sec ? = 45\frac { 4 } { 5 } ?
Tan ? = 53\frac { 5 } { 3 } ?
Cot ? = 35\frac { 3 } { 5 } ?
?
C)sin ? = 45\frac { 4 } { 5 } ? csc ? = 34\frac { 3 } { 4 } ?
Cos ? = 35\frac { 3 } { 5 }
Sec ? = 43\frac { 4 } { 3 }
Tan ? = 53\frac { 5 } { 3 }
Cot ? = 54\frac { 5 } { 4 }
?
D)sin ? = 35\frac { 3 } { 5 } csc ? = 53\frac { 5 } { 3 }
Cos ? = 45\frac { 4 } { 5 }
Sec ? = 54\frac { 5 } { 4 }
Tan ? = 34\frac { 3 } { 4 }
Cot ? = 43\frac { 4 } { 3 }
?
E)sin ? = 43\frac { 4 } { 3 } csc ? = 53\frac { 5 } { 3 }
Cos ? = 54\frac { 5 } { 4 }
Sec ? = 35\frac { 3 } { 5 }
Tan ? = 34\frac { 3 } { 4 }
Cot ? = 45\frac { 4 } { 5 }
?
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
19
Evaluate each function.Round your answers to four decimal places. ​
Sin22.3° and csc22.3°

A)0.5795 and 2.8354
B)0.3795 and 2.6354
C)0.4795 and 2.7354
D)0.4295 and 2.6854
E)0.5295 and 2.7854
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
20
Evaluate each function.Round your answers to four decimal places. ​
Tan15.7° and cot74.3°

A)0.4811 and 0.4811
B)0.3311 and 0.3311
C)0.2811 and 0.2811
D)0.3811 and 0.3811
E)0.4311 and 0.4311
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
21
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions. ?sin 30° = 12\frac { 1 } { 2 } ,cos 30° = 32\frac { \sqrt { 3 } } { 2 } ?
?sin 60° and cos 60°

A)?sin 60° = 2 and cos 60° = 12\frac { 1 } { 2 }
B)?sin 60° = 3\sqrt { 3 } and cos 60° = 12\frac { 1 } { 2 }
C)?sin 60° = 32\frac { \sqrt { 3 } } { 2 } and cos 60° = 2\sqrt { 2 }
D)?sin 60° = 32\frac { \sqrt { 3 } } { 2 } and cos 60° = 12\frac { 1 } { 2 }
E)?sin 60° = 32\frac { \sqrt { 3 } } { 2 } and cos 60° = 2
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
22
Use a graphing utility to complete the table. θ2030405060cosθsin(90θ)\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & & & & & \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & & & & & \\\hline\end{array}

A) θ2030405060cosθ0.940.50.770.870.5sin(90θ)0.940.50.770.870.5\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & 0.94 & 0.5 & 0.77 & 0.87 & 0.5 \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & 0.94 & 0.5 & 0.77 & 0.87 & 0.5 \\\hline\end{array}
B) θ2030405060cosθ0.50.640.770.870.94sin(90θ)0.940.870.770.640.5\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & 0.5 & 0.64 & 0.77 & 0.87 & 0.94 \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & 0.94 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline\end{array}
C) θ2030405060cosθ0.940.870.770.640.5sin(90θ)0.940.870.770.640.5\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & 0.94 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & 0.94 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline\end{array}
D) θ2030405060cosθ0.940.870.770.640.5sin(90θ)0.50.640.770.870.94\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & 0.94 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & 0.5 & 0.64 & 0.77 & 0.87 & 0.94 \\\hline\end{array}
E) θ2030405060cosθ00.870.770.640.5sin(90θ)00.870.770.640.5\begin{array} { | c | c | c | c | c | c | } \hline \theta & 20 ^ { \circ } & 30 ^ { \circ } & 40 ^ { \circ } & 50 ^ { \circ } & 60 ^ { \circ } \\\hline \cos \theta & 0 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline \sin \left( 90 ^ { \circ } - \theta \right) & 0 & 0.87 & 0.77 & 0.64 & 0.5 \\\hline\end{array}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
23
Use a compass to sketch a quarter of a circle of radius 10 centimeters.Using a protractor, construct an angle of a=10a = 10 ^ { \circ } in standard position (see figure).Drop a perpendicular line from the point of intersection of the terminal side of the angle and the arc of the circle.By actual measurement,calculate the coordinates (x,y)( x , y ) of the point of intersection and use these measurements to approximate the six trigonometric functions of a  "a" \text { "a" } angle.(Round your answer to two decimal places. )?  <strong>Use a compass to sketch a quarter of a circle of radius 10 centimeters.Using a protractor, construct an angle of  a = 10 ^ { \circ }  in standard position (see figure).Drop a perpendicular line from the point of intersection of the terminal side of the angle and the arc of the circle.By actual measurement,calculate the coordinates  ( x , y )  of the point of intersection and use these measurements to approximate the six trigonometric functions of a  \text { a }  angle.(Round your answer to two decimal places. )?   ?</strong> A)sin10° ? 0.98,cos10° ? 0.17,tan10° ? 5.76, csc10° ? 0.18,sec10° ? 1.02,cot10° ? 5.67 B)sin10° ? 5.67,cos10° ? 1.02,tan10° ? 5.76, csc10° ? 0.18,sec10° ? 0.98,cot10° ? 5.67 ? C)sin10° ? 0.17,cos10° ? 0.98,tan10° ? 0.18, csc10° ? 5.76,sec10° ? 1.02,cot10° ? 5.67 ? D)sin10° ? 0.18,cos10° ? 0.98,tan10° ? 0.17, csc10° ? 10,sec10° ? 0.98,cot10° ? 5.76 ? E)sin10° ? 0.17,cos10° ? 0.98,tan10° ? 0.18, csc10° ? 5.76,sec10° ? 5.67,cot10° ? 1.02  ?

A)sin10° ? 0.98,cos10° ? 0.17,tan10° ? 5.76, csc10° ? 0.18,sec10° ? 1.02,cot10° ? 5.67
B)sin10° ? 5.67,cos10° ? 1.02,tan10° ? 5.76, csc10° ? 0.18,sec10° ? 0.98,cot10° ? 5.67
?
C)sin10° ? 0.17,cos10° ? 0.98,tan10° ? 0.18, csc10° ? 5.76,sec10° ? 1.02,cot10° ? 5.67
?
D)sin10° ? 0.18,cos10° ? 0.98,tan10° ? 0.17, csc10° ? 10,sec10° ? 0.98,cot10° ? 5.76
?
E)sin10° ? 0.17,cos10° ? 0.98,tan10° ? 0.18, csc10° ? 5.76,sec10° ? 5.67,cot10° ? 1.02
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
24
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions.? cosβ=54\cos \beta = \frac { \sqrt { 5 } } { 4 } ? secβ and sin(90β)\sec \beta \text { and } \sin \left( 90 ^ { \circ } - \beta \right) ?

A) secβ=455\sec \beta = \frac { 4 \sqrt { 5 } } { 5 } and sin(90β)=54\sin \left( 90 ^ { \circ } - \beta \right) = \frac { \sqrt { 5 } } { 4 }
B)? secβ=5\sec \beta = \sqrt { 5 } and sin(90β)=4\sin \left( 90 ^ { \circ } - \beta \right) = 4
C)? secβ=54\sec \beta = \frac { \sqrt { 5 } } { 4 } and sin(90β)=54\sin \left( 90 ^ { \circ } - \beta \right) = \frac { \sqrt { 5 } } { 4 }
D)? secβ=54\sec \beta = \frac { \sqrt { 5 } } { 4 } and sin(90β)=455\sin \left( 90 ^ { \circ } - \beta \right) = \frac { 4 \sqrt { 5 } } { 5 }
E)? secβ=455\sec \beta = \frac { 4 \sqrt { 5 } } { 5 } and sin(90β)=455\sin \left( 90 ^ { \circ } - \beta \right) = \frac { 4 \sqrt { 5 } } { 5 }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
25
Find the values of ? in degrees (0θ90)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } \right) and radians (0<θ<π2)\left( 0 < \theta < \frac { \pi } { 2 } \right) without the aid of a calculator. ?sin ? = 1 and csc ? = 1
?
?

A)90° = π2\frac { \pi } { 2 }
B)?30° = π6\frac { \pi } { 6 }
C)?0° = 0
D)?60° = π3\frac { \pi } { 3 }
E)?45° = π4\frac { \pi } { 4 }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
26
A biologist wants to know the width w of a river so that instruments for studying the pollutants in the water can be set properly.From point A the biologist walks downstream x=140x = 140 feet and sights to point C (see figure).From this sighting,it is determined that ? = 54°.How wide is the river??  <strong>A biologist wants to know the width w of a river so that instruments for studying the pollutants in the water can be set properly.From point A the biologist walks downstream  x = 140  feet and sights to point C (see figure).From this sighting,it is determined that ? = 54°.How wide is the river??   (Round your answer to three decimal places. ) ?</strong> A)212.693 B)197.693 C)207.693 D)202.693 E)192.693  (Round your answer to three decimal places. ) ?

A)212.693
B)197.693
C)207.693
D)202.693
E)192.693
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
27
You are skiing down a mountain with a vertical height of 1250 feet.The distance from the top of the mountain to the base is 2500 feet.What is the angle of elevation from the base to the top of the mountain? ?

A)60° = π3\frac { \pi } { 3 }
B)30° = π6\frac { \pi } { 6 }
C)0° = 0
D)90° = π2\frac { \pi } { 2 }
E)45° = π4\frac { \pi } { 4 }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
28
In traveling across flat land,you notice a mountain directly in front of you.Its angle of elevation (to the peak)is 3.5°.After you drive x=23x = 23 miles closer to the mountain,the angle of elevation is 9°.Approximate the height of the mountain.(Round your answer upto one decimal place. )?  <strong>In traveling across flat land,you notice a mountain directly in front of you.Its angle of elevation (to the peak)is 3.5°.After you drive  x = 23  miles closer to the mountain,the angle of elevation is 9°.Approximate the height of the mountain.(Round your answer upto one decimal place. )?   ?</strong> A)10.3 mi B)2.3 mi C)4.3 mi D)8.3 mi E)6.3 mi  ?

A)10.3 mi
B)2.3 mi
C)4.3 mi
D)8.3 mi
E)6.3 mi
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
29
Find the values of ? in degrees (0θ90)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } \right) and radians (0<θ<π2)\left( 0 < \theta < \frac { \pi } { 2 } \right) without the aid of a calculator. cos ? = 0 and tan ? = Not defined
?
?

A)90° = π2\frac { \pi } { 2 }
B)?60° = π3\frac { \pi } { 3 }
C)?0° = 0
D)?30° = π6\frac { \pi } { 6 }
E)?45° = π4\frac { \pi } { 4 }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
30
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions. ​
​sin 90° = 1,tan 90° = Not defined
Sin 0° and tan 0°

A)​sin 0° = 0 and tan 0° = 0
B)sin 0° = 1 and tan 0° = 1
C)​sin 0° = Not defined and tan 0° = Not defined
D)​sin 0° = Not defined and tan 0° = 1
E)​sin 0° = 1 and tan 0° = Not defined
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
31
A 20-meter line is used to tether a helium-filled balloon.Because of a breeze,the line makes an angle of approximately 85° with the ground.Use a trigonometric function to write an equation involving the unknown quantity. ?

A) sin85=h20\sin 85 ^ { \circ } = \frac { h } { 20 } (where h is height. )
B) cos85=h20\cos 85 ^ { \circ } = \frac { h } { 20 } (where h is height. )
C) cos85=20h\cos 85 ^ { \circ } = \frac { 20 } { h } (where h is height. )
D) sin85=20h\sin 85 ^ { \circ } = \frac { 20 } { h } (where h is height. )
E) tan85=h20\tan 85 ^ { \circ } = \frac { h } { 20 } (where h is height. )
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
32
Find the values of ? in degrees (0θ90)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } \right) and radians (0<θ<π2)\left( 0 < \theta < \frac { \pi } { 2 } \right) without the aid of a calculator. sec ? = 2\sqrt { 2 } and cot ? = 1
?
?

A)45° = π4\frac { \pi } { 4 }
B)?90° = π2\frac { \pi } { 2 }
C)?0° = 0
D)?60° = π3\frac { \pi } { 3 }
E)?30° = π6\frac { \pi } { 6 }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
33
Complete the table.
θ0.80.911.11.2sinθ\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & & & & & \\\hline\end{array}
(Round your answer to four decimal places. )

A) θ0.80.911.11.2sinθ0.71740.78330.84150.89120.932\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & 0.7174 & 0.7833 & 0.8415 & 0.8912 & 0.932 \\\hline\end{array}
B) θ0.80.911.11.2sinθ01234\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & 0 & 1 & 2 & 3 & 4 \\\hline\end{array}
C) θ0.80.911.11.2sinθ0.9320.89120.84150.78330.7174\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & 0.932 & 0.8912 & 0.8415 & 0.7833 & 0.7174 \\\hline\end{array}
D) θ0.80.911.11.2sinθ0.71740.71740.84150.71740.932\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & 0.7174 & 0.7174 & 0.8415 & 0.7174 & 0.932 \\\hline\end{array}
E) θ0.80.911.11.2sinθ0.80.911.11.2\begin{array} { | c | c | c | c | c | c | } \hline \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline \sin \theta & 0.8 & 0.9 & 1 & 1.1 & 1.2 \\\hline\end{array}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
34
A 10-meter line is used to tether a helium-filled balloon.Complete the table,which shows the heights (in meters)of the balloon for decreasing angle measures θ\theta .(Round your answers to one decimal places. )  Angle, θ5040302010 Height \begin{array} { | c | c | c | c | c | c | } \hline \text { Angle, } \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & & & & & \\\hline\end{array}

A)  Angle, θ5040302010 Height 5.76.453.41.7\begin{array} { | c | c | c | c | c | c | } \hline \text { Angle, } \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & 5.7 & 6.4 & 5 & 3.4 & 1.7 \\\hline\end{array}
B)  Angle ,θ5040302010 Height 7.76.453.41.7\begin{array} { | c | c | c | c | c | c | } \hline \text { Angle } , \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & 7.7 & 6.4 & 5 & 3.4 & 1.7 \\\hline\end{array}
C)  Angle, θ5040302010 Height 4.76.453.41.7\begin{array} { | c | c | c | c | c | c | } \hline \text { Angle, } \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & 4.7 & 6.4 & 5 & 3.4 & 1.7 \\\hline\end{array}
D)  Angle, θ5040302010 Height 3.76.453.41.7\begin{array} { | c | c | c | c | c | c | } \hline \text { Angle, } \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & 3.7 & 6.4 & 5 & 3.4 & 1.7 \\\hline\end{array}
E)  Angle, θ5040302010 Height 6.76.453.41.7\begin{array} { | c | c | c | c | c | c | } \hline \text { Angle, } \theta & 50 ^ { \circ } & 40 ^ { \circ } & 30 ^ { \circ } & 20 ^ { \circ } & 10 ^ { \circ } \\\hline \text { Height } & 6.7 & 6.4 & 5 & 3.4 & 1.7 \\\hline\end{array}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
35
A tapered shaft has a diameter of x=9x = 9 centimeters at the small end and is 15 centimeters long (see figure).The taper is 3°.Find the diameter d of the large end of the shaft.(Round your answer to two decimal places. )?  <strong>A tapered shaft has a diameter of  x = 9  centimeters at the small end and is 15 centimeters long (see figure).The taper is 3°.Find the diameter d of the large end of the shaft.(Round your answer to two decimal places. )?   ? ?</strong> A)10.57 cm B)14.57 cm C)12.57 cm D)18.57 cm E)16.57 cm  ? ?

A)10.57 cm
B)14.57 cm
C)12.57 cm
D)18.57 cm
E)16.57 cm
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
36
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions.? cosθ=15\cos \theta = \frac { 1 } { 5 } ? sec ? and csc(90° - ?)
?

A)? secθ=15\sec \theta = \frac { 1 } { 5 } and csc(90θ)=15\csc \left( 90 ^ { \circ } - \theta \right) = \frac { 1 } { 5 }
B) secθ=5\sec \theta = 5 and csc(90θ)=5\csc \left( 90 ^ { \circ } - \theta \right) = 5
C)? secθ=15\sec \theta = \frac { 1 } { 5 } and csc(90θ)=5\csc \left( 90 ^ { \circ } - \theta \right) = 5
D)? secθ=5\sec \theta = 5 and csc(90θ)=15\csc \left( 90 ^ { \circ } - \theta \right) = \frac { 1 } { 5 }
E)? secθ=5\sec \theta = - 5 and csc(90θ)=5\csc \left( 90 ^ { \circ } - \theta \right) = - 5
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
37
A guy wire runs from the ground to a cell tower.The wire is attached to the cell tower x=100x = 100 feet above the ground.The angle formed between the wire and the ground is 43° (see figure).How long is the guy wire. ??  <strong>A guy wire runs from the ground to a cell tower.The wire is attached to the cell tower  x = 100  feet above the ground.The angle formed between the wire and the ground is 43° (see figure).How long is the guy wire. ??   ?</strong> A)166.6 ft B)?146.6 ft C)?156.6 ft D)?161.6 ft E)?151.6 ft  ?

A)166.6 ft
B)?146.6 ft
C)?156.6 ft
D)?161.6 ft
E)?151.6 ft
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
38
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions.? secθ=9\sec \theta = 9 ? cos ?
?

A) cosθ=9\cos \theta = 9
B)? cosθ=19\cos \theta = \frac { 1 } { 9 }
C)? cosθ=19\cos \theta = - \frac { 1 } { 9 }
D)? cosθ=9\cos \theta = - 9
E)? cosθ=0\cos \theta = 0
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
39
A 50-meter line is used to tether a helium-filled balloon.Because of a breeze,the line makes an angle of approximately 55° with the ground.What is the height of the balloon? (Round the answer to one decimal place. ) ​

A)45 m
B)41 m
C)43 m
D)49 m
E)47 m
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
40
Use the given function value(s),and trigonometric identities (including the cofunction identities),to find the indicated trigonometric functions. ?? cotα=3\cot \alpha = 3 ? tanα and cot(90α)\tan \alpha \text { and } \cot \left( 90 ^ { \circ } - \alpha \right) ?

A)? tanα=13\tan \alpha = - \frac { 1 } { 3 } and cot(90α)=13\cot \left( 90 ^ { \circ } - \alpha \right) = - \frac { 1 } { 3 }
B)? tanα=13\tan \alpha = \frac { 1 } { 3 } and cot(90α)=3\cot \left( 90 ^ { \circ } - \alpha \right) = 3
C) tanα=13\tan \alpha = \frac { 1 } { 3 } and cot(90α)=13\cot \left( 90 ^ { \circ } - \alpha \right) = \frac { 1 } { 3 }
D)? tanα=3\tan \alpha = 3 and cot(90α)=3\cot \left( 90 ^ { \circ } - \alpha \right) = 3
E)? tanα=3\tan \alpha = 3 and cot(90α)=13\cot \left( 90 ^ { \circ } - \alpha \right) = \frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
41
If sinθ=22\sin \theta = \frac { \sqrt { 2 } } { 2 } ,find the value of ? in degrees (0<θ<90)\left( 0 ^ { \circ } < \theta < 90 ^ { \circ } \right) without the aid of a calculator.

A)? = 30°
B)?? = 45°
C)??? = 90°
D)??? = 75°
E)??? = 15°
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
42
Use a calculator to evaluate tan 49°34´.Round your answer to four decimal places.

A)-1.3283
B)0.0423
C)-0.8403
D)1.1643
E)1.1736
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
43
Use a calculator to evaluate tan 68°23'.Round your answer to four decimal places.

A)2.5236
B)2.5040
C)-1.2222
D)-0.8980
E)0.7269
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
44
Find the exact value of csc ?,using the triangle shown in the figure below,if a = 3 and b = 4.  <strong>Find the exact value of csc ?,using the triangle shown in the figure below,if a = 3 and b = 4.  </strong> A)  \frac { 5 } { 4 }  B)?  \frac { 5 } { 3 }  C)?  \frac { 3 } { 4 }  D)?  \frac { 4 } { 5 }  E)?  \frac { 3 } { 5 }

A) 54\frac { 5 } { 4 }
B)? 53\frac { 5 } { 3 }
C)? 34\frac { 3 } { 4 }
D)? 45\frac { 4 } { 5 }
E)? 35\frac { 3 } { 5 }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
45
Use a calculator to evaluate csc(π10)\csc \left( \frac { \pi } { 10 } \right) .Round your answer to four decimal places.

A)-1.8382
B)-24.0997
C)0.3090
D)3.2361
E)-0.0415
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
46
If sinθ=22\sin \theta = \frac { \sqrt { 2 } } { 2 } ,find the value of ? in degrees (0<θ<90)\left( 0 < \theta < 90 ^ { \circ } \right) without the aid of a calculator.

A)?? = 45°
B)?? = 30°
C)?? = 15°
D)?? = 90°
E)?? = 75°
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
47
Will Barrow wanted to know how tall the flagpole was in front of his school.To find its height,he drove a stake into the ground at the tip of the flagpole's shadow and recorded the angle of elevation at two different times during the day.He then measured the distance between the stakes.Will's data is below: Stake
Time
Angle of Elevation
A
2:00 PM
82°
B
3:00 PM
​61°
Distance between stakes A & B
10 feet <strong>Will Barrow wanted to know how tall the flagpole was in front of his school.To find its height,he drove a stake into the ground at the tip of the flagpole's shadow and recorded the angle of elevation at two different times during the day.He then measured the distance between the stakes.Will's data is below: Stake Time Angle of Elevation A 2:00 PM 82° B 3:00 PM ​61° Distance between stakes A & B 10 feet   Determine the height of the flagpole.Round your answer to nearest foot.</strong> A)22 feet B)24 feet C)20 feet D)26 feet E)18 feet Determine the height of the flagpole.Round your answer to nearest foot.

A)22 feet
B)24 feet
C)20 feet
D)26 feet
E)18 feet
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
48
Given secθ=10\sec \theta = \sqrt { 10 } and tan ? = 3,determine the following. ?
Cos(90° - ?)
?

A)?cos(90° - ?)= 13\frac { 1 } { 3 }
B)?cos(90° - ?)= 31010\frac { 3 \sqrt { 10 } } { 10 }
C)?cos(90° - ?)= 1010\frac { \sqrt { 10 } } { 10 }
D)?cos(90° - ?)= 3
E)undefined
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
49
Find the exact value of csc ?,using the triangle shown in the figure below,if a=4a = 4 and b=3b = 3 .  <strong>Find the exact value of csc ?,using the triangle shown in the figure below,if  a = 4  and  b = 3  .  </strong> A)?  \frac { 3 } { 5 }  B)?  \frac { 4 } { 3 }  C)?  \frac { 5 } { 4 }  D)?  \frac { 4 } { 5 }  E)?  \frac { 5 } { 3 }

A)? 35\frac { 3 } { 5 }
B)? 43\frac { 4 } { 3 }
C)? 54\frac { 5 } { 4 }
D)? 45\frac { 4 } { 5 }
E)? 53\frac { 5 } { 3 }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
50
If ? is an acute angle and cotθ=14\cot \theta = \frac { 1 } { 4 } ,determine sin ?.

A) sinθ=174\sin \theta = \frac { \sqrt { 17 } } { 4 }
B)? sinθ=17\sin \theta = \sqrt { 17 }
C)? sinθ=4\sin \theta = 4
D)? sinθ=1717\sin \theta = \frac { \sqrt { 17 } } { 17 }
E)? sinθ=41717\sin \theta = \frac { 4 \sqrt { 17 } } { 17 }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
51
Given sin30=12\sin 30 ^ { \circ } = \frac { 1 } { 2 } and cos30=32\cos 30 ^ { \circ } = \frac { \sqrt { 3 } } { 2 } ,determine the following: ?sec 30°
?

A)?sec 30° = 1
B)?sec 30° = 3\sqrt { 3 }
C)?sec 30° = 233\frac { 2 \sqrt { 3 } } { 3 }
D)?sec 30° = 22\frac { \sqrt { 2 } } { 2 }
E)undefined
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
52
Using the figure below,if ? = 26° and y = 6,determine the exact value of x.  <strong>Using the figure below,if ? = 26° and y = 6,determine the exact value of x.  </strong> A)?  x = \frac { 6 } { \cot 26 ^ { \circ } }  B)?  x = \frac { 26 } { \csc 6 ^ { \circ } }  C)  x = \frac { 6 } { \tan 26 ^ { \circ } }  D)?  x = \frac { 3 } { \sin 13 ^ { \circ } }  E)?  x = \frac { 13 } { \tan 3 ^ { \circ } }

A)? x=6cot26x = \frac { 6 } { \cot 26 ^ { \circ } }
B)? x=26csc6x = \frac { 26 } { \csc 6 ^ { \circ } }
C) x=6tan26x = \frac { 6 } { \tan 26 ^ { \circ } }
D)? x=3sin13x = \frac { 3 } { \sin 13 ^ { \circ } }
E)? x=13tan3x = \frac { 13 } { \tan 3 ^ { \circ } }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
53
Given sin 30° = 12\frac { 1 } { 2 } and cos 30° = 32\frac { \sqrt { 3 } } { 2 } ,determine the following: ?cot 30°

A)?cot 30° = 22\frac { \sqrt { 2 } } { 2 }
B)undefined
C)?cot 30° = 33\frac { \sqrt { 3 } } { 3 }
D)?cot 30° = 3\sqrt { 3 }
E)?cot 30° = 2
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
54
Using the figure below,if ? = 33° and y = 9,determine the exact value of x.  <strong>Using the figure below,if ? = 33° and y = 9,determine the exact value of x.  </strong> A)  x = \frac { 3 } { \sin 11 ^ { \circ } }  B)?  x = \frac { 9 } { \tan 33 ^ { \circ } }  C)?  x = \frac { 11 } { \tan 3 ^ { \circ } }  D)?  x = \frac { 9 } { \cot 33 ^ { \circ } }  E)?  x = \frac { 33 } { \csc 9 ^ { \circ } }

A) x=3sin11x = \frac { 3 } { \sin 11 ^ { \circ } }
B)? x=9tan33x = \frac { 9 } { \tan 33 ^ { \circ } }
C)? x=11tan3x = \frac { 11 } { \tan 3 ^ { \circ } }
D)? x=9cot33x = \frac { 9 } { \cot 33 ^ { \circ } }
E)? x=33csc9x = \frac { 33 } { \csc 9 ^ { \circ } }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
55
Using the figure below,if ? = 20° and y = 16,determine the exact value of r.  <strong>Using the figure below,if ? = 20° and y = 16,determine the exact value of r.  </strong> A)  r = \frac { 5 } { \cos 4 ^ { \circ } }  B)?  r = \frac { 16 } { \cos 20 ^ { \circ } }  C)?  r = \frac { 4 } { \csc 5 ^ { \circ } }  D)?  r = \frac { 16 } { \tan 20 ^ { \circ } }  E)?  r = \frac { 16 } { \sin 20 ^ { \circ } }

A) r=5cos4r = \frac { 5 } { \cos 4 ^ { \circ } }
B)? r=16cos20r = \frac { 16 } { \cos 20 ^ { \circ } }
C)? r=4csc5r = \frac { 4 } { \csc 5 ^ { \circ } }
D)? r=16tan20r = \frac { 16 } { \tan 20 ^ { \circ } }
E)? r=16sin20r = \frac { 16 } { \sin 20 ^ { \circ } }
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
56
Using trigonometric identities,determine which of the following is equivalent to the following expression. ?
Tan ? + cot ?  <strong>Using trigonometric identities,determine which of the following is equivalent to the following expression. ? Tan ? + cot ?   ?</strong> A)?1 B)?csc ? sec ? C)  \mathrm { csc }  ? ? +  \sin  ? D)?cos ? + sec ? E)?sec ? + csc ?  ?

A)?1
B)?csc ? sec ?
C) csc\mathrm { csc } ? ? + sin\sin ?
D)?cos ? + sec ?
E)?sec ? + csc ?
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 56 flashcards in this deck.