Deck 29: Inverse Trigonometric Functions

Full screen (f)
exit full mode
Question
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​ a = x B = 10 ​</strong> A)  \theta = \arcsin \frac { x } { 10 }  B)  \theta = \arccos \frac { 10 } { x }  C)  \theta = \operatorname { arccot } \frac { x } { 10 }  D)  \theta = \arccos \frac { x } { 10 }  E)  \theta = \arctan \frac { x } { 10 }  <div style=padding-top: 35px>  ​ a = x
B = 10

A) θ=arcsinx10\theta = \arcsin \frac { x } { 10 }
B) θ=arccos10x\theta = \arccos \frac { 10 } { x }
C) θ=arccotx10\theta = \operatorname { arccot } \frac { x } { 10 }
D) θ=arccosx10\theta = \arccos \frac { x } { 10 }
E) θ=arctanx10\theta = \arctan \frac { x } { 10 }
Use Space or
up arrow
down arrow
to flip the card.
Question
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​ a = x B = 6 ​</strong> A)  \theta = \arctan \frac { 6 } { x }  B)  \theta = \arccos \frac { x } { 6 }  C)  \theta = \operatorname { arccot } \frac { x } { 6 }  D)  \theta = \arcsin \frac { x } { 6 }  E)  \theta = \arctan \frac { x } { 6 }  <div style=padding-top: 35px>  ​ a = x
B = 6

A) θ=arctan6x\theta = \arctan \frac { 6 } { x }
B) θ=arccosx6\theta = \arccos \frac { x } { 6 }
C) θ=arccotx6\theta = \operatorname { arccot } \frac { x } { 6 }
D) θ=arcsinx6\theta = \arcsin \frac { x } { 6 }
E) θ=arctanx6\theta = \arctan \frac { x } { 6 }
Question
Evaluate the expression.Round your result to two decimal places.​ cos10.44\cos ^ { - 1 } 0.44

A)2.12
B)0.12
C)1.12
D)-0.88
E)3.12
Question
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​ a = x + 5 B = 10 ​</strong> A)  \theta = \arccos \frac { x + 5 } { 10 }  B)  \theta = \arctan \frac { x + 5 } { 10 }  C)  \theta = \arctan \frac { 10 } { x + 5 }  D)  \theta = \operatorname { arccot } \frac { x + 5 } { 10 }  E)  \theta = \arcsin \frac { x + 5 } { 10 }  <div style=padding-top: 35px>  ​ a = x + 5
B = 10

A) θ=arccosx+510\theta = \arccos \frac { x + 5 } { 10 }
B) θ=arctanx+510\theta = \arctan \frac { x + 5 } { 10 }
C) θ=arctan10x+5\theta = \arctan \frac { 10 } { x + 5 }
D) θ=arccotx+510\theta = \operatorname { arccot } \frac { x + 5 } { 10 }
E) θ=arcsinx+510\theta = \arcsin \frac { x + 5 } { 10 }
Question
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​ a = x + 6 B = 2 ​</strong> A)  \theta = \arctan \frac { x + 6 } { 2 }  B)  \theta = \arcsin \frac { 2 } { x + 6 }  C)  \theta = \operatorname { arccot } \frac { x + 6 } { 2 }  D)  \theta = \arccos \frac { x + 6 } { 2 }  E)  \theta = \arcsin \frac { x + 6 } { 2 }  <div style=padding-top: 35px>  ​ a = x + 6
B = 2

A) θ=arctanx+62\theta = \arctan \frac { x + 6 } { 2 }
B) θ=arcsin2x+6\theta = \arcsin \frac { 2 } { x + 6 }
C) θ=arccotx+62\theta = \operatorname { arccot } \frac { x + 6 } { 2 }
D) θ=arccosx+62\theta = \arccos \frac { x + 6 } { 2 }
E) θ=arcsinx+62\theta = \arcsin \frac { x + 6 } { 2 }
Question
Evaluate the expression.Round your result to two decimal places.​ arcsin(0.130)\arcsin ( - 0.130 )

A)1.87
B)-2.13
C)-1.13
D)0.87
E)-0.13
Question
Evaluate the expression.Round your result to two decimal places.​ arctan30\arctan 30

A)3.54
B)0.54
C)1.54
D)2.54
E)-0.46
Question
Evaluate the expression.Round your result to two decimal places.​ arccos0.23\arccos 0.23

A)-0.66
B)2.34
C)1.34
D)3.34
E)0.34
Question
Use the properties of inverse trigonometric functions to evaluate the expression.​ tan(arctan40)\tan ( \arctan 40 )

A) tan140\tan ^ { - 1 } 40
B) 40- 40
C) π40\frac { \pi } { 40 }
D) tan40\tan 40
E)40
Question
Evaluate the expression.Round your result to two decimal places.​ arccos(23)\arccos \left( - \frac { 2 } { 3 } \right)

A)0.30
B)1.30
C)4.30
D)3.30
E)2.30
Question
Evaluate the expression.Round your result to two decimal places.​ arcsin0.45\arcsin 0.45

A)-1.53
B)-0.53
C)2.47
D)0.47
E)1.47
Question
Evaluate the expression.Round your result to two decimal places.​ tan1(974)\tan ^ { - 1 } \left( - \frac { 97 } { 4 } \right)

A)-3.53
B)0.47
C)-0.53
D)-1.53
E)-2.53
Question
Evaluate the expression.Round your result to two decimal places.​ arccos(0.6)\arccos ( - 0.6 )

A)4.21
B)2.21
C)3.21
D)0.21
E)1.21
Question
Evaluate the expression.Round your result to two decimal places.​ sin10.65\sin ^ { - 1 } 0.65

A)2.71
B)-0.29
C)1.71
D)0.71
E)-1.29
Question
Evaluate the expression.Round your result to two decimal places.​ tan1(588)\tan ^ { - 1 } ( - \sqrt { 588 } )

A)-0.53
B)-1.53
C)0.47
D)-3.53
E)-2.53
Question
Use the properties of inverse trigonometric functions to evaluate the expression.​ sin[arcsin(0.4)]\sin [ \arcsin ( - 0.4 ) ]

A) sin10.4\sin ^ { - 1 } 0.4
B) sin(0.4)\sin ( - 0.4 )
C)0.4
D) 0.4- 0.4
E) π0.4\frac { \pi } { 0.4 }
Question
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​ a = 5x B = x + 9 ​</strong> A)  \theta = \arctan \frac { x + 9 } { 5 x }  B)  \theta = \arcsin \frac { x + 9 } { 5 x }  C)  \theta = \operatorname { arcsec } \frac { x + 9 } { 5 x }  D)  \theta = \operatorname { arccsc } \frac { x + 9 } { 5 x }  E)  \theta = \arccos \frac { x + 9 } { 5 x }  <div style=padding-top: 35px>  ​ a = 5x
B = x + 9

A) θ=arctanx+95x\theta = \arctan \frac { x + 9 } { 5 x }
B) θ=arcsinx+95x\theta = \arcsin \frac { x + 9 } { 5 x }
C) θ=arcsecx+95x\theta = \operatorname { arcsec } \frac { x + 9 } { 5 x }
D) θ=arccscx+95x\theta = \operatorname { arccsc } \frac { x + 9 } { 5 x }
E) θ=arccosx+95x\theta = \arccos \frac { x + 9 } { 5 x }
Question
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​  \begin{array} { l } a = x ^ { 2 } - 16 \\ b = x - 4 \end{array}  ​</strong> A)  \theta = \arcsin \frac { 1 } { x + 4 } , x \neq 4  B)  \theta = \arctan \frac { 1 } { x - 4 } , x \neq 4  C)  \theta = \arctan \frac { 1 } { x + 4 } , x \neq 4  D)  \theta = \arccos \frac { 1 } { x + 4 } , x \neq 4  E)  \theta = \operatorname { arccot } \frac { 1 } { x + 4 } , x \neq 4  <div style=padding-top: 35px>  a=x216b=x4\begin{array} { l } a = x ^ { 2 } - 16 \\b = x - 4\end{array}

A) θ=arcsin1x+4,x4\theta = \arcsin \frac { 1 } { x + 4 } , x \neq 4
B) θ=arctan1x4,x4\theta = \arctan \frac { 1 } { x - 4 } , x \neq 4
C) θ=arctan1x+4,x4\theta = \arctan \frac { 1 } { x + 4 } , x \neq 4
D) θ=arccos1x+4,x4\theta = \arccos \frac { 1 } { x + 4 } , x \neq 4
E) θ=arccot1x+4,x4\theta = \operatorname { arccot } \frac { 1 } { x + 4 } , x \neq 4
Question
Evaluate the expression.Round your result to two decimal places.​ arcsin23\arcsin \frac { 2 } { 3 }

A)1.73
B)-0.27
C)-1.27
D)2.73
E)0.73
Question
Evaluate the expression.Round your result to two decimal places.​ arctan  2.6\arctan ~~2.6

A)2.20
B)0.20
C)3.20
D)-0.80
E)1.20
Question
An airplane flies at an altitude of a=6a = 6 miles toward a point directly over an observer.Consider θ and x as shown in the figure.Write θ as a function of x.​  <strong>An airplane flies at an altitude of  a = 6  miles toward a point directly over an observer.Consider θ and x as shown in the figure.Write θ as a function of x.​   ​</strong> A)  \theta = \operatorname { arccsc } \frac { x } { 6 }  B)  \theta = \operatorname { arccot } \frac { 6 } { x }  C)  \theta = \arcsin \frac { x } { 6 }  D)  \theta = \arctan \frac { 6 } { x }  E)  \theta = \arctan \frac { x } { 6 }  <div style=padding-top: 35px>

A) θ=arccscx6\theta = \operatorname { arccsc } \frac { x } { 6 }
B) θ=arccot6x\theta = \operatorname { arccot } \frac { 6 } { x }
C) θ=arcsinx6\theta = \arcsin \frac { x } { 6 }
D) θ=arctan6x\theta = \arctan \frac { 6 } { x }
E) θ=arctanx6\theta = \arctan \frac { x } { 6 }
Question
Evaluate tan1(33)\tan ^ { - 1 } \left( - \frac { \sqrt { 3 } } { 3 } \right) without using a calculator.

A) 5π6- \frac { 5 \pi } { 6 }
B) π6- \frac { \pi } { 6 }
C) π3- \frac { \pi } { 3 }
D) 3π4\frac { 3 \pi } { 4 }
E) 2π3- \frac { 2 \pi } { 3 }
Question
Find an algebraic expression that is equivalent to the expression..​ cos(arcsin4x)\cos ( \arcsin 4 x )

A) 1+16x21+16x2\frac { \sqrt { 1 + 16 x ^ { 2 } } } { 1 + 16 x ^ { 2 } }
B) 116x2116x2\frac { \sqrt { 1 - 16 x ^ { 2 } } } { 1 - 16 x ^ { 2 } }
C) 16x21\sqrt { 16 x ^ { 2 } - 1 }
D) 1+16x2\sqrt { 1 + 16 x ^ { 2 } }
E) 116x2\sqrt { 1 - 16 x ^ { 2 } }
Question
Find an algebraic expression that is equivalent to the expression.​ sec(arctan4x)\sec ( \arctan 4 x )

A) 16x2+1\sqrt { 16 x ^ { 2 } + 1 }
B) 116x2\sqrt { 1 - 16 x ^ { 2 } }
C) 16x2116x21\frac { \sqrt { 16 x ^ { 2 } - 1 } } { 16 x ^ { 2 } - 1 }
D) 16x21\sqrt { 16 x ^ { 2 } - 1 }
E) 16x2+116x2+1\frac { \sqrt { 16 x ^ { 2 } + 1 } } { 16 x ^ { 2 } + 1 }
Question
Find the value of the expression.Round your result to two decimal places.​ arccot72\operatorname { arccot } \frac { 7 } { 2 }

A)0.28
B)1.28
C)1.29
D)-1.29
E)-0.28
Question
A television camera at ground level is filming the lift-off of a space shuttle at a point a=925a = 925 meters from the launch pad (see figure).Let θ be the angle of elevation to the shuttle and let s be the height of the shuttle.Write θ as a function of s.​  <strong>A television camera at ground level is filming the lift-off of a space shuttle at a point  a = 925  meters from the launch pad (see figure).Let θ be the angle of elevation to the shuttle and let s be the height of the shuttle.Write θ as a function of s.​   ​</strong> A)  \theta = \arctan \frac { s } { 925 }  B)  \theta = \arcsin \frac { s } { 925 }  C)  \theta = \operatorname { arccsc } \frac { s } { 925 }  D)  \theta = \arctan \frac { 925 } { s }  E)  \theta = \operatorname { arccot } \frac { s } { 925 }  <div style=padding-top: 35px>

A) θ=arctans925\theta = \arctan \frac { s } { 925 }
B) θ=arcsins925\theta = \arcsin \frac { s } { 925 }
C) θ=arccscs925\theta = \operatorname { arccsc } \frac { s } { 925 }
D) θ=arctan925s\theta = \arctan \frac { 925 } { s }
E) θ=arccots925\theta = \operatorname { arccot } \frac { s } { 925 }
Question
A boat is pulled in by means of a winch located on a dock a=2a = 2 feet above the deck of the boat (see figure).Let θ be the angle of elevation from the boat to the winch and let s be the length of the rope from the winch to the boat.Write θ as a function of s.​  <strong>A boat is pulled in by means of a winch located on a dock  a = 2  feet above the deck of the boat (see figure).Let θ be the angle of elevation from the boat to the winch and let s be the length of the rope from the winch to the boat.Write θ as a function of s.​   ​</strong> A)  \theta = \operatorname { arccsc } \frac { 2 } { s }  B)  \theta = \operatorname { arcsec } \frac { 2 } { s }  C)  \theta = \arccos \frac { 2 } { s }  D)  \theta = \arctan \frac { 2 } { s }  E)  \theta = \arcsin \frac { 2 } { s }  <div style=padding-top: 35px>

A) θ=arccsc2s\theta = \operatorname { arccsc } \frac { 2 } { s }
B) θ=arcsec2s\theta = \operatorname { arcsec } \frac { 2 } { s }
C) θ=arccos2s\theta = \arccos \frac { 2 } { s }
D) θ=arctan2s\theta = \arctan \frac { 2 } { s }
E) θ=arcsin2s\theta = \arcsin \frac { 2 } { s }
Question
Find the value of the expression.Round your result to two decimal places.​ arccsc(24)\operatorname { arccsc } ( - 24 )

A)1.61
B)1.53
C)0.04
D)0.96
E)-0.04
Question
Use the properties of inverse trigonometric functions to evaluate tan[arctan(0.11)]\tan [ \arctan ( - 0.11 ) ] .

A) 0.55- 0.55
B) 0.120.12
C) 0.41- 0.41
D) 0.11- 0.11
E) 0.07- 0.07
Question
A security car with its spotlight on is parked a=30a = 30 meters from a warehouse.Consider θ and x as shown in the figure.Write θ as a function of x.​  <strong>A security car with its spotlight on is parked  a = 30  meters from a warehouse.Consider θ and x as shown in the figure.Write θ as a function of x.​   ​</strong> A)  \theta = \operatorname { arccot } \frac { x } { 30 }  B)  \theta = \arctan \frac { x } { 30 }  C)  \theta = \operatorname { arccsc } \frac { x } { 30 }  D)  \theta = \arcsin \frac { x } { 30 }  E)  \theta = \arctan \frac { 30 } { x }  <div style=padding-top: 35px>

A) θ=arccotx30\theta = \operatorname { arccot } \frac { x } { 30 }
B) θ=arctanx30\theta = \arctan \frac { x } { 30 }
C) θ=arccscx30\theta = \operatorname { arccsc } \frac { x } { 30 }
D) θ=arcsinx30\theta = \arcsin \frac { x } { 30 }
E) θ=arctan30x\theta = \arctan \frac { 30 } { x }
Question
Use a calculator to evaluate cos1(0.81)\cos ^ { - 1 } ( - 0.81 ) .Round your answer to two decimal places.

A)0.68
B) 0.89- 0.89
C)0.72
D) 0.94- 0.94
E)2.51
Question
Use the properties of inverse trigonometric functions to evaluate arctan[tan(2π5)]\arctan \left[ \tan \left( \frac { 2 \pi } { 5 } \right) \right] .

A) π5\frac { \pi } { 5 }
B) 2π3\frac { 2 \pi } { 3 }
C) 5π2\frac { 5 \pi } { 2 }
D) 2π5\frac { 2 \pi } { 5 }
E) 3π5- \frac { 3 \pi } { 5 }
Question
Use an inverse function to write θ as a function of x.  <strong>Use an inverse function to write θ as a function of x.  </strong> A)​  \theta = \tan ^ { - 1 } \left( \frac { 1 } { x - 1 } \right)  B)  \theta = \tan ^ { - 1 } \left( \frac { x - 1 } { x + 1 } \right)  C)  \theta = \tan ^ { - 1 } ( x + 1 )  D)  \theta = \tan ^ { - 1 } \left( \frac { 1 } { x ^ { 2 } + 1 } \right)  E)  \theta = \tan ^ { - 1 } \left( \frac { 1 } { x + 1 } \right)  <div style=padding-top: 35px>

A)​ θ=tan1(1x1)\theta = \tan ^ { - 1 } \left( \frac { 1 } { x - 1 } \right)
B) θ=tan1(x1x+1)\theta = \tan ^ { - 1 } \left( \frac { x - 1 } { x + 1 } \right)
C) θ=tan1(x+1)\theta = \tan ^ { - 1 } ( x + 1 )
D) θ=tan1(1x2+1)\theta = \tan ^ { - 1 } \left( \frac { 1 } { x ^ { 2 } + 1 } \right)
E) θ=tan1(1x+1)\theta = \tan ^ { - 1 } \left( \frac { 1 } { x + 1 } \right)
Question
Find the value of the expression.Round your result to two decimal places.​ arccsc(236)\operatorname { arccsc } \left( - \frac { 23 } { 6 } \right)

A)-1.32
B)1.83
C)-0.26
D)-1.26
E)0.74
Question
Use the properties of inverse trigonometric functions to evaluate the expression.​ arcsin(sin7π)\arcsin ( \sin 7 \pi )

A)1
B)-1
C) cos17π\cos ^ { - 1 } 7 \pi
D)0
E) sin17π\sin ^ { - 1 } 7 \pi
Question
Use a calculator to evaluate arctan0.95\arctan 0.95 .Round your answer to two decimal places.

A)1.25
B)0.58
C)0.32
D)1.40
E)0.76
Question
Find an algebraic expression that is equivalent to the expression..​ tan(arccosx6)\tan \left( \arccos \frac { x } { 6 } \right)

A) 36x2x\frac { \sqrt { 36 - x ^ { 2 } } } { x }
B) 36x2x\frac { 36 - x ^ { 2 } } { x }
C) 36+x2x\frac { \sqrt { 36 + x ^ { 2 } } } { x }
D) 36+x236+x2\frac { \sqrt { 36 + x ^ { 2 } } } { 36 + x ^ { 2 } }
E) 36x236x2\frac { \sqrt { 36 - x ^ { 2 } } } { 36 - x ^ { 2 } }
Question
Evaluate arctan33\arctan \frac { \sqrt { 3 } } { 3 } without using a calculator.

A) π6\frac { \pi } { 6 }
B) π6- \frac { \pi } { 6 }
C) π4\frac { \pi } { 4 }
D) π3\frac { \pi } { 3 }
E) 3π4- \frac { 3 \pi } { 4 }
Question
Find the value of the expression.Round your result to two decimal places.​ arcsec    3.14\operatorname { arcsec }~~~~ 3.14

A)-1.25​
B)1.25
C)1.89
D)3.14
E)-3.14 ​
Question
Use an inverse function to write θ as a function of x.  <strong>Use an inverse function to write θ as a function of x.  </strong> A)  \theta = \arctan \frac { \sqrt { x ^ { 2 } - 9 } } { 3 }  B)  \theta = \arctan \frac { 3 } { x }  C)  \theta = \arctan \frac { 3 \pi } { x }  D)  \theta = \arctan \frac { \sqrt { x ^ { 2 } + 9 } } { 3 }  E)  \theta = \arctan \frac { x } { 3 }  <div style=padding-top: 35px>

A) θ=arctanx293\theta = \arctan \frac { \sqrt { x ^ { 2 } - 9 } } { 3 }
B) θ=arctan3x\theta = \arctan \frac { 3 } { x }
C) θ=arctan3πx\theta = \arctan \frac { 3 \pi } { x }
D) θ=arctanx2+93\theta = \arctan \frac { \sqrt { x ^ { 2 } + 9 } } { 3 }
E) θ=arctanx3\theta = \arctan \frac { x } { 3 }
Question
Use a graphing utility to graph the function below.​ y=2arcsin(2x)y = 2 \arcsin ( 2 x ) ​ π 1- 1 11 Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }
Π 1- 1 11 Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }

A)π​  <strong>Use a graphing utility to graph the function below.​  y = 2 \arcsin ( 2 x )  ​ π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π Π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π</strong> A)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ B)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ C)​ π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ D)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ E)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ <div style=padding-top: 35px>  Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 } -π​
B)π​  <strong>Use a graphing utility to graph the function below.​  y = 2 \arcsin ( 2 x )  ​ π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π Π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π</strong> A)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ B)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ C)​ π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ D)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ E)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ <div style=padding-top: 35px>  Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 } -π​
C)​ π​  <strong>Use a graphing utility to graph the function below.​  y = 2 \arcsin ( 2 x )  ​ π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π Π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π</strong> A)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ B)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ C)​ π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ D)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ E)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ <div style=padding-top: 35px>  Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 } -π​
D)π​  <strong>Use a graphing utility to graph the function below.​  y = 2 \arcsin ( 2 x )  ​ π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π Π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π</strong> A)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ B)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ C)​ π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ D)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ E)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ <div style=padding-top: 35px>  Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 } -π​
E)π​  <strong>Use a graphing utility to graph the function below.​  y = 2 \arcsin ( 2 x )  ​ π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π Π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π</strong> A)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ B)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ C)​ π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ D)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ E)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ <div style=padding-top: 35px>  Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 } -π​
Question
Find the exact value of tan(sin1513)\tan \left( \sin ^ { - 1 } \frac { 5 } { 13 } \right) .

A) 15\frac { 1 } { 5 }
B) 1712\frac { 17 } { 12 }
C) 513\frac { 5 } { 13 }
D) 512\frac { 5 } { 12 }
E) 517\frac { 5 } { 17 }
Question
Use a graphing utility to graph the function below. y=2sin1(2x)+π2y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 }

A) 3π2\frac { 3 \pi } { 2 }  <strong>Use a graphing utility to graph the function below.  y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 } </strong> A)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  B)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  C)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  D)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  E)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  <div style=padding-top: 35px>  Yscl=π2\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 } π2- \frac { \pi } { 2 }
B) 3π2\frac { 3 \pi } { 2 }  <strong>Use a graphing utility to graph the function below.  y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 } </strong> A)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  B)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  C)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  D)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  E)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  <div style=padding-top: 35px>  Yscl=π2\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 } π2- \frac { \pi } { 2 }
C) 3π2\frac { 3 \pi } { 2 }  <strong>Use a graphing utility to graph the function below.  y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 } </strong> A)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  B)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  C)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  D)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  E)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  <div style=padding-top: 35px>  Yscl=π2\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 } π2- \frac { \pi } { 2 }
D) 3π2\frac { 3 \pi } { 2 }  <strong>Use a graphing utility to graph the function below.  y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 } </strong> A)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  B)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  C)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  D)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  E)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  <div style=padding-top: 35px>  Yscl=π2\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 } π2- \frac { \pi } { 2 }
E) 3π2\frac { 3 \pi } { 2 }  <strong>Use a graphing utility to graph the function below.  y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 } </strong> A)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  B)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  C)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  D)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  E)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  <div style=padding-top: 35px>  Yscl=π2\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 } π2- \frac { \pi } { 2 }
Question
Write an algebraic expression that is equivalent to sin(arctanx2)\sin \left( \arctan \frac { x } { 2 } \right) .

A) xx2+4x2+4\frac { x \sqrt { x ^ { 2 } + 4 } } { x ^ { 2 } + 4 }
B) 2x2+4x2+4\frac { 2 \sqrt { x ^ { 2 } + 4 } } { x ^ { 2 } + 4 }
C) 2x\frac { 2 } { x }
D) x2+42\frac { \sqrt { x ^ { 2 } + 4 } } { 2 }
E) x2+4x\frac { \sqrt { x ^ { 2 } + 4 } } { x }
Question
Write an algebraic expression that is equivalent to tan(arccos3x)\tan ( \arccos 3 x ) .

A) 19x23x\frac { \sqrt { 1 - 9 x ^ { 2 } } } { 3 x }
B) 19x2\sqrt { 1 - 9 x ^ { 2 } }
C) 19x219x2\frac { \sqrt { 1 - 9 x ^ { 2 } } } { 1 - 9 x ^ { 2 } }
D) 13x\frac { 1 } { 3 x }
E) 3x3 x
Question
A granular substance such as sand naturally settles into a cone-shaped pile when poured from a small aperture.Its height depends on the humidity and adhesion between granules.The angle of elevation of a pile,θ,is called the angle of repose.If the height of a pile of sand is 14 feet and its diameter is approximately 47 feet,determine the angle of repose.Round your answer to the nearest degree.  <strong>A granular substance such as sand naturally settles into a cone-shaped pile when poured from a small aperture.Its height depends on the humidity and adhesion between granules.The angle of elevation of a pile,θ,is called the angle of repose.If the height of a pile of sand is 14 feet and its diameter is approximately 47 feet,determine the angle of repose.Round your answer to the nearest degree.  </strong> A)  27 ^ { \circ }  B)  29 ^ { \circ }  C)  28 ^ { \circ }  D)  30 ^ { \circ }  E)  31 ^ { \circ }  <div style=padding-top: 35px>

A) 2727 ^ { \circ }
B) 2929 ^ { \circ }
C) 2828 ^ { \circ }
D) 3030 ^ { \circ }
E) 3131 ^ { \circ }
Question
Find the exact value of sin(arctan724)\sin \left( \arctan \frac { 7 } { 24 } \right) .

A) 247\frac { 24 } { 7 }
B) 724\frac { 7 } { 24 }
C) 732\frac { 7 } { 32 }
D) 725\frac { 7 } { 25 }
E) 3225\frac { 32 } { 25 }
Question
Which of the following functions is represented by the graph below?  <strong>Which of the following functions is represented by the graph below?  </strong> A)  \arcsin \left( \frac { x - 1 } { 2 } \right) + \frac { \pi } { 4 }  B)  2 \arccos ( x + 1 )  C)  \arcsin ( 2 x )  D)  \arccos \left( \frac { x + 1 } { 2 } \right)  E)  2 \arcsin \frac { x } { 2 } - 1  <div style=padding-top: 35px>

A) arcsin(x12)+π4\arcsin \left( \frac { x - 1 } { 2 } \right) + \frac { \pi } { 4 }
B) 2arccos(x+1)2 \arccos ( x + 1 )
C) arcsin(2x)\arcsin ( 2 x )
D) arccos(x+12)\arccos \left( \frac { x + 1 } { 2 } \right)
E) 2arcsinx212 \arcsin \frac { x } { 2 } - 1
Question
Which of the following functions is represented by the graph below?  <strong>Which of the following functions is represented by the graph below?  </strong> A)2arccos x B)arcsin 2x C)arccos (x + 1) D)2arcsin  \frac { x } { 2 }  E)arccos  \frac { x } { 2 }  <div style=padding-top: 35px>

A)2arccos x
B)arcsin 2x
C)arccos (x + 1)
D)2arcsin x2\frac { x } { 2 }
E)arccos x2\frac { x } { 2 }
Question
Which of the following can be inserted to make the statement true? arccos(36x26)=arcsin(),0x6\arccos \left( \frac { \sqrt { 36 - x ^ { 2 } } } { 6 } \right) = \arcsin ( \quad ) , 0 \leq x \leq 6

A) x26\frac { x ^ { 2 } } { 6 }
B) x6\frac { x } { 6 }
C) 36x236 - x ^ { 2 }
D) 72x2x\frac { \sqrt { 72 - x ^ { 2 } } } { x }
E)x
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/50
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 29: Inverse Trigonometric Functions
1
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​ a = x B = 10 ​</strong> A)  \theta = \arcsin \frac { x } { 10 }  B)  \theta = \arccos \frac { 10 } { x }  C)  \theta = \operatorname { arccot } \frac { x } { 10 }  D)  \theta = \arccos \frac { x } { 10 }  E)  \theta = \arctan \frac { x } { 10 }   ​ a = x
B = 10

A) θ=arcsinx10\theta = \arcsin \frac { x } { 10 }
B) θ=arccos10x\theta = \arccos \frac { 10 } { x }
C) θ=arccotx10\theta = \operatorname { arccot } \frac { x } { 10 }
D) θ=arccosx10\theta = \arccos \frac { x } { 10 }
E) θ=arctanx10\theta = \arctan \frac { x } { 10 }
θ=arccos10x\theta = \arccos \frac { 10 } { x }
2
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​ a = x B = 6 ​</strong> A)  \theta = \arctan \frac { 6 } { x }  B)  \theta = \arccos \frac { x } { 6 }  C)  \theta = \operatorname { arccot } \frac { x } { 6 }  D)  \theta = \arcsin \frac { x } { 6 }  E)  \theta = \arctan \frac { x } { 6 }   ​ a = x
B = 6

A) θ=arctan6x\theta = \arctan \frac { 6 } { x }
B) θ=arccosx6\theta = \arccos \frac { x } { 6 }
C) θ=arccotx6\theta = \operatorname { arccot } \frac { x } { 6 }
D) θ=arcsinx6\theta = \arcsin \frac { x } { 6 }
E) θ=arctanx6\theta = \arctan \frac { x } { 6 }
θ=arctanx6\theta = \arctan \frac { x } { 6 }
3
Evaluate the expression.Round your result to two decimal places.​ cos10.44\cos ^ { - 1 } 0.44

A)2.12
B)0.12
C)1.12
D)-0.88
E)3.12
1.12
4
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​ a = x + 5 B = 10 ​</strong> A)  \theta = \arccos \frac { x + 5 } { 10 }  B)  \theta = \arctan \frac { x + 5 } { 10 }  C)  \theta = \arctan \frac { 10 } { x + 5 }  D)  \theta = \operatorname { arccot } \frac { x + 5 } { 10 }  E)  \theta = \arcsin \frac { x + 5 } { 10 }   ​ a = x + 5
B = 10

A) θ=arccosx+510\theta = \arccos \frac { x + 5 } { 10 }
B) θ=arctanx+510\theta = \arctan \frac { x + 5 } { 10 }
C) θ=arctan10x+5\theta = \arctan \frac { 10 } { x + 5 }
D) θ=arccotx+510\theta = \operatorname { arccot } \frac { x + 5 } { 10 }
E) θ=arcsinx+510\theta = \arcsin \frac { x + 5 } { 10 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
5
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​ a = x + 6 B = 2 ​</strong> A)  \theta = \arctan \frac { x + 6 } { 2 }  B)  \theta = \arcsin \frac { 2 } { x + 6 }  C)  \theta = \operatorname { arccot } \frac { x + 6 } { 2 }  D)  \theta = \arccos \frac { x + 6 } { 2 }  E)  \theta = \arcsin \frac { x + 6 } { 2 }   ​ a = x + 6
B = 2

A) θ=arctanx+62\theta = \arctan \frac { x + 6 } { 2 }
B) θ=arcsin2x+6\theta = \arcsin \frac { 2 } { x + 6 }
C) θ=arccotx+62\theta = \operatorname { arccot } \frac { x + 6 } { 2 }
D) θ=arccosx+62\theta = \arccos \frac { x + 6 } { 2 }
E) θ=arcsinx+62\theta = \arcsin \frac { x + 6 } { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
6
Evaluate the expression.Round your result to two decimal places.​ arcsin(0.130)\arcsin ( - 0.130 )

A)1.87
B)-2.13
C)-1.13
D)0.87
E)-0.13
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate the expression.Round your result to two decimal places.​ arctan30\arctan 30

A)3.54
B)0.54
C)1.54
D)2.54
E)-0.46
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
8
Evaluate the expression.Round your result to two decimal places.​ arccos0.23\arccos 0.23

A)-0.66
B)2.34
C)1.34
D)3.34
E)0.34
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
9
Use the properties of inverse trigonometric functions to evaluate the expression.​ tan(arctan40)\tan ( \arctan 40 )

A) tan140\tan ^ { - 1 } 40
B) 40- 40
C) π40\frac { \pi } { 40 }
D) tan40\tan 40
E)40
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate the expression.Round your result to two decimal places.​ arccos(23)\arccos \left( - \frac { 2 } { 3 } \right)

A)0.30
B)1.30
C)4.30
D)3.30
E)2.30
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
11
Evaluate the expression.Round your result to two decimal places.​ arcsin0.45\arcsin 0.45

A)-1.53
B)-0.53
C)2.47
D)0.47
E)1.47
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
12
Evaluate the expression.Round your result to two decimal places.​ tan1(974)\tan ^ { - 1 } \left( - \frac { 97 } { 4 } \right)

A)-3.53
B)0.47
C)-0.53
D)-1.53
E)-2.53
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
13
Evaluate the expression.Round your result to two decimal places.​ arccos(0.6)\arccos ( - 0.6 )

A)4.21
B)2.21
C)3.21
D)0.21
E)1.21
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
14
Evaluate the expression.Round your result to two decimal places.​ sin10.65\sin ^ { - 1 } 0.65

A)2.71
B)-0.29
C)1.71
D)0.71
E)-1.29
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
15
Evaluate the expression.Round your result to two decimal places.​ tan1(588)\tan ^ { - 1 } ( - \sqrt { 588 } )

A)-0.53
B)-1.53
C)0.47
D)-3.53
E)-2.53
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
16
Use the properties of inverse trigonometric functions to evaluate the expression.​ sin[arcsin(0.4)]\sin [ \arcsin ( - 0.4 ) ]

A) sin10.4\sin ^ { - 1 } 0.4
B) sin(0.4)\sin ( - 0.4 )
C)0.4
D) 0.4- 0.4
E) π0.4\frac { \pi } { 0.4 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
17
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​ a = 5x B = x + 9 ​</strong> A)  \theta = \arctan \frac { x + 9 } { 5 x }  B)  \theta = \arcsin \frac { x + 9 } { 5 x }  C)  \theta = \operatorname { arcsec } \frac { x + 9 } { 5 x }  D)  \theta = \operatorname { arccsc } \frac { x + 9 } { 5 x }  E)  \theta = \arccos \frac { x + 9 } { 5 x }   ​ a = 5x
B = x + 9

A) θ=arctanx+95x\theta = \arctan \frac { x + 9 } { 5 x }
B) θ=arcsinx+95x\theta = \arcsin \frac { x + 9 } { 5 x }
C) θ=arcsecx+95x\theta = \operatorname { arcsec } \frac { x + 9 } { 5 x }
D) θ=arccscx+95x\theta = \operatorname { arccsc } \frac { x + 9 } { 5 x }
E) θ=arccosx+95x\theta = \arccos \frac { x + 9 } { 5 x }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
18
Use an inverse trigonometric function to write θ as a function of x.​  <strong>Use an inverse trigonometric function to write θ as a function of x.​   ​  \begin{array} { l } a = x ^ { 2 } - 16 \\ b = x - 4 \end{array}  ​</strong> A)  \theta = \arcsin \frac { 1 } { x + 4 } , x \neq 4  B)  \theta = \arctan \frac { 1 } { x - 4 } , x \neq 4  C)  \theta = \arctan \frac { 1 } { x + 4 } , x \neq 4  D)  \theta = \arccos \frac { 1 } { x + 4 } , x \neq 4  E)  \theta = \operatorname { arccot } \frac { 1 } { x + 4 } , x \neq 4   a=x216b=x4\begin{array} { l } a = x ^ { 2 } - 16 \\b = x - 4\end{array}

A) θ=arcsin1x+4,x4\theta = \arcsin \frac { 1 } { x + 4 } , x \neq 4
B) θ=arctan1x4,x4\theta = \arctan \frac { 1 } { x - 4 } , x \neq 4
C) θ=arctan1x+4,x4\theta = \arctan \frac { 1 } { x + 4 } , x \neq 4
D) θ=arccos1x+4,x4\theta = \arccos \frac { 1 } { x + 4 } , x \neq 4
E) θ=arccot1x+4,x4\theta = \operatorname { arccot } \frac { 1 } { x + 4 } , x \neq 4
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
19
Evaluate the expression.Round your result to two decimal places.​ arcsin23\arcsin \frac { 2 } { 3 }

A)1.73
B)-0.27
C)-1.27
D)2.73
E)0.73
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
20
Evaluate the expression.Round your result to two decimal places.​ arctan  2.6\arctan ~~2.6

A)2.20
B)0.20
C)3.20
D)-0.80
E)1.20
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
21
An airplane flies at an altitude of a=6a = 6 miles toward a point directly over an observer.Consider θ and x as shown in the figure.Write θ as a function of x.​  <strong>An airplane flies at an altitude of  a = 6  miles toward a point directly over an observer.Consider θ and x as shown in the figure.Write θ as a function of x.​   ​</strong> A)  \theta = \operatorname { arccsc } \frac { x } { 6 }  B)  \theta = \operatorname { arccot } \frac { 6 } { x }  C)  \theta = \arcsin \frac { x } { 6 }  D)  \theta = \arctan \frac { 6 } { x }  E)  \theta = \arctan \frac { x } { 6 }

A) θ=arccscx6\theta = \operatorname { arccsc } \frac { x } { 6 }
B) θ=arccot6x\theta = \operatorname { arccot } \frac { 6 } { x }
C) θ=arcsinx6\theta = \arcsin \frac { x } { 6 }
D) θ=arctan6x\theta = \arctan \frac { 6 } { x }
E) θ=arctanx6\theta = \arctan \frac { x } { 6 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
22
Evaluate tan1(33)\tan ^ { - 1 } \left( - \frac { \sqrt { 3 } } { 3 } \right) without using a calculator.

A) 5π6- \frac { 5 \pi } { 6 }
B) π6- \frac { \pi } { 6 }
C) π3- \frac { \pi } { 3 }
D) 3π4\frac { 3 \pi } { 4 }
E) 2π3- \frac { 2 \pi } { 3 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
23
Find an algebraic expression that is equivalent to the expression..​ cos(arcsin4x)\cos ( \arcsin 4 x )

A) 1+16x21+16x2\frac { \sqrt { 1 + 16 x ^ { 2 } } } { 1 + 16 x ^ { 2 } }
B) 116x2116x2\frac { \sqrt { 1 - 16 x ^ { 2 } } } { 1 - 16 x ^ { 2 } }
C) 16x21\sqrt { 16 x ^ { 2 } - 1 }
D) 1+16x2\sqrt { 1 + 16 x ^ { 2 } }
E) 116x2\sqrt { 1 - 16 x ^ { 2 } }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
24
Find an algebraic expression that is equivalent to the expression.​ sec(arctan4x)\sec ( \arctan 4 x )

A) 16x2+1\sqrt { 16 x ^ { 2 } + 1 }
B) 116x2\sqrt { 1 - 16 x ^ { 2 } }
C) 16x2116x21\frac { \sqrt { 16 x ^ { 2 } - 1 } } { 16 x ^ { 2 } - 1 }
D) 16x21\sqrt { 16 x ^ { 2 } - 1 }
E) 16x2+116x2+1\frac { \sqrt { 16 x ^ { 2 } + 1 } } { 16 x ^ { 2 } + 1 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
25
Find the value of the expression.Round your result to two decimal places.​ arccot72\operatorname { arccot } \frac { 7 } { 2 }

A)0.28
B)1.28
C)1.29
D)-1.29
E)-0.28
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
26
A television camera at ground level is filming the lift-off of a space shuttle at a point a=925a = 925 meters from the launch pad (see figure).Let θ be the angle of elevation to the shuttle and let s be the height of the shuttle.Write θ as a function of s.​  <strong>A television camera at ground level is filming the lift-off of a space shuttle at a point  a = 925  meters from the launch pad (see figure).Let θ be the angle of elevation to the shuttle and let s be the height of the shuttle.Write θ as a function of s.​   ​</strong> A)  \theta = \arctan \frac { s } { 925 }  B)  \theta = \arcsin \frac { s } { 925 }  C)  \theta = \operatorname { arccsc } \frac { s } { 925 }  D)  \theta = \arctan \frac { 925 } { s }  E)  \theta = \operatorname { arccot } \frac { s } { 925 }

A) θ=arctans925\theta = \arctan \frac { s } { 925 }
B) θ=arcsins925\theta = \arcsin \frac { s } { 925 }
C) θ=arccscs925\theta = \operatorname { arccsc } \frac { s } { 925 }
D) θ=arctan925s\theta = \arctan \frac { 925 } { s }
E) θ=arccots925\theta = \operatorname { arccot } \frac { s } { 925 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
27
A boat is pulled in by means of a winch located on a dock a=2a = 2 feet above the deck of the boat (see figure).Let θ be the angle of elevation from the boat to the winch and let s be the length of the rope from the winch to the boat.Write θ as a function of s.​  <strong>A boat is pulled in by means of a winch located on a dock  a = 2  feet above the deck of the boat (see figure).Let θ be the angle of elevation from the boat to the winch and let s be the length of the rope from the winch to the boat.Write θ as a function of s.​   ​</strong> A)  \theta = \operatorname { arccsc } \frac { 2 } { s }  B)  \theta = \operatorname { arcsec } \frac { 2 } { s }  C)  \theta = \arccos \frac { 2 } { s }  D)  \theta = \arctan \frac { 2 } { s }  E)  \theta = \arcsin \frac { 2 } { s }

A) θ=arccsc2s\theta = \operatorname { arccsc } \frac { 2 } { s }
B) θ=arcsec2s\theta = \operatorname { arcsec } \frac { 2 } { s }
C) θ=arccos2s\theta = \arccos \frac { 2 } { s }
D) θ=arctan2s\theta = \arctan \frac { 2 } { s }
E) θ=arcsin2s\theta = \arcsin \frac { 2 } { s }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
28
Find the value of the expression.Round your result to two decimal places.​ arccsc(24)\operatorname { arccsc } ( - 24 )

A)1.61
B)1.53
C)0.04
D)0.96
E)-0.04
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
29
Use the properties of inverse trigonometric functions to evaluate tan[arctan(0.11)]\tan [ \arctan ( - 0.11 ) ] .

A) 0.55- 0.55
B) 0.120.12
C) 0.41- 0.41
D) 0.11- 0.11
E) 0.07- 0.07
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
30
A security car with its spotlight on is parked a=30a = 30 meters from a warehouse.Consider θ and x as shown in the figure.Write θ as a function of x.​  <strong>A security car with its spotlight on is parked  a = 30  meters from a warehouse.Consider θ and x as shown in the figure.Write θ as a function of x.​   ​</strong> A)  \theta = \operatorname { arccot } \frac { x } { 30 }  B)  \theta = \arctan \frac { x } { 30 }  C)  \theta = \operatorname { arccsc } \frac { x } { 30 }  D)  \theta = \arcsin \frac { x } { 30 }  E)  \theta = \arctan \frac { 30 } { x }

A) θ=arccotx30\theta = \operatorname { arccot } \frac { x } { 30 }
B) θ=arctanx30\theta = \arctan \frac { x } { 30 }
C) θ=arccscx30\theta = \operatorname { arccsc } \frac { x } { 30 }
D) θ=arcsinx30\theta = \arcsin \frac { x } { 30 }
E) θ=arctan30x\theta = \arctan \frac { 30 } { x }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
31
Use a calculator to evaluate cos1(0.81)\cos ^ { - 1 } ( - 0.81 ) .Round your answer to two decimal places.

A)0.68
B) 0.89- 0.89
C)0.72
D) 0.94- 0.94
E)2.51
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
32
Use the properties of inverse trigonometric functions to evaluate arctan[tan(2π5)]\arctan \left[ \tan \left( \frac { 2 \pi } { 5 } \right) \right] .

A) π5\frac { \pi } { 5 }
B) 2π3\frac { 2 \pi } { 3 }
C) 5π2\frac { 5 \pi } { 2 }
D) 2π5\frac { 2 \pi } { 5 }
E) 3π5- \frac { 3 \pi } { 5 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
33
Use an inverse function to write θ as a function of x.  <strong>Use an inverse function to write θ as a function of x.  </strong> A)​  \theta = \tan ^ { - 1 } \left( \frac { 1 } { x - 1 } \right)  B)  \theta = \tan ^ { - 1 } \left( \frac { x - 1 } { x + 1 } \right)  C)  \theta = \tan ^ { - 1 } ( x + 1 )  D)  \theta = \tan ^ { - 1 } \left( \frac { 1 } { x ^ { 2 } + 1 } \right)  E)  \theta = \tan ^ { - 1 } \left( \frac { 1 } { x + 1 } \right)

A)​ θ=tan1(1x1)\theta = \tan ^ { - 1 } \left( \frac { 1 } { x - 1 } \right)
B) θ=tan1(x1x+1)\theta = \tan ^ { - 1 } \left( \frac { x - 1 } { x + 1 } \right)
C) θ=tan1(x+1)\theta = \tan ^ { - 1 } ( x + 1 )
D) θ=tan1(1x2+1)\theta = \tan ^ { - 1 } \left( \frac { 1 } { x ^ { 2 } + 1 } \right)
E) θ=tan1(1x+1)\theta = \tan ^ { - 1 } \left( \frac { 1 } { x + 1 } \right)
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
34
Find the value of the expression.Round your result to two decimal places.​ arccsc(236)\operatorname { arccsc } \left( - \frac { 23 } { 6 } \right)

A)-1.32
B)1.83
C)-0.26
D)-1.26
E)0.74
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
35
Use the properties of inverse trigonometric functions to evaluate the expression.​ arcsin(sin7π)\arcsin ( \sin 7 \pi )

A)1
B)-1
C) cos17π\cos ^ { - 1 } 7 \pi
D)0
E) sin17π\sin ^ { - 1 } 7 \pi
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
36
Use a calculator to evaluate arctan0.95\arctan 0.95 .Round your answer to two decimal places.

A)1.25
B)0.58
C)0.32
D)1.40
E)0.76
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
37
Find an algebraic expression that is equivalent to the expression..​ tan(arccosx6)\tan \left( \arccos \frac { x } { 6 } \right)

A) 36x2x\frac { \sqrt { 36 - x ^ { 2 } } } { x }
B) 36x2x\frac { 36 - x ^ { 2 } } { x }
C) 36+x2x\frac { \sqrt { 36 + x ^ { 2 } } } { x }
D) 36+x236+x2\frac { \sqrt { 36 + x ^ { 2 } } } { 36 + x ^ { 2 } }
E) 36x236x2\frac { \sqrt { 36 - x ^ { 2 } } } { 36 - x ^ { 2 } }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
38
Evaluate arctan33\arctan \frac { \sqrt { 3 } } { 3 } without using a calculator.

A) π6\frac { \pi } { 6 }
B) π6- \frac { \pi } { 6 }
C) π4\frac { \pi } { 4 }
D) π3\frac { \pi } { 3 }
E) 3π4- \frac { 3 \pi } { 4 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
39
Find the value of the expression.Round your result to two decimal places.​ arcsec    3.14\operatorname { arcsec }~~~~ 3.14

A)-1.25​
B)1.25
C)1.89
D)3.14
E)-3.14 ​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
40
Use an inverse function to write θ as a function of x.  <strong>Use an inverse function to write θ as a function of x.  </strong> A)  \theta = \arctan \frac { \sqrt { x ^ { 2 } - 9 } } { 3 }  B)  \theta = \arctan \frac { 3 } { x }  C)  \theta = \arctan \frac { 3 \pi } { x }  D)  \theta = \arctan \frac { \sqrt { x ^ { 2 } + 9 } } { 3 }  E)  \theta = \arctan \frac { x } { 3 }

A) θ=arctanx293\theta = \arctan \frac { \sqrt { x ^ { 2 } - 9 } } { 3 }
B) θ=arctan3x\theta = \arctan \frac { 3 } { x }
C) θ=arctan3πx\theta = \arctan \frac { 3 \pi } { x }
D) θ=arctanx2+93\theta = \arctan \frac { \sqrt { x ^ { 2 } + 9 } } { 3 }
E) θ=arctanx3\theta = \arctan \frac { x } { 3 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
41
Use a graphing utility to graph the function below.​ y=2arcsin(2x)y = 2 \arcsin ( 2 x ) ​ π 1- 1 11 Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }
Π 1- 1 11 Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }

A)π​  <strong>Use a graphing utility to graph the function below.​  y = 2 \arcsin ( 2 x )  ​ π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π Π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π</strong> A)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ B)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ C)​ π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ D)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ E)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​  Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 } -π​
B)π​  <strong>Use a graphing utility to graph the function below.​  y = 2 \arcsin ( 2 x )  ​ π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π Π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π</strong> A)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ B)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ C)​ π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ D)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ E)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​  Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 } -π​
C)​ π​  <strong>Use a graphing utility to graph the function below.​  y = 2 \arcsin ( 2 x )  ​ π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π Π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π</strong> A)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ B)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ C)​ π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ D)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ E)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​  Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 } -π​
D)π​  <strong>Use a graphing utility to graph the function below.​  y = 2 \arcsin ( 2 x )  ​ π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π Π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π</strong> A)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ B)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ C)​ π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ D)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ E)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​  Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 } -π​
E)π​  <strong>Use a graphing utility to graph the function below.​  y = 2 \arcsin ( 2 x )  ​ π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π Π  - 1   1   \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π</strong> A)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ B)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ C)​ π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ D)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​ E)π​    \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 }  -π​  Yscl=π4\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 4 } -π​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
42
Find the exact value of tan(sin1513)\tan \left( \sin ^ { - 1 } \frac { 5 } { 13 } \right) .

A) 15\frac { 1 } { 5 }
B) 1712\frac { 17 } { 12 }
C) 513\frac { 5 } { 13 }
D) 512\frac { 5 } { 12 }
E) 517\frac { 5 } { 17 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
43
Use a graphing utility to graph the function below. y=2sin1(2x)+π2y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 }

A) 3π2\frac { 3 \pi } { 2 }  <strong>Use a graphing utility to graph the function below.  y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 } </strong> A)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  B)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  C)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  D)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  E)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }   Yscl=π2\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 } π2- \frac { \pi } { 2 }
B) 3π2\frac { 3 \pi } { 2 }  <strong>Use a graphing utility to graph the function below.  y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 } </strong> A)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  B)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  C)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  D)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  E)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }   Yscl=π2\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 } π2- \frac { \pi } { 2 }
C) 3π2\frac { 3 \pi } { 2 }  <strong>Use a graphing utility to graph the function below.  y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 } </strong> A)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  B)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  C)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  D)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  E)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }   Yscl=π2\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 } π2- \frac { \pi } { 2 }
D) 3π2\frac { 3 \pi } { 2 }  <strong>Use a graphing utility to graph the function below.  y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 } </strong> A)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  B)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  C)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  D)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  E)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }   Yscl=π2\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 } π2- \frac { \pi } { 2 }
E) 3π2\frac { 3 \pi } { 2 }  <strong>Use a graphing utility to graph the function below.  y = 2 \sin ^ { - 1 } ( 2 x ) + \frac { \pi } { 2 } </strong> A)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  B)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  C)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  D)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }  E)  \frac { 3 \pi } { 2 }     \mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 }   - \frac { \pi } { 2 }   Yscl=π2\mathrm { Y } _ { \mathrm { scl } } = \frac { \pi } { 2 } π2- \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
44
Write an algebraic expression that is equivalent to sin(arctanx2)\sin \left( \arctan \frac { x } { 2 } \right) .

A) xx2+4x2+4\frac { x \sqrt { x ^ { 2 } + 4 } } { x ^ { 2 } + 4 }
B) 2x2+4x2+4\frac { 2 \sqrt { x ^ { 2 } + 4 } } { x ^ { 2 } + 4 }
C) 2x\frac { 2 } { x }
D) x2+42\frac { \sqrt { x ^ { 2 } + 4 } } { 2 }
E) x2+4x\frac { \sqrt { x ^ { 2 } + 4 } } { x }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
45
Write an algebraic expression that is equivalent to tan(arccos3x)\tan ( \arccos 3 x ) .

A) 19x23x\frac { \sqrt { 1 - 9 x ^ { 2 } } } { 3 x }
B) 19x2\sqrt { 1 - 9 x ^ { 2 } }
C) 19x219x2\frac { \sqrt { 1 - 9 x ^ { 2 } } } { 1 - 9 x ^ { 2 } }
D) 13x\frac { 1 } { 3 x }
E) 3x3 x
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
46
A granular substance such as sand naturally settles into a cone-shaped pile when poured from a small aperture.Its height depends on the humidity and adhesion between granules.The angle of elevation of a pile,θ,is called the angle of repose.If the height of a pile of sand is 14 feet and its diameter is approximately 47 feet,determine the angle of repose.Round your answer to the nearest degree.  <strong>A granular substance such as sand naturally settles into a cone-shaped pile when poured from a small aperture.Its height depends on the humidity and adhesion between granules.The angle of elevation of a pile,θ,is called the angle of repose.If the height of a pile of sand is 14 feet and its diameter is approximately 47 feet,determine the angle of repose.Round your answer to the nearest degree.  </strong> A)  27 ^ { \circ }  B)  29 ^ { \circ }  C)  28 ^ { \circ }  D)  30 ^ { \circ }  E)  31 ^ { \circ }

A) 2727 ^ { \circ }
B) 2929 ^ { \circ }
C) 2828 ^ { \circ }
D) 3030 ^ { \circ }
E) 3131 ^ { \circ }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
47
Find the exact value of sin(arctan724)\sin \left( \arctan \frac { 7 } { 24 } \right) .

A) 247\frac { 24 } { 7 }
B) 724\frac { 7 } { 24 }
C) 732\frac { 7 } { 32 }
D) 725\frac { 7 } { 25 }
E) 3225\frac { 32 } { 25 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
48
Which of the following functions is represented by the graph below?  <strong>Which of the following functions is represented by the graph below?  </strong> A)  \arcsin \left( \frac { x - 1 } { 2 } \right) + \frac { \pi } { 4 }  B)  2 \arccos ( x + 1 )  C)  \arcsin ( 2 x )  D)  \arccos \left( \frac { x + 1 } { 2 } \right)  E)  2 \arcsin \frac { x } { 2 } - 1

A) arcsin(x12)+π4\arcsin \left( \frac { x - 1 } { 2 } \right) + \frac { \pi } { 4 }
B) 2arccos(x+1)2 \arccos ( x + 1 )
C) arcsin(2x)\arcsin ( 2 x )
D) arccos(x+12)\arccos \left( \frac { x + 1 } { 2 } \right)
E) 2arcsinx212 \arcsin \frac { x } { 2 } - 1
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
49
Which of the following functions is represented by the graph below?  <strong>Which of the following functions is represented by the graph below?  </strong> A)2arccos x B)arcsin 2x C)arccos (x + 1) D)2arcsin  \frac { x } { 2 }  E)arccos  \frac { x } { 2 }

A)2arccos x
B)arcsin 2x
C)arccos (x + 1)
D)2arcsin x2\frac { x } { 2 }
E)arccos x2\frac { x } { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
50
Which of the following can be inserted to make the statement true? arccos(36x26)=arcsin(),0x6\arccos \left( \frac { \sqrt { 36 - x ^ { 2 } } } { 6 } \right) = \arcsin ( \quad ) , 0 \leq x \leq 6

A) x26\frac { x ^ { 2 } } { 6 }
B) x6\frac { x } { 6 }
C) 36x236 - x ^ { 2 }
D) 72x2x\frac { \sqrt { 72 - x ^ { 2 } } } { x }
E)x
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 50 flashcards in this deck.