Deck 34: Sum and Difference Formulas

Full screen (f)
exit full mode
Question
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system,the weight moves vertically from its equilibrium position,and this motion is modeled by​ y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t ​ where y is the distance from equilibrium (in feet)and t is the time (in seconds).

Use the identity asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) where C=arctan(b/a),a>0C = \arctan ( b / a ) , a > 0 ,to write the model in the form y=a2+b2sin(Bt+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B t + C ) .

A) y=sin(2t+0.9273)y = \sin ( 2 t + 0.9273 )
B) y=245sin(2t+0.9273)y = \frac { 24 } { 5 } \sin ( 2 t + 0.9273 )
C) y=245sin(2t0.9273)y = \frac { 24 } { 5 } \sin ( 2 t - 0.9273 )
D) y=sin(2t0.9273)y = \sin ( 2 t - 0.9273 )
E) y=524sin(2t+0.9273)y = \frac { 5 } { 24 } \sin ( 2 t + 0.9273 )
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the expression as the sine of an angle.​ sin55cos5+cos55sin5\sin 55 ^ { \circ } \cos 5 ^ { \circ } + \cos 55 ^ { \circ } \sin 5 ^ { \circ }

A) sin55\sin 55 ^ { \circ }
B) cos60\cos 60 ^ { \circ }
C) cos50\cos 50 ^ { \circ }
D) sin60\sin 60 ^ { \circ }
E) sin50\sin 50 ^ { \circ }
Question
Find the expression as the sine or cosine of an angle.​ cos100cos60sin100sin60\cos 100 ^ { \circ } \cos 60 ^ { \circ } - \sin 100 ^ { \circ } \sin 60 ^ { \circ }

A) cos40\cos 40 ^ { \circ }
B) sin40\sin 40 ^ { \circ }
C) sin160\sin 160 ^ { \circ }
D) cos160\cos 160 ^ { \circ }
E) cos100\cos 100 ^ { \circ }
Question
Simplify the expression algebraically.​ 3cos(πθ)+3sin(π2+θ)3 \cos ( \pi - \theta ) + 3 \sin \left( \frac { \pi } { 2 } + \theta \right)

A) 3cos(θ)3sin(θ)3 \cos ( \theta ) - 3 \sin ( \theta )
B)0
C) 3cos(θ)+3sin(θ)3 \cos ( \theta ) + 3 \sin ( \theta )
D)1
E)6
Question
Simplify the expression algebraically.​ cos(7x+4y)cos(7x4y)\cos ( 7 x + 4 y ) \cos ( 7 x - 4 y )

A) cos27xsin2y\cos ^ { 2 } 7 x - \sin ^ { 2 } y
B) cos27x+sin24y\cos ^ { 2 } 7 x + \sin ^ { 2 } 4 y
C) cos27xsin24y\cos ^ { 2 } 7 x - \sin ^ { 2 } 4 y
D) cos2xsin24y\cos ^ { 2 } x - \sin ^ { 2 } 4 y
E) cos2xsin2y\cos ^ { 2 } x - \sin ^ { 2 } y
Question
Find the expression as the tangent of an angle.​ tan3x+tanx1tan3xtanx\frac { \tan 3 x + \tan x } { 1 - \tan 3 x \tan x }

A) tan2x\tan 2 x
B) tan3x\tan 3 x
C) tan4x\tan 4 x
D) tan14x\tan ^ { - 1 } 4 x
E) tan12x\tan ^ { - 1 } 2 x
Question
Simplify the expression algebraically. 4tan(π4θ)4 \tan \left( \frac { \pi } { 4 } - \theta \right)

A) 44tanθ1+tanθ\frac { 4 - 4 \tan \theta } { 1 + \tan \theta }
B) 44tanθtanθ\frac { 4 - 4 \tan \theta } { \tan \theta }
C) tanθ4tanθ\frac { \tan \theta } { 4 - \tan \theta }
D) 4+4tanθ1tanθ\frac { 4 + 4 \tan \theta } { 1 - \tan \theta }
E) 4+4tanθtanθ\frac { 4 + 4 \tan \theta } { \tan \theta }
Question
Simplify the expression algebraically.​ sin(9x+9y)sin(9x9y)\sin ( 9 x + 9 y ) \sin ( 9 x - 9 y )

A) sin2xsin29y\sin ^ { 2 } x - \sin ^ { 2 } 9 y
B) sin29x+sin29y\sin ^ { 2 } 9 x + \sin ^ { 2 } 9 y
C) sin29xsin29y\sin ^ { 2 } 9 x - \sin ^ { 2 } 9 y
D) sin2x+sin2y\sin ^ { 2 } x + \sin ^ { 2 } y
E) sin29xsin2y\sin ^ { 2 } 9 x - \sin ^ { 2 } y
Question
Simplify the expression algebraically.​ 92cos(5π4x)\frac { 9 } { \sqrt { 2 } } \cos \left( \frac { 5 \pi } { 4 } - x \right)

A)- 92\frac { 9 } { 2 } (cosx+sinx)( \cos x + \sin x )
B) 92\frac { 9 } { 2 } (cosxsinx)( \cos x - \sin x )
C) 92\frac { 9 } { 2 } (cos5x4+sin5x4)\left( \cos \frac { 5 x } { 4 } + \sin \frac { 5 x } { 4 } \right)
D) 92\frac { 9 } { 2 } (sinxcosx)( \sin x - \cos x )
E) 92\frac { 9 } { 2 } (cos5x4sin5x4)\left( \cos \frac { 5 x } { 4 } - \sin \frac { 5 x } { 4 } \right)
Question
Find the expression as the sine or cosine of an angle.​ cos9xcos5y+sin9xsin5y\cos 9 x \cos 5 y + \sin 9 x \sin 5 y

A) sin(5x9y)\sin ( 5 x - 9 y )
B) sin(9x5y)\sin ( 9 x - 5 y )
C) cos(5x9y)\cos ( 5 x - 9 y )
D) cos(9x5y)\cos ( 9 x - 5 y )
E) cos(9x+5y)\cos ( 9 x + 5 y )
Question
Find the expression as the tangent of an angle.​ tan130tan301+tan130tan30\frac { \tan 130 ^ { \circ } - \tan 30 ^ { \circ } } { 1 + \tan 130 ^ { \circ } \tan 30 ^ { \circ } }

A) tan1100\tan ^ { - 1 } 100 ^ { \circ }
B) tan1130\tan ^ { - 1 } 130 ^ { \circ }
C) tan160\tan 160 ^ { \circ }
D) tan100\tan 100 ^ { \circ }
E) tan30\tan 30 ^ { \circ }
Question
Simplify the expression algebraically.​ cos(6x+9y)+cos(6x9y)\cos ( 6 x + 9 y ) + \cos ( 6 x - 9 y )

A) cos6x\cos 6 x
B) cos6xcos9y\cos 6 x \cos 9 y
C) 2cos6xcos9y2 \cos 6 x \cos 9 y
D) 2cos6x2 \cos 6 x
E) 2cosxcosy2 \cos x \cos y
Question
Simplify the expression algebraically. 5sin(π6+x)5 \sin \left( \frac { \pi } { 6 } + x \right)

A) 52\frac { 5 } { 2 } (cosx3sinx)( \cos x - \sqrt { 3 } \sin x )
B) 52\frac { 5 } { 2 } (cosx+3sinx)( \cos x + \sqrt { 3 } \sin x )
C) 52\frac { 5 } { 2 } (sinx3cosx)( \sin x - \sqrt { 3 } \cos x )
D) 52\frac { 5 } { 2 } (cosx+sinx)( \cos x + \sin x )
E) 52\frac { 5 } { 2 } (sinx+3cosx)( \sin x + \sqrt { 3 } \cos x )
Question
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system,the weight moves vertically from its equilibrium position,and this motion is modeled by​ y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t where y is the distance from equilibrium (in feet)and t is the time (in seconds). Find the amplitude of the oscillations of the weight.

A) 124ft\frac { 1 } { 24 } \mathrm { ft }
B) 110ft\frac { 1 } { 10 } \mathrm { ft }
C) 524ft\frac { 5 } { 24 } \mathrm { ft }
D) 15ft\frac { 1 } { 5 } \mathrm { ft }
E) 245ft\frac { 24 } { 5 } \mathrm { ft }
Question
Find the expression as the tangent of an angle.​ tan60tan201+tan60tan20\frac { \tan 60 ^ { \circ } - \tan 20 ^ { \circ } } { 1 + \tan 60 ^ { \circ } \tan 20 ^ { \circ } }

A) tan40\tan 40 ^ { \circ }
B) tan60\tan 60 ^ { \circ }
C) tan180\tan ^ { - 1 } 80 ^ { \circ }
D) tan20\tan 20 ^ { \circ }
E) tan140\tan ^ { - 1 } 40 ^ { \circ }
Question
Simplify the expression algebraically.​ 6sin(π2+x)6 \sin \left( \frac { \pi } { 2 } + x \right)

A) 6cosx6 \cos x
B) 6cosx- 6 \cos x
C) 6sinx6 \sin x
D) 16cosx- \frac { 1 } { 6 } \cos x
E) 16cosx\frac { 1 } { 6 } \cos x
Question
Simplify the expression algebraically.​ 3sin(π2x)3 \sin \left( \frac { \pi } { 2 } - x \right)

A) 13cosx\frac { 1 } { 3 } \cos x
B) 3cosx3 \cos x
C) 13cosx- \frac { 1 } { 3 } \cos x
D) 3cosx- 3 \cos x
E) 3sinx3 \sin x
Question
Find the expression as the cosine of an angle. ​​ cosπ5cosπ3sinπ5sinπ3\cos \frac { \pi } { 5 } \cos \frac { \pi } { 3 } - \sin \frac { \pi } { 5 } \sin \frac { \pi } { 3 }

A) sin15π8\sin \frac { 15 \pi } { 8 }
B) cos15π8\cos \frac { 15 \pi } { 8 }
C) cos8π15\cos \frac { 8 \pi } { 15 }
D) cosπ15\cos \frac { \pi } { 15 }
E) sin8π15\sin \frac { 8 \pi } { 15 }
Question
Simplify the expression algebraically.​ sin(7x+7y)+sin(7x7y)\sin ( 7 x + 7 y ) + \sin ( 7 x - 7 y )

A) sin(7x2+7y2)\sin \left( 7 x ^ { 2 } + 7 y ^ { 2 } \right)
B) 2sin7x2 \sin 7 x
C) sin(7x27y2)\sin \left( 7 x ^ { 2 } - 7 y ^ { 2 } \right)
D) sin7xcos7y\sin 7 x \cos 7 y
E) 2sin7xcos7y2 \sin 7 x \cos 7 y
Question
Find the expression as the sine of an angle.​ sin5cos1.7cos5sin1.7\sin 5 \cos 1.7 - \cos 5 \sin 1.7

A) sin3.4\sin 3.4
B) sin3.3\sin 3.3
C) sin3.5\sin 3.5
D) sin3.7\sin 3.7
E) sin3.6\sin 3.6
Question
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=9,b=2,B=2C = \arctan ( a / b ) , a = 9 , b = 2 , B = 2 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 85\sqrt { 85 } cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
B)9 cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
C)9 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
D) 85\sqrt { 85 } cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
E)2 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
Question
Simplify the following expression algebraically.​ 6tan(π+θ)6 \tan ( \pi + \theta )

A) 32tanθ- \frac { 3 } { 2 } \tan \theta
B) 6sinθ- 6 \sin \theta
C) 6tanθ- 6 \tan \theta
D) 6tanθ6 \tan \theta
E) 32tanθ\frac { 3 } { 2 } \tan \theta
Question
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=5,b=8,B=1C = \arctan ( b / a ) , a = 5 , b = 8 , B = 1 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 89\sqrt { 89 } sin(θ+1.0122)\sin ( \theta + 1.0122 )
B) 89\sqrt { 89 } sin(θ1.0122)\sin ( \theta - 1.0122 )
C) 89\sqrt { 89 } sin(2θ1.0122)\sin ( 2 \theta - 1.0122 )
D) 89\sqrt { 89 } sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
E) sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
Question
Simplify the following expression algebraically.​ 4sin(3π2+θ)4 \sin \left( \frac { 3 \pi } { 2 } + \theta \right)

A) 32cosθ\frac { 3 } { 2 } \cos \theta
B) 4cosθ4 \cos \theta
C) 4sinθ- 4 \sin \theta
D) 32cosθ- \frac { 3 } { 2 } \cos \theta
E) 4cosθ- 4 \cos \theta
Question
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=18,b=6,B=3C = \arctan ( b / a ) , a = 18 , b = 6 , B = 3 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 6106 \sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
B) 6106 \sqrt { 10 } sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
C) sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
D) 6106 \sqrt { 10 } sin(3θ0.3218)\sin ( 3 \theta - 0.3218 )
E) 6106 \sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
Question
Simplify the following expression algebraically.​ 7cos(π+x)7 \cos ( \pi + x )

A) 7sinx- 7 \sin x
B) 7cosx- 7 \cos x
C) 7cosx7 \cos x
D) 32cosx\frac { 3 } { 2 } \cos x
E) 32cosx- \frac { 3 } { 2 } \cos x
Question
Use a graphing utility to select correct graph of y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.​ y1=sin(x+6),y2=sin(x)+sin(6)y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )

A)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
B)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
C)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are same.
D)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are Same.
E)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are different.
Question
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=3,b=,B=1C = \arctan ( b / a ) , a = 3 , b = , B = 1 to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) sin(θ+0.3218)\sin ( \theta + 0.3218 )
B) sin(θ0.3218)\sin ( \theta - 0.3218 )
C)3 sin(θ+0.3218)\sin ( \theta + 0.3218 )
D) 10\sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
E) 10\sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
Question
Simplify the following expression algebraically.​ cos(3π2x)\cos \left( \frac { 3 \pi } { 2 } - x \right)

A) sinx\sin x
B) 32sinx\frac { 3 } { 2 } \sin x
C) cosx- \cos x
D) sinx- \sin x
E) 32sinx- \frac { 3 } { 2 } \sin x
Question
Use a graphing utility to select the correct graph of ​ y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.​ y1=cos(x+4),y2=cosx+cos4y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4

A)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are different.
B)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are Same.
C)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
D)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are same.
E)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
Question
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=13,b=6,B=3C = \arctan ( a / b ) , a = 13 , b = 6 , B = 3 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)6 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
B) 205\sqrt { 205 } cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
C) 205\sqrt { 205 } cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
D)13 cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
E)13 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
Question
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 ,to rewrite the trigonometric expression in the form.​ 6sin(θ+π4)\sqrt { 6 } \sin \left( \theta + \frac { \pi } { 4 } \right)

A) 3sinθ3cosθ\sqrt { 3 } \sin \theta - \sqrt { 3 } \cos \theta
B) 3sinθ+cosθ\sqrt { 3 } \sin \theta + \cos \theta
C) sinθ3cosθ\sin \theta - \sqrt { 3 } \cos \theta
D) 3sinθ+3cosθ\sqrt { 3 } \sin \theta + \sqrt { 3 } \cos \theta
E) sinθ+cosθ\sin \theta + \cos \theta
Question
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b)C = \arctan ( a / b ) C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 ,to rewrite the trigonometric expression in the form asinBθ+bcosBθa \sin B \theta + b \cos B \theta ​ 9 cos(θπ4)\cos \left( \theta - \frac { \pi } { 4 } \right)

A) 922cosθ\frac { 9 \sqrt { 2 } } { 2 } \cos \theta
B) 922sinθ922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
C) 922sinθ+922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
D) 922sinθ+922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
E) 922sinθ922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
Question
Find the exact value of the given expression using a sum or difference formula. sin285\sin 285 ^ { \circ }

A) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
Question
Find the exact value of the given expression. sin(π3π4)\sin \left( \frac { \pi } { 3 } - \frac { \pi } { 4 } \right)

A) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
Question
Use the formula asinBθ+bcosBθ=a2+b2sin(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C ) ,where C=arctan(a/b),a=2,b=8,B=1C = \arctan ( a / b ) , a = 2 , b = 8 , B = 1 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)2 cos(θ+0.245)\cos ( \theta + 0.245 )
B) 2172 \sqrt { 17 } cos(θ0.245)\cos ( \theta - 0.245 )
C) 2172 \sqrt { 17 } cos(θ+0.245)\cos ( \theta + 0.245 )
D)2 cos(θ0.245)\cos ( \theta - 0.245 )
E)8 cos(θ0.245)\cos ( \theta - 0.245 )
Question
Find the exact value of the given expression. cos(120+315)\cos \left( 120 ^ { \circ } + 315 ^ { \circ } \right)

A) (13)(22)8\frac { ( 1 - \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
B) (1+3)(22)8\frac { ( - 1 + \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
C) (1+3)(22)8\frac { ( 1 + \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
D) (13)(22)8\frac { ( - 1 - \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
Question
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=3,b=7,B=2C = \arctan ( a / b ) , a = 3 , b = 7 , B = 2 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 58\sqrt { 58 } cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
B) 58\sqrt { 58 } cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
C)7 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
D)3 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
E)3 cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
Question
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=1,b=3,B=2C = \arctan ( b / a ) , a = 1 , b = 3 , B = 2 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 10\sqrt { 10 } sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
B) 10\sqrt { 10 } sin(θ1.249)\sin ( \theta - 1.249 )
C) 10\sqrt { 10 } sin(2θ1.249)\sin ( 2 \theta - 1.249 )
D) 10\sqrt { 10 } sin(θ+1.249)\sin ( \theta + 1.249 )
E) sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
Question
Find the exact value of the given expression using a sum or difference formula. cos17π12\cos \frac { 17 \pi } { 12 }

A) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
Question
Find the exact value of sin(u+v)\sin ( u + v ) given that sinu=35\sin u = \frac { 3 } { 5 } and cosv=2425\cos v = - \frac { 24 } { 25 } .(Both u and v are in Quadrant II. )

A) sin(u+v)=44125\sin ( u + v ) = - \frac { 44 } { 125 }
B) sin(u+v)=35\sin ( u + v ) = - \frac { 3 } { 5 }
C) sin(u+v)=45\sin ( u + v ) = \frac { 4 } { 5 }
D) sin(u+v)=45\sin ( u + v ) = - \frac { 4 } { 5 }
E) sin(u+v)=44125\sin ( u + v ) = \frac { 44 } { 125 }
Question
Find the exact value of the given expression.​ cos(300+135)\cos \left( 300 ^ { \circ } + 135 ^ { \circ } \right)

A) 1322\frac { 1 - \sqrt { 3 } } { 2 \sqrt { 2 } }
B) 1+322\frac { 1 + \sqrt { 3 } } { 2 \sqrt { 2 } }
C) 1322\frac { - 1 - \sqrt { 3 } } { 2 \sqrt { 2 } }
D) 1+322\frac { - 1 + \sqrt { 3 } } { 2 \sqrt { 2 } }
Question
Simplify the given expression algebraically. cos(π2+x)\cos \left( \frac { \pi } { 2 } + x \right)

A) cosx\cos x
B) sinx- \sin x
C) sinx\sin x
D)1
E) cosx- \cos x
Question
Write the given expression as the cosine of an angle.​ cos45cos40+sin45sin40\cos 45 ^ { \circ } \cos 40 ^ { \circ } + \sin 45 ^ { \circ } \sin 40 ^ { \circ }

A) cos(45)\cos \left( 45 ^ { \circ } \right)
B) cos(5)\cos \left( 5 ^ { \circ } \right)
C) cos(80)\cos \left( - 80 ^ { \circ } \right)
D) cos(40)\cos \left( 40 ^ { \circ } \right)
E) cos(85)\cos \left( 85 ^ { \circ } \right)
Question
Find the exact value of the given expression. sin(2π35π4)\sin \left( \frac { 2 \pi } { 3 } - \frac { 5 \pi } { 4 } \right)

A) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
B) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
C) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
D) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
Question
Write the given expression as the tangent of an angle. tan3x+tan4x1tan3xtan4x\frac { \tan 3 x + \tan 4 x } { 1 - \tan 3 x \tan 4 x }

A) tan(7x)\tan ( 7 x )
B) tan(3x)\tan ( 3 x )
C) tan(5x)\tan ( 5 x )
D) tan(x)\tan ( - x )
E) tan(5x)\tan ( - 5 x )
Question
Find the exact solutions of the given equation in the interval [0,2π). sin 2x = sin x

A) x=2π3,π,4π3x = \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 }
B) x=0,π3,π,5π3x = 0 , \frac { \pi } { 3 } , \pi , \frac { 5 \pi } { 3 }
C) x=π2,7π6,11π6x = \frac { \pi } { 2 } , \frac { 7 \pi } { 6 } , \frac { 11 \pi } { 6 }
D) x=0,π3,2π3,π,4π3,5π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 } , \frac { 5 \pi } { 3 }
E) x=0x = 0
Question
Simplify the given expression algebraically.​ cos(xπ)\cos ( x - \pi )

A) sinx\sin x
B) cosx\cos x
C) sinx- \sin x
D) cosx- \cos x
E)1
Question
Write the given expression as the cosine of an angle. cos60cos25sin60sin25\cos 60 ^ { \circ } \cos 25 ^ { \circ } - \sin 60 ^ { \circ } \sin 25 ^ { \circ }

A) cos(25)\cos \left( 25 ^ { \circ } \right)
B) cos(85)\cos \left( 85 ^ { \circ } \right)
C) cos(35)\cos \left( 35 ^ { \circ } \right)
D) cos(60)\cos \left( 60 ^ { \circ } \right)
E) cos(50)\cos \left( - 50 ^ { \circ } \right)
Question
Write the given expression as the sine of an angle. sin85cos50sin50cos85\sin 85 ^ { \circ } \cos 50 ^ { \circ } - \sin 50 ^ { \circ } \cos 85 ^ { \circ }

A) sin(135)\sin \left( 135 ^ { \circ } \right)
B) sin(100)\sin \left( - 100 ^ { \circ } \right)
C) sin(35)\sin \left( 35 ^ { \circ } \right)
D) sin(50)\sin \left( 50 ^ { \circ } \right)
E) sin(85)\sin \left( 85 ^ { \circ } \right)
Question
Write the given expression as an algebraic expression. cos(arccos x - arcsin x)

A) 00
B) 2x1x22 x \sqrt { 1 - x ^ { 2 } }
C) (x1x2x)(x2+1)x2+1\frac { \left( x \sqrt { 1 - x ^ { 2 } } - x \right) \left( \sqrt { x ^ { 2 } + 1 } \right) } { x ^ { 2 } + 1 }
D)1
E) (x1x2+x)(x2+1)x2+1\frac { \left( x \sqrt { 1 - x ^ { 2 } } + x \right) \left( \sqrt { x ^ { 2 } + 1 } \right) } { x ^ { 2 } + 1 }
Question
Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=817\sin u = \frac { 8 } { 17 } and cosv=6061\cos v = - \frac { 60 } { 61 } .(Both u and v are in Quadrant II. )

A) cos(u+v)=8121037\cos ( u + v ) = \frac { 812 } { 1037 }
B) cos(u+v)=3001037\cos ( u + v ) = - \frac { 300 } { 1037 }
C) cos(u+v)=8041037\cos ( u + v ) = - \frac { 804 } { 1037 }
D) cos(u+v)=3151037\cos ( u + v ) = \frac { 315 } { 1037 }
E) cos(u+v)=6451037\cos ( u + v ) = \frac { 645 } { 1037 }
Question
Find the exact value of the given expression. sin105cos345sin345cos105\sin 105 ^ { \circ } \cos 345 ^ { \circ } - \sin 345 ^ { \circ } \cos 105 ^ { \circ }

A) 12\frac { 1 } { 2 }
B) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) 22\frac { \sqrt { 2 } } { 2 }
E) 32\frac { \sqrt { 3 } } { 2 }
Question
Find the exact value of sin(u+v)\sin ( u + v ) given that sinu=725\sin u = \frac { 7 } { 25 } and cosv=1213\cos v = - \frac { 12 } { 13 } .(Both u and v are in Quadrant II. )

A) sin(u+v)=36325\sin ( u + v ) = \frac { 36 } { 325 }
B) sin(u+v)=36325\sin ( u + v ) = - \frac { 36 } { 325 }
C) sin(u+v)=204325\sin ( u + v ) = - \frac { 204 } { 325 }
D) sin(u+v)=253325\sin ( u + v ) = - \frac { 253 } { 325 }
E) sin(u+v)=204325\sin ( u + v ) = \frac { 204 } { 325 }
Question
Write the given expression as the tangent of an angle.​ tan7x+tan4x1tan7xtan4x\frac { \tan 7 x + \tan 4 x } { 1 - \tan 7 x \tan 4 x }

A) tan(17x)\tan ( - 17 x )
B) tan(11x)\tan ( 11 x )
C) tan(7x)\tan ( 7 x )
D) tan(3x)\tan ( 3 x )
E) tan(5x)\tan ( 5 x )
Question
Find the exact value of the given expression using a sum or difference formula. sin285\sin 285 ^ { \circ }

A) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
B) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
C) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
D) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
Question
Write the given expression as the sine of an angle. sin45cos55sin5545\sin 45 ^ { \circ } \cos 55 ^ { \circ } - \sin 55 ^ { \circ } 45 ^ { \circ }

A) sin(110)\sin \left( - 110 ^ { \circ } \right)
B) sin(10)\sin \left( - 10 ^ { \circ } \right)
C) sin(100)\sin \left( 100 ^ { \circ } \right)
D) sin(45)\sin \left( 45 ^ { \circ } \right)
E) sin(55)\sin \left( 55 ^ { \circ } \right)
Question
Evaluate the expression.​ sinxsin(x+y)+cosxcos(x+y)\sin x \sin ( x + y ) + \cos x \cos ( x + y )

A) sin2xsin2y\sin ^ { 2 } x - \sin ^ { 2 } y
B)0
C) sinxcosx+sinycosy\sin x \cos x + \sin y \cos y
D) cosy\cos y
E) cos2xsin2x\cos ^ { 2 } x - \sin ^ { 2 } x
Question
Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=513\sin u = \frac { 5 } { 13 } and cosv=45\cos v = - \frac { 4 } { 5 } .(Both u and v are in Quadrant II. )

A) cos(u+v)=2865\cos ( u + v ) = \frac { 28 } { 65 }
B) cos(u+v)=1665\cos ( u + v ) = - \frac { 16 } { 65 }
C) cos(u+v)=3365\cos ( u + v ) = \frac { 33 } { 65 }
D) cos(u+v)=2865\cos ( u + v ) = - \frac { 28 } { 65 }
E) cos(u+v)=5665\cos ( u + v ) = \frac { 56 } { 65 }
Question
Find the exact value of the given expression using a sum or difference formula. cos13π12\cos \frac { 13 \pi } { 12 }

A) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
B) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
C) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
D) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
Question
Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . sin 4x= -2sin 2x

A) x=π4,3π4,5π4,7π4x = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }
B) x=0,π3,2π3,π,4π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 }
C) x=π6,π2,5π6,3π2x = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 3 \pi } { 2 }
D) x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
E) x=7π6,3π2,11π6x = \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
Question
Verify the given identity. Verify the given identity.  <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/62
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 34: Sum and Difference Formulas
1
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system,the weight moves vertically from its equilibrium position,and this motion is modeled by​ y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t ​ where y is the distance from equilibrium (in feet)and t is the time (in seconds).

Use the identity asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) where C=arctan(b/a),a>0C = \arctan ( b / a ) , a > 0 ,to write the model in the form y=a2+b2sin(Bt+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B t + C ) .

A) y=sin(2t+0.9273)y = \sin ( 2 t + 0.9273 )
B) y=245sin(2t+0.9273)y = \frac { 24 } { 5 } \sin ( 2 t + 0.9273 )
C) y=245sin(2t0.9273)y = \frac { 24 } { 5 } \sin ( 2 t - 0.9273 )
D) y=sin(2t0.9273)y = \sin ( 2 t - 0.9273 )
E) y=524sin(2t+0.9273)y = \frac { 5 } { 24 } \sin ( 2 t + 0.9273 )
y=524sin(2t+0.9273)y = \frac { 5 } { 24 } \sin ( 2 t + 0.9273 )
2
Find the expression as the sine of an angle.​ sin55cos5+cos55sin5\sin 55 ^ { \circ } \cos 5 ^ { \circ } + \cos 55 ^ { \circ } \sin 5 ^ { \circ }

A) sin55\sin 55 ^ { \circ }
B) cos60\cos 60 ^ { \circ }
C) cos50\cos 50 ^ { \circ }
D) sin60\sin 60 ^ { \circ }
E) sin50\sin 50 ^ { \circ }
sin60\sin 60 ^ { \circ }
3
Find the expression as the sine or cosine of an angle.​ cos100cos60sin100sin60\cos 100 ^ { \circ } \cos 60 ^ { \circ } - \sin 100 ^ { \circ } \sin 60 ^ { \circ }

A) cos40\cos 40 ^ { \circ }
B) sin40\sin 40 ^ { \circ }
C) sin160\sin 160 ^ { \circ }
D) cos160\cos 160 ^ { \circ }
E) cos100\cos 100 ^ { \circ }
cos160\cos 160 ^ { \circ }
4
Simplify the expression algebraically.​ 3cos(πθ)+3sin(π2+θ)3 \cos ( \pi - \theta ) + 3 \sin \left( \frac { \pi } { 2 } + \theta \right)

A) 3cos(θ)3sin(θ)3 \cos ( \theta ) - 3 \sin ( \theta )
B)0
C) 3cos(θ)+3sin(θ)3 \cos ( \theta ) + 3 \sin ( \theta )
D)1
E)6
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
5
Simplify the expression algebraically.​ cos(7x+4y)cos(7x4y)\cos ( 7 x + 4 y ) \cos ( 7 x - 4 y )

A) cos27xsin2y\cos ^ { 2 } 7 x - \sin ^ { 2 } y
B) cos27x+sin24y\cos ^ { 2 } 7 x + \sin ^ { 2 } 4 y
C) cos27xsin24y\cos ^ { 2 } 7 x - \sin ^ { 2 } 4 y
D) cos2xsin24y\cos ^ { 2 } x - \sin ^ { 2 } 4 y
E) cos2xsin2y\cos ^ { 2 } x - \sin ^ { 2 } y
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
6
Find the expression as the tangent of an angle.​ tan3x+tanx1tan3xtanx\frac { \tan 3 x + \tan x } { 1 - \tan 3 x \tan x }

A) tan2x\tan 2 x
B) tan3x\tan 3 x
C) tan4x\tan 4 x
D) tan14x\tan ^ { - 1 } 4 x
E) tan12x\tan ^ { - 1 } 2 x
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
7
Simplify the expression algebraically. 4tan(π4θ)4 \tan \left( \frac { \pi } { 4 } - \theta \right)

A) 44tanθ1+tanθ\frac { 4 - 4 \tan \theta } { 1 + \tan \theta }
B) 44tanθtanθ\frac { 4 - 4 \tan \theta } { \tan \theta }
C) tanθ4tanθ\frac { \tan \theta } { 4 - \tan \theta }
D) 4+4tanθ1tanθ\frac { 4 + 4 \tan \theta } { 1 - \tan \theta }
E) 4+4tanθtanθ\frac { 4 + 4 \tan \theta } { \tan \theta }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
8
Simplify the expression algebraically.​ sin(9x+9y)sin(9x9y)\sin ( 9 x + 9 y ) \sin ( 9 x - 9 y )

A) sin2xsin29y\sin ^ { 2 } x - \sin ^ { 2 } 9 y
B) sin29x+sin29y\sin ^ { 2 } 9 x + \sin ^ { 2 } 9 y
C) sin29xsin29y\sin ^ { 2 } 9 x - \sin ^ { 2 } 9 y
D) sin2x+sin2y\sin ^ { 2 } x + \sin ^ { 2 } y
E) sin29xsin2y\sin ^ { 2 } 9 x - \sin ^ { 2 } y
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
9
Simplify the expression algebraically.​ 92cos(5π4x)\frac { 9 } { \sqrt { 2 } } \cos \left( \frac { 5 \pi } { 4 } - x \right)

A)- 92\frac { 9 } { 2 } (cosx+sinx)( \cos x + \sin x )
B) 92\frac { 9 } { 2 } (cosxsinx)( \cos x - \sin x )
C) 92\frac { 9 } { 2 } (cos5x4+sin5x4)\left( \cos \frac { 5 x } { 4 } + \sin \frac { 5 x } { 4 } \right)
D) 92\frac { 9 } { 2 } (sinxcosx)( \sin x - \cos x )
E) 92\frac { 9 } { 2 } (cos5x4sin5x4)\left( \cos \frac { 5 x } { 4 } - \sin \frac { 5 x } { 4 } \right)
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
10
Find the expression as the sine or cosine of an angle.​ cos9xcos5y+sin9xsin5y\cos 9 x \cos 5 y + \sin 9 x \sin 5 y

A) sin(5x9y)\sin ( 5 x - 9 y )
B) sin(9x5y)\sin ( 9 x - 5 y )
C) cos(5x9y)\cos ( 5 x - 9 y )
D) cos(9x5y)\cos ( 9 x - 5 y )
E) cos(9x+5y)\cos ( 9 x + 5 y )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
11
Find the expression as the tangent of an angle.​ tan130tan301+tan130tan30\frac { \tan 130 ^ { \circ } - \tan 30 ^ { \circ } } { 1 + \tan 130 ^ { \circ } \tan 30 ^ { \circ } }

A) tan1100\tan ^ { - 1 } 100 ^ { \circ }
B) tan1130\tan ^ { - 1 } 130 ^ { \circ }
C) tan160\tan 160 ^ { \circ }
D) tan100\tan 100 ^ { \circ }
E) tan30\tan 30 ^ { \circ }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
12
Simplify the expression algebraically.​ cos(6x+9y)+cos(6x9y)\cos ( 6 x + 9 y ) + \cos ( 6 x - 9 y )

A) cos6x\cos 6 x
B) cos6xcos9y\cos 6 x \cos 9 y
C) 2cos6xcos9y2 \cos 6 x \cos 9 y
D) 2cos6x2 \cos 6 x
E) 2cosxcosy2 \cos x \cos y
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
13
Simplify the expression algebraically. 5sin(π6+x)5 \sin \left( \frac { \pi } { 6 } + x \right)

A) 52\frac { 5 } { 2 } (cosx3sinx)( \cos x - \sqrt { 3 } \sin x )
B) 52\frac { 5 } { 2 } (cosx+3sinx)( \cos x + \sqrt { 3 } \sin x )
C) 52\frac { 5 } { 2 } (sinx3cosx)( \sin x - \sqrt { 3 } \cos x )
D) 52\frac { 5 } { 2 } (cosx+sinx)( \cos x + \sin x )
E) 52\frac { 5 } { 2 } (sinx+3cosx)( \sin x + \sqrt { 3 } \cos x )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
14
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system,the weight moves vertically from its equilibrium position,and this motion is modeled by​ y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t where y is the distance from equilibrium (in feet)and t is the time (in seconds). Find the amplitude of the oscillations of the weight.

A) 124ft\frac { 1 } { 24 } \mathrm { ft }
B) 110ft\frac { 1 } { 10 } \mathrm { ft }
C) 524ft\frac { 5 } { 24 } \mathrm { ft }
D) 15ft\frac { 1 } { 5 } \mathrm { ft }
E) 245ft\frac { 24 } { 5 } \mathrm { ft }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
15
Find the expression as the tangent of an angle.​ tan60tan201+tan60tan20\frac { \tan 60 ^ { \circ } - \tan 20 ^ { \circ } } { 1 + \tan 60 ^ { \circ } \tan 20 ^ { \circ } }

A) tan40\tan 40 ^ { \circ }
B) tan60\tan 60 ^ { \circ }
C) tan180\tan ^ { - 1 } 80 ^ { \circ }
D) tan20\tan 20 ^ { \circ }
E) tan140\tan ^ { - 1 } 40 ^ { \circ }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
16
Simplify the expression algebraically.​ 6sin(π2+x)6 \sin \left( \frac { \pi } { 2 } + x \right)

A) 6cosx6 \cos x
B) 6cosx- 6 \cos x
C) 6sinx6 \sin x
D) 16cosx- \frac { 1 } { 6 } \cos x
E) 16cosx\frac { 1 } { 6 } \cos x
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
17
Simplify the expression algebraically.​ 3sin(π2x)3 \sin \left( \frac { \pi } { 2 } - x \right)

A) 13cosx\frac { 1 } { 3 } \cos x
B) 3cosx3 \cos x
C) 13cosx- \frac { 1 } { 3 } \cos x
D) 3cosx- 3 \cos x
E) 3sinx3 \sin x
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
18
Find the expression as the cosine of an angle. ​​ cosπ5cosπ3sinπ5sinπ3\cos \frac { \pi } { 5 } \cos \frac { \pi } { 3 } - \sin \frac { \pi } { 5 } \sin \frac { \pi } { 3 }

A) sin15π8\sin \frac { 15 \pi } { 8 }
B) cos15π8\cos \frac { 15 \pi } { 8 }
C) cos8π15\cos \frac { 8 \pi } { 15 }
D) cosπ15\cos \frac { \pi } { 15 }
E) sin8π15\sin \frac { 8 \pi } { 15 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
19
Simplify the expression algebraically.​ sin(7x+7y)+sin(7x7y)\sin ( 7 x + 7 y ) + \sin ( 7 x - 7 y )

A) sin(7x2+7y2)\sin \left( 7 x ^ { 2 } + 7 y ^ { 2 } \right)
B) 2sin7x2 \sin 7 x
C) sin(7x27y2)\sin \left( 7 x ^ { 2 } - 7 y ^ { 2 } \right)
D) sin7xcos7y\sin 7 x \cos 7 y
E) 2sin7xcos7y2 \sin 7 x \cos 7 y
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
20
Find the expression as the sine of an angle.​ sin5cos1.7cos5sin1.7\sin 5 \cos 1.7 - \cos 5 \sin 1.7

A) sin3.4\sin 3.4
B) sin3.3\sin 3.3
C) sin3.5\sin 3.5
D) sin3.7\sin 3.7
E) sin3.6\sin 3.6
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
21
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=9,b=2,B=2C = \arctan ( a / b ) , a = 9 , b = 2 , B = 2 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 85\sqrt { 85 } cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
B)9 cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
C)9 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
D) 85\sqrt { 85 } cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
E)2 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
22
Simplify the following expression algebraically.​ 6tan(π+θ)6 \tan ( \pi + \theta )

A) 32tanθ- \frac { 3 } { 2 } \tan \theta
B) 6sinθ- 6 \sin \theta
C) 6tanθ- 6 \tan \theta
D) 6tanθ6 \tan \theta
E) 32tanθ\frac { 3 } { 2 } \tan \theta
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
23
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=5,b=8,B=1C = \arctan ( b / a ) , a = 5 , b = 8 , B = 1 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 89\sqrt { 89 } sin(θ+1.0122)\sin ( \theta + 1.0122 )
B) 89\sqrt { 89 } sin(θ1.0122)\sin ( \theta - 1.0122 )
C) 89\sqrt { 89 } sin(2θ1.0122)\sin ( 2 \theta - 1.0122 )
D) 89\sqrt { 89 } sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
E) sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
24
Simplify the following expression algebraically.​ 4sin(3π2+θ)4 \sin \left( \frac { 3 \pi } { 2 } + \theta \right)

A) 32cosθ\frac { 3 } { 2 } \cos \theta
B) 4cosθ4 \cos \theta
C) 4sinθ- 4 \sin \theta
D) 32cosθ- \frac { 3 } { 2 } \cos \theta
E) 4cosθ- 4 \cos \theta
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
25
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=18,b=6,B=3C = \arctan ( b / a ) , a = 18 , b = 6 , B = 3 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 6106 \sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
B) 6106 \sqrt { 10 } sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
C) sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
D) 6106 \sqrt { 10 } sin(3θ0.3218)\sin ( 3 \theta - 0.3218 )
E) 6106 \sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
26
Simplify the following expression algebraically.​ 7cos(π+x)7 \cos ( \pi + x )

A) 7sinx- 7 \sin x
B) 7cosx- 7 \cos x
C) 7cosx7 \cos x
D) 32cosx\frac { 3 } { 2 } \cos x
E) 32cosx- \frac { 3 } { 2 } \cos x
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
27
Use a graphing utility to select correct graph of y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.​ y1=sin(x+6),y2=sin(x)+sin(6)y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )

A)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  No, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
B)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
C)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are same.
D)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are Same.
E)​  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )  ​</strong> A)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are different.
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
28
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=3,b=,B=1C = \arctan ( b / a ) , a = 3 , b = , B = 1 to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) sin(θ+0.3218)\sin ( \theta + 0.3218 )
B) sin(θ0.3218)\sin ( \theta - 0.3218 )
C)3 sin(θ+0.3218)\sin ( \theta + 0.3218 )
D) 10\sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
E) 10\sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
29
Simplify the following expression algebraically.​ cos(3π2x)\cos \left( \frac { 3 \pi } { 2 } - x \right)

A) sinx\sin x
B) 32sinx\frac { 3 } { 2 } \sin x
C) cosx- \cos x
D) sinx- \sin x
E) 32sinx- \frac { 3 } { 2 } \sin x
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
30
Use a graphing utility to select the correct graph of ​ y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.​ y1=cos(x+4),y2=cosx+cos4y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4

A)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different.  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are different.
B)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different.  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are Same.
C)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different.  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
D)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different.  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are same.
E)​  <strong>Use a graphing utility to select the correct graph of ​  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.​  y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4  ​</strong> A)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. B)​   No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. C)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. D)​   Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. E)​   No,  y _ { 1 } = y _ { 2 }  because their graphs are different.  No, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
31
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=13,b=6,B=3C = \arctan ( a / b ) , a = 13 , b = 6 , B = 3 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)6 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
B) 205\sqrt { 205 } cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
C) 205\sqrt { 205 } cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
D)13 cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
E)13 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
32
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 ,to rewrite the trigonometric expression in the form.​ 6sin(θ+π4)\sqrt { 6 } \sin \left( \theta + \frac { \pi } { 4 } \right)

A) 3sinθ3cosθ\sqrt { 3 } \sin \theta - \sqrt { 3 } \cos \theta
B) 3sinθ+cosθ\sqrt { 3 } \sin \theta + \cos \theta
C) sinθ3cosθ\sin \theta - \sqrt { 3 } \cos \theta
D) 3sinθ+3cosθ\sqrt { 3 } \sin \theta + \sqrt { 3 } \cos \theta
E) sinθ+cosθ\sin \theta + \cos \theta
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
33
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b)C = \arctan ( a / b ) C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 ,to rewrite the trigonometric expression in the form asinBθ+bcosBθa \sin B \theta + b \cos B \theta ​ 9 cos(θπ4)\cos \left( \theta - \frac { \pi } { 4 } \right)

A) 922cosθ\frac { 9 \sqrt { 2 } } { 2 } \cos \theta
B) 922sinθ922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
C) 922sinθ+922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
D) 922sinθ+922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
E) 922sinθ922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
34
Find the exact value of the given expression using a sum or difference formula. sin285\sin 285 ^ { \circ }

A) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
35
Find the exact value of the given expression. sin(π3π4)\sin \left( \frac { \pi } { 3 } - \frac { \pi } { 4 } \right)

A) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
36
Use the formula asinBθ+bcosBθ=a2+b2sin(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C ) ,where C=arctan(a/b),a=2,b=8,B=1C = \arctan ( a / b ) , a = 2 , b = 8 , B = 1 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)2 cos(θ+0.245)\cos ( \theta + 0.245 )
B) 2172 \sqrt { 17 } cos(θ0.245)\cos ( \theta - 0.245 )
C) 2172 \sqrt { 17 } cos(θ+0.245)\cos ( \theta + 0.245 )
D)2 cos(θ0.245)\cos ( \theta - 0.245 )
E)8 cos(θ0.245)\cos ( \theta - 0.245 )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
37
Find the exact value of the given expression. cos(120+315)\cos \left( 120 ^ { \circ } + 315 ^ { \circ } \right)

A) (13)(22)8\frac { ( 1 - \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
B) (1+3)(22)8\frac { ( - 1 + \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
C) (1+3)(22)8\frac { ( 1 + \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
D) (13)(22)8\frac { ( - 1 - \sqrt { 3 } ) ( 2 \sqrt { 2 } ) } { 8 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
38
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=3,b=7,B=2C = \arctan ( a / b ) , a = 3 , b = 7 , B = 2 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 58\sqrt { 58 } cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
B) 58\sqrt { 58 } cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
C)7 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
D)3 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
E)3 cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
39
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=1,b=3,B=2C = \arctan ( b / a ) , a = 1 , b = 3 , B = 2 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 10\sqrt { 10 } sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
B) 10\sqrt { 10 } sin(θ1.249)\sin ( \theta - 1.249 )
C) 10\sqrt { 10 } sin(2θ1.249)\sin ( 2 \theta - 1.249 )
D) 10\sqrt { 10 } sin(θ+1.249)\sin ( \theta + 1.249 )
E) sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
40
Find the exact value of the given expression using a sum or difference formula. cos17π12\cos \frac { 17 \pi } { 12 }

A) (3+1)(22)8\frac { ( \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
B) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
41
Find the exact value of sin(u+v)\sin ( u + v ) given that sinu=35\sin u = \frac { 3 } { 5 } and cosv=2425\cos v = - \frac { 24 } { 25 } .(Both u and v are in Quadrant II. )

A) sin(u+v)=44125\sin ( u + v ) = - \frac { 44 } { 125 }
B) sin(u+v)=35\sin ( u + v ) = - \frac { 3 } { 5 }
C) sin(u+v)=45\sin ( u + v ) = \frac { 4 } { 5 }
D) sin(u+v)=45\sin ( u + v ) = - \frac { 4 } { 5 }
E) sin(u+v)=44125\sin ( u + v ) = \frac { 44 } { 125 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
42
Find the exact value of the given expression.​ cos(300+135)\cos \left( 300 ^ { \circ } + 135 ^ { \circ } \right)

A) 1322\frac { 1 - \sqrt { 3 } } { 2 \sqrt { 2 } }
B) 1+322\frac { 1 + \sqrt { 3 } } { 2 \sqrt { 2 } }
C) 1322\frac { - 1 - \sqrt { 3 } } { 2 \sqrt { 2 } }
D) 1+322\frac { - 1 + \sqrt { 3 } } { 2 \sqrt { 2 } }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
43
Simplify the given expression algebraically. cos(π2+x)\cos \left( \frac { \pi } { 2 } + x \right)

A) cosx\cos x
B) sinx- \sin x
C) sinx\sin x
D)1
E) cosx- \cos x
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
44
Write the given expression as the cosine of an angle.​ cos45cos40+sin45sin40\cos 45 ^ { \circ } \cos 40 ^ { \circ } + \sin 45 ^ { \circ } \sin 40 ^ { \circ }

A) cos(45)\cos \left( 45 ^ { \circ } \right)
B) cos(5)\cos \left( 5 ^ { \circ } \right)
C) cos(80)\cos \left( - 80 ^ { \circ } \right)
D) cos(40)\cos \left( 40 ^ { \circ } \right)
E) cos(85)\cos \left( 85 ^ { \circ } \right)
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
45
Find the exact value of the given expression. sin(2π35π4)\sin \left( \frac { 2 \pi } { 3 } - \frac { 5 \pi } { 4 } \right)

A) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
B) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
C) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
D) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
46
Write the given expression as the tangent of an angle. tan3x+tan4x1tan3xtan4x\frac { \tan 3 x + \tan 4 x } { 1 - \tan 3 x \tan 4 x }

A) tan(7x)\tan ( 7 x )
B) tan(3x)\tan ( 3 x )
C) tan(5x)\tan ( 5 x )
D) tan(x)\tan ( - x )
E) tan(5x)\tan ( - 5 x )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
47
Find the exact solutions of the given equation in the interval [0,2π). sin 2x = sin x

A) x=2π3,π,4π3x = \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 }
B) x=0,π3,π,5π3x = 0 , \frac { \pi } { 3 } , \pi , \frac { 5 \pi } { 3 }
C) x=π2,7π6,11π6x = \frac { \pi } { 2 } , \frac { 7 \pi } { 6 } , \frac { 11 \pi } { 6 }
D) x=0,π3,2π3,π,4π3,5π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 } , \frac { 5 \pi } { 3 }
E) x=0x = 0
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
48
Simplify the given expression algebraically.​ cos(xπ)\cos ( x - \pi )

A) sinx\sin x
B) cosx\cos x
C) sinx- \sin x
D) cosx- \cos x
E)1
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
49
Write the given expression as the cosine of an angle. cos60cos25sin60sin25\cos 60 ^ { \circ } \cos 25 ^ { \circ } - \sin 60 ^ { \circ } \sin 25 ^ { \circ }

A) cos(25)\cos \left( 25 ^ { \circ } \right)
B) cos(85)\cos \left( 85 ^ { \circ } \right)
C) cos(35)\cos \left( 35 ^ { \circ } \right)
D) cos(60)\cos \left( 60 ^ { \circ } \right)
E) cos(50)\cos \left( - 50 ^ { \circ } \right)
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
50
Write the given expression as the sine of an angle. sin85cos50sin50cos85\sin 85 ^ { \circ } \cos 50 ^ { \circ } - \sin 50 ^ { \circ } \cos 85 ^ { \circ }

A) sin(135)\sin \left( 135 ^ { \circ } \right)
B) sin(100)\sin \left( - 100 ^ { \circ } \right)
C) sin(35)\sin \left( 35 ^ { \circ } \right)
D) sin(50)\sin \left( 50 ^ { \circ } \right)
E) sin(85)\sin \left( 85 ^ { \circ } \right)
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
51
Write the given expression as an algebraic expression. cos(arccos x - arcsin x)

A) 00
B) 2x1x22 x \sqrt { 1 - x ^ { 2 } }
C) (x1x2x)(x2+1)x2+1\frac { \left( x \sqrt { 1 - x ^ { 2 } } - x \right) \left( \sqrt { x ^ { 2 } + 1 } \right) } { x ^ { 2 } + 1 }
D)1
E) (x1x2+x)(x2+1)x2+1\frac { \left( x \sqrt { 1 - x ^ { 2 } } + x \right) \left( \sqrt { x ^ { 2 } + 1 } \right) } { x ^ { 2 } + 1 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
52
Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=817\sin u = \frac { 8 } { 17 } and cosv=6061\cos v = - \frac { 60 } { 61 } .(Both u and v are in Quadrant II. )

A) cos(u+v)=8121037\cos ( u + v ) = \frac { 812 } { 1037 }
B) cos(u+v)=3001037\cos ( u + v ) = - \frac { 300 } { 1037 }
C) cos(u+v)=8041037\cos ( u + v ) = - \frac { 804 } { 1037 }
D) cos(u+v)=3151037\cos ( u + v ) = \frac { 315 } { 1037 }
E) cos(u+v)=6451037\cos ( u + v ) = \frac { 645 } { 1037 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
53
Find the exact value of the given expression. sin105cos345sin345cos105\sin 105 ^ { \circ } \cos 345 ^ { \circ } - \sin 345 ^ { \circ } \cos 105 ^ { \circ }

A) 12\frac { 1 } { 2 }
B) (3+1)(22)8\frac { ( - \sqrt { 3 } + 1 ) ( 2 \sqrt { 2 } ) } { 8 }
C) (31)(22)8\frac { ( - \sqrt { 3 } - 1 ) ( 2 \sqrt { 2 } ) } { 8 }
D) 22\frac { \sqrt { 2 } } { 2 }
E) 32\frac { \sqrt { 3 } } { 2 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
54
Find the exact value of sin(u+v)\sin ( u + v ) given that sinu=725\sin u = \frac { 7 } { 25 } and cosv=1213\cos v = - \frac { 12 } { 13 } .(Both u and v are in Quadrant II. )

A) sin(u+v)=36325\sin ( u + v ) = \frac { 36 } { 325 }
B) sin(u+v)=36325\sin ( u + v ) = - \frac { 36 } { 325 }
C) sin(u+v)=204325\sin ( u + v ) = - \frac { 204 } { 325 }
D) sin(u+v)=253325\sin ( u + v ) = - \frac { 253 } { 325 }
E) sin(u+v)=204325\sin ( u + v ) = \frac { 204 } { 325 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
55
Write the given expression as the tangent of an angle.​ tan7x+tan4x1tan7xtan4x\frac { \tan 7 x + \tan 4 x } { 1 - \tan 7 x \tan 4 x }

A) tan(17x)\tan ( - 17 x )
B) tan(11x)\tan ( 11 x )
C) tan(7x)\tan ( 7 x )
D) tan(3x)\tan ( 3 x )
E) tan(5x)\tan ( 5 x )
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
56
Find the exact value of the given expression using a sum or difference formula. sin285\sin 285 ^ { \circ }

A) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
B) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
C) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
D) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
57
Write the given expression as the sine of an angle. sin45cos55sin5545\sin 45 ^ { \circ } \cos 55 ^ { \circ } - \sin 55 ^ { \circ } 45 ^ { \circ }

A) sin(110)\sin \left( - 110 ^ { \circ } \right)
B) sin(10)\sin \left( - 10 ^ { \circ } \right)
C) sin(100)\sin \left( 100 ^ { \circ } \right)
D) sin(45)\sin \left( 45 ^ { \circ } \right)
E) sin(55)\sin \left( 55 ^ { \circ } \right)
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
58
Evaluate the expression.​ sinxsin(x+y)+cosxcos(x+y)\sin x \sin ( x + y ) + \cos x \cos ( x + y )

A) sin2xsin2y\sin ^ { 2 } x - \sin ^ { 2 } y
B)0
C) sinxcosx+sinycosy\sin x \cos x + \sin y \cos y
D) cosy\cos y
E) cos2xsin2x\cos ^ { 2 } x - \sin ^ { 2 } x
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
59
Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=513\sin u = \frac { 5 } { 13 } and cosv=45\cos v = - \frac { 4 } { 5 } .(Both u and v are in Quadrant II. )

A) cos(u+v)=2865\cos ( u + v ) = \frac { 28 } { 65 }
B) cos(u+v)=1665\cos ( u + v ) = - \frac { 16 } { 65 }
C) cos(u+v)=3365\cos ( u + v ) = \frac { 33 } { 65 }
D) cos(u+v)=2865\cos ( u + v ) = - \frac { 28 } { 65 }
E) cos(u+v)=5665\cos ( u + v ) = \frac { 56 } { 65 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
60
Find the exact value of the given expression using a sum or difference formula. cos13π12\cos \frac { 13 \pi } { 12 }

A) 3+122\frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
B) 3+122\frac { - \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }
C) 3122\frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
D) 3122\frac { - \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
61
Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . sin 4x= -2sin 2x

A) x=π4,3π4,5π4,7π4x = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }
B) x=0,π3,2π3,π,4π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 }
C) x=π6,π2,5π6,3π2x = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 3 \pi } { 2 }
D) x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
E) x=7π6,3π2,11π6x = \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
62
Verify the given identity. Verify the given identity.
Unlock Deck
Unlock for access to all 62 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 62 flashcards in this deck.