Deck 33: Solving Trigonometric Equations

Full screen (f)
exit full mode
Question
Solve the following equation.​ 2sin2x=6cos2x2 \sin ^ { 2 } x = 6 \cos ^ { 2 } x

A)​ π3+nπ,2π3+nπ\frac { \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
B)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
C)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
D)​ 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
E)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
Use Space or
up arrow
down arrow
to flip the card.
Question
Find all solutions of the following equation in the interval [0,2π).​ 3sinx+cscx=03 \sin x + \csc x = 0

A) 5π2+2π,5π2+2π\frac { 5 \pi } { 2 } + 2 \pi , \frac { 5 \pi } { 2 } + 2 \pi
B)No solution
C)​ π2+2π,3π2+2π\frac { \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
D)​ 3π2+2π,3π2+2π\frac { 3 \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
E)​ 7π2+2π,3π2+2π\frac { 7 \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
Question
Solve the following equation.​ tan3x(8tanx8)=0\tan 3 x ( 8 \tan x - 8 ) = 0

A) 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
B)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
C)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
D)​ nπ3,π4+nπ\frac { n \pi } { 3 } , \frac { \pi } { 4 } + n \pi
E)​ 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
Question
Solve the following equation.​ 12sec2x16=012 \sec ^ { 2 } x - 16 = 0

A) 3π2+2π,3π2+2π\frac { 3 \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
B)​ 7π2+2π,3π2+2π\frac { 7 \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
C)​ 5π2+2π,5π2+2π\frac { 5 \pi } { 2 } + 2 \pi , \frac { 5 \pi } { 2 } + 2 \pi
D)​ π6+nπ,5π6+nπ\frac { \pi } { 6 } + n \pi , \frac { 5 \pi } { 6 } + n \pi
E)​ π2+2π,3π2+2π\frac { \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
Question
Solve the following equation.​ 4cosx+2=04 \cos x + 2 = 0

A)​ 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
B)​ 2π3+2nπ,4π3+2nπ\frac { 2 \pi } { 3 } + 2 n \pi , \frac { 4 \pi } { 3 } + 2 n \pi
C)​ 7π6+2nπ,11π6+2nπ\frac { 7 \pi } { 6 } + 2 n \pi , \frac { 11 \pi } { 6 } + 2 n \pi
D)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
E)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
Question
Find all solutions of the following equation in the interval [0,2π).​ 3secx3tanx=33 \sec x - 3 \tan x = 3

A) 7π2,2π,3π2\frac { 7 \pi } { 2 } , 2 \pi , \frac { 3 \pi } { 2 }
B)0
C)​ π2,2π,3π2\frac { \pi } { 2 } , 2 \pi , \frac { 3 \pi } { 2 }
D)​ 3π2,2π,3π4\frac { 3 \pi } { 2 } , 2 \pi , \frac { 3 \pi } { 4 }
E)​ 5π2,2π\frac { 5 \pi } { 2 } , 2 \pi
Question
Find all solutions of the following equation in the interval [0,2π).​ 4tanx+43=04 \tan x + 4 \sqrt { 3 } = 0

A) 5π3\frac { 5 \pi } { 3 }
B)​ π3\frac { \pi } { 3 }
C)​ 3π4\frac { 3 \pi } { 4 }
D)​ 2π3\frac { 2 \pi } { 3 }
E)​ 2π5\frac { 2 \pi } { 5 }
Question
Solve the following equation.​ (3tan2x3)(tan2x3)=0\left( 3 \tan ^ { 2 } x - 3 \right) \left( \tan ^ { 2 } x - 3 \right) = 0

A)​ π4+nπ,π2+nπ,π6+nπ,5π6+nπ\frac { \pi } { 4 } + n \pi , \frac { \pi } { 2 } + n \pi , \frac { \pi } { 6 } + n \pi , \frac { 5 \pi } { 6 } + n \pi
B)​ π2+nπ,2π5+nπ,π6+nπ,5π6+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi , \frac { \pi } { 6 } + n \pi , \frac { 5 \pi } { 6 } + n \pi
C)​ 5π3+nπ,2π3+nπ,π6+nπ,5π6+nπ\frac { 5 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi , \frac { \pi } { 6 } + n \pi , \frac { 5 \pi } { 6 } + n \pi
D)​ π4+nπ,5π4+nπ,π3+nπ,2π3+nπ\frac { \pi } { 4 } + n \pi , \frac { 5 \pi } { 4 } + n \pi , \frac { \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
E)​ π3+nπ,2π3+nπ,π6+nπ,5π6+nπ\frac { \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi , \frac { \pi } { 6 } + n \pi , \frac { 5 \pi } { 6 } + n \pi
Question
Find all solutions of the following equation in the interval [0,2π).​ 5secxcscx=10cscx5 \sec x \csc x = 10 \csc x

A) π3,5π3\frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
B)​ 5π2,5π3\frac { 5 \pi } { 2 } , \frac { 5 \pi } { 3 }
C)​ 7π2,π3\frac { 7 \pi } { 2 } , \frac { \pi } { 3 }
D)​ 3π2,π3\frac { 3 \pi } { 2 } , \frac { \pi } { 3 }
E)​ 2π,π2 \pi , \pi
Question
Solve the following equation.​ 2tan23x=62 \tan ^ { 2 } 3 x = 6

A) 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
B)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
C)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
D)​ π9+nπ3,2π9+nπ3\frac { \pi } { 9 } + \frac { n \pi } { 3 } , \frac { 2 \pi } { 9 } + \frac { n \pi } { 3 }
E)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
Question
Solve the following equation.​ cos2x(4cosx+2)=0\cos 2 x ( 4 \cos x + 2 ) = 0

A) 4π3+nπ,2π3+nπ,4π3+2nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi , \frac { 4 \pi } { 3 } + 2 n \pi
B)​ π4+nπ2,2π3+2nπ,4π3+2nπ\frac { \pi } { 4 } + \frac { n \pi } { 2 } , \frac { 2 \pi } { 3 } + 2 n \pi , \frac { 4 \pi } { 3 } + 2 n \pi
C)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
D)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
E)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
Question
Solve the following equation. ​​ 10sinx+5=010 \sin x + 5 = 0

A)​ 7π6+2nπ,11π6+2nπ\frac { 7 \pi } { 6 } + 2 n \pi , \frac { 11 \pi } { 6 } + 2 n \pi
B)​ 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
C)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
D)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
E)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
Question
Solve the following equation.​ 9cot2x3=09 \cot ^ { 2 } x - 3 = 0

A)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
B)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
C)​ 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
D)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
E) π3+nπ,2π3+nπ\frac { \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
Question
Solve the following equation.​ sinx(5sinx+5)=0\sin x ( 5 \sin x + 5 ) = 0

A)​ nπ,π2+2nπn \pi , \frac { \pi } { 2 } + 2 n \pi
B)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
C) nπ,3π2+2nπn \pi , \frac { 3 \pi } { 2 } + 2 n \pi
D)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
E)​ π,5π2+2nπ\pi , \frac { 5 \pi } { 2 } + 2 n \pi
Question
Find all solutions of the following equation in the interval [0,2π).​ 5sec2x5=05 \sec ^ { 2 } x - 5 = 0

A) 0,π20 , \frac { \pi } { 2 }
B)​ π,2π3\pi , \frac { 2 \pi } { 3 }
C)​ 0,π0 , \pi
D)​ 0,5π30 , \frac { 5 \pi } { 3 }
E)​ 2π,3π42 \pi , \frac { 3 \pi } { 4 }
Question
Solve the following equation.​ 8sin22x=48 \sin ^ { 2 } 2 x = 4

A) 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
B)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
C)​ π8+nπ2,3π8+nπ2\frac { \pi } { 8 } + \frac { n \pi } { 2 } , \frac { 3 \pi } { 8 } + \frac { n \pi } { 2 }
D)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
E)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
Question
Find all solutions of the following equation in the interval [0,2π).​ 15tan3x=5tanx15 \tan ^ { 3 } x = 5 \tan x

A)​ 0,π,π6,nπ6,2nπ6,3nπ60 , \pi , \frac { \pi } { 6 } , \frac { n \pi } { 6 } , \frac { 2 n \pi } { 6 } , \frac { 3 n \pi } { 6 }
B)​ 0,π,π6,3π6,5π6,7π60 , \pi , \frac { \pi } { 6 } , \frac { 3 \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { 7 \pi } { 6 }
C)​ 0,π,π6,5π6,7π6,11π60 , \pi , \frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { 7 \pi } { 6 } , \frac { 11 \pi } { 6 }
D)​ 0,π,π6,2π6,3π6,11π60 , \pi , \frac { \pi } { 6 } , \frac { 2 \pi } { 6 } , \frac { 3 \pi } { 6 } , \frac { 11 \pi } { 6 }
E)​ 0,π,π6,5π6,π6,13π60 , \pi , \frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { \pi } { 6 } , \frac { 13 \pi } { 6 }
Question
Solve the following equation.​ 53cscx10=05 \sqrt { 3 } \csc x - 10 = 0

A) π3+2nπ,2π3+2nπ\frac { \pi } { 3 } + 2 n \pi , \frac { 2 \pi } { 3 } + 2 n \pi
B)​ π2+2nπ,2π2+2nπ\frac { \pi } { 2 } + 2 n \pi , \frac { 2 \pi } { 2 } + 2 n \pi
C)​ π3+2nπ,2π3+π\frac { \pi } { 3 } + 2 n \pi , \frac { 2 \pi } { 3 } + \pi
D)​ π3+π,2π3+2nπ\frac { \pi } { 3 } + \pi , \frac { 2 \pi } { 3 } + 2 n \pi
E)​ π4+2nπ,π2+2nπ\frac { \pi } { 4 } + 2 n \pi , \frac { \pi } { 2 } + 2 n \pi
Question
Find all solutions of the following equation in the interval [0,2π).​ 2cos3x=2cosx2 \cos ^ { 3 } x = 2 \cos x

A) 0,π2,2π,3π40 , \frac { \pi } { 2 } , 2 \pi , \frac { 3 \pi } { 4 }
B)​ 0,π2,3π,3π20 , \frac { \pi } { 2 } , 3 \pi , \frac { 3 \pi } { 2 }
C)​ 0,π3,π,2π30 , \frac { \pi } { 3 } , \pi , \frac { 2 \pi } { 3 }
D)​ 0,π4,π,2π30 , \frac { \pi } { 4 } , \pi , \frac { 2 \pi } { 3 }
E)​ 0,π2,π,3π20 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
Question
Find all solutions of the following equation in the interval [0,2π).​ sinx3=cosx3\sin x - 3 = \cos x - 3

A) 3π4,5π4\frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 }
B)​ π2,5π2\frac { \pi } { 2 } , \frac { 5 \pi } { 2 }
C)​ 3π4,7π4\frac { 3 \pi } { 4 } , \frac { 7 \pi } { 4 }
D)​ π2,5π2\frac{\pi}{2}, \frac{5 \pi}{2}
E)​ π4,5π4\frac { \pi } { 4 } , \frac { 5 \pi } { 4 }
Question
Solve the following equation. ​
Secx - 2 = 0

A)​ x=π5+2nπx = \frac { \pi } { 5 } + 2 n \pi and x=7π5+2nπx = \frac { 7 \pi } { 5 } + 2 n \pi ,where n is a integer
B)​ x=π3+2nπx = \frac { \pi } { 3 } + 2 n \pi and x=5π3+2nπx = \frac { 5 \pi } { 3 } + 2 n \pi ,where n is a integer
C)​ x=π6+2nπx = \frac { \pi } { 6 } + 2 n \pi and x=7π6+2nπx = \frac { 7 \pi } { 6 } + 2 n \pi ,where n is a integer
D)​ x=π6+2nπx = \frac { \pi } { 6 } + 2 n \pi and x=5π6+2nπx = \frac { 5 \pi } { 6 } + 2 n \pi ,where n is a integer
E)​ x=π4+2nπx = \frac { \pi } { 4 } + 2 n \pi and x=5π4+2nπx = \frac { 5 \pi } { 4 } + 2 n \pi ,where n is a integer
Question
Use a graphing utility to graph the function.​ f(x)=1.1(2sinx+cos2x)f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )

A)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Solve the multiple-angle equation.​ 2sec4x=42 \sec 4 x = 4

A) π12nπ3,5π12+nπ2\frac { \pi } { 12 } - \frac { n \pi } { 3 } , \frac { 5 \pi } { 12 } + \frac { n \pi } { 2 }
B)​ 3π4+nπ3,π12+nπ2\frac { 3 \pi } { 4 } + \frac { n \pi } { 3 } , \frac { \pi } { 12 } + \frac { n \pi } { 2 }
C)​ π2+nπ3,π12+nπ2\frac { \pi } { 2 } + \frac { n \pi } { 3 } , \frac { \pi } { 12 } + \frac { n \pi } { 2 }
D)​ 5π12+nπ3,π12+nπ2\frac { 5 \pi } { 12 } + \frac { n \pi } { 3 } , \frac { \pi } { 12 } + \frac { n \pi } { 2 }
E)​ π12+nπ2,5π12+nπ2\frac { \pi } { 12 } + \frac { n \pi } { 2 } , \frac { 5 \pi } { 12 } + \frac { n \pi } { 2 }
Question
Use inverse functions where needed to find all solutions of the equation in the interval [0,2π).​ sec2x6secx=0\sec ^ { 2 } x - 6 \sec x = 0

A) arccos(16),2π+arccos(16)\arccos \left( \frac { 1 } { 6 } \right) , 2 \pi + \arccos \left( \frac { 1 } { 6 } \right)
B)​ arccos(16),arccos(16)2π\arccos \left( \frac { 1 } { 6 } \right) , \arccos \left( \frac { 1 } { 6 } \right) - 2 \pi
C)​ arccos(16)+π,arccos(16)π\arccos \left( \frac { 1 } { 6 } \right) + \pi , \arccos \left( \frac { 1 } { 6 } \right) - \pi
D)​ arccos(16),2πarccos(16)\arccos \left( \frac { 1 } { 6 } \right) , 2 \pi - \arccos \left( \frac { 1 } { 6 } \right)
E)​ arccos(16)+2π,arccos(16)2π\arccos \left( \frac { 1 } { 6 } \right) + 2 \pi , \arccos \left( \frac { 1 } { 6 } \right) - 2 \pi
Question
Solve the multiple-angle equation.​ 4tan3x=44 \tan 3 x = 4

A) 5π12+nπ2\frac { 5 \pi } { 12 } + \frac { n \pi } { 2 }
B)​ π12π2\frac { \pi } { 12 } - \frac { \pi } { 2 }
C)​ π3+nπ3\frac { \pi } { 3 } + \frac { n \pi } { 3 }
D)​ π12+nπ3\frac { \pi } { 12 } + \frac { n \pi } { 3 }
E)​ 3π4+nπ3\frac { 3 \pi } { 4 } + \frac { n \pi } { 3 }
Question
Use a graphing utility to graph the function.​ f(x)=sinxcosxf ( x ) = \sin x - \cos x

A)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = \sin x - \cos x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = \sin x - \cos x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = \sin x - \cos x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = \sin x - \cos x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = \sin x - \cos x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Solve the multiple-angle equation.​ sin3x6=32\sin \frac { 3 x } { 6 } = - \frac { \sqrt { 3 } } { 2 }

A) π3+3nπ,2π3+3nπ\frac { \pi } { 3 } + 3 n \pi , \frac { 2 \pi } { 3 } + 3 n \pi
B)​ π3+2nπ,2π3+2nπ\frac { \pi } { 3 } + 2 n \pi , \frac { 2 \pi } { 3 } + 2 n \pi
C)​ 8π3+4nπ,10π3+4nπ\frac { 8 \pi } { 3 } + 4 n \pi , \frac { 10 \pi } { 3 } + 4 n \pi
D)​ 5π3+2nπ,4π3+3nπ\frac { 5 \pi } { 3 } + 2 n \pi , \frac { 4 \pi } { 3 } + 3 n \pi
E)​ π3+4nπ,2π3+4nπ\frac { \pi } { 3 } + 4 n \pi , \frac { 2 \pi } { 3 } + 4 n \pi
Question
Use inverse functions where needed to find all solutions of the equation in the interval [0,2π).​ cot2x25=0\cot ^ { 2 } x - 25 = 0

A) arctan(15),arctan(15)+π,arctan(15)+π,arctan(15)+2π\arctan \left( \frac { 1 } { 5 } \right) , \arctan \left( \frac { 1 } { 5 } \right) + \pi , \arctan \left( \frac { 1 } { 5 } \right) + \pi , \arctan \left( \frac { 1 } { 5 } \right) + 2 \pi
B)​ arctan(15),arctan(15)+π,arctan(15)+π,arctan(15)+π\arctan \left( \frac { 1 } { 5 } \right) , \arctan \left( \frac { 1 } { 5 } \right) + \pi , \arctan \left( \frac { 1 } { 5 } \right) + \pi , \arctan \left( \frac { 1 } { 5 } \right) + \pi
C)​ arctan(15),arctan(15)+π,arctan(15)+π,arctan(15)+2π\arctan \left( \frac { 1 } { 5 } \right) , \arctan \left( \frac { 1 } { 5 } \right) + \pi , \arctan \left( - \frac { 1 } { 5 } \right) + \pi , \arctan \left( - \frac { 1 } { 5 } \right) + 2 \pi
D)​ arctan(15),arctan(15)+2π,arctan(15)+2π,arctan(15)+2π\arctan \left( \frac { 1 } { 5 } \right) , \arctan \left( \frac { 1 } { 5 } \right) + 2 \pi , \arctan \left( - \frac { 1 } { 5 } \right) + 2 \pi , \arctan \left( - \frac { 1 } { 5 } \right) + 2 \pi
E)​ arctan(15),arctan(15)+2π,arctan(15)+π,arctan(15)+2π\arctan \left( \frac { 1 } { 5 } \right) , \arctan \left( \frac { 1 } { 5 } \right) + 2 \pi , \arctan \left( - \frac { 1 } { 5 } \right) + \pi , \arctan \left( - \frac { 1 } { 5 } \right) + 2 \pi
Question
A weight is oscillating on the end of a spring (see figure).The position of the weight relative to the point of equilibrium is given by y=112(cos7t3sin7t)y = \frac { 1 } { 12 } ( \cos 7 t - 3 \sin 7 t ) ,where y is the displacement (in meters)and t is the time (in seconds).Find the times when the weight is at the point of equilibrium (y = 0)for 0t10 \leq t \leq 1 .​  <strong>A weight is oscillating on the end of a spring (see figure).The position of the weight relative to the point of equilibrium is given by  y = \frac { 1 } { 12 } ( \cos 7 t - 3 \sin 7 t )  ,where y is the displacement (in meters)and t is the time (in seconds).Find the times when the weight is at the point of equilibrium (y = 0)for  0 \leq t \leq 1  .​   ​ ​</strong> A)0.05sec,0.49sec,0.94sec B)0.05sec,0.05sec,0.94sec C)-0.40sec,0.49sec,0.94sec D)-0.40sec,0.49sec,-0.40sec E)0.05sec,-0.40sec,0.94sec <div style=padding-top: 35px>  ​ ​

A)0.05sec,0.49sec,0.94sec
B)0.05sec,0.05sec,0.94sec
C)-0.40sec,0.49sec,0.94sec
D)-0.40sec,0.49sec,-0.40sec
E)0.05sec,-0.40sec,0.94sec
Question
The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  Month, t Houston, H162.3266.3373.3479.3585.3690.3793.3893.4989.31082.31172.31264.3\begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\\hline 1 & 62.3 \\\hline 2 & 66.3 \\\hline 3 & 73.3 \\\hline 4 & 79.3 \\\hline 5 & 85.3 \\\hline 6 & 90.3 \\\hline 7 & 93.3 \\\hline 8 & 93.4 \\\hline 9 & 89.3 \\\hline 10 & 82.3 \\\hline 11 & 72.3 \\\hline 12 & 64.3 \\\hline\end{array}
Select the correct scatter plot from the above data.

A)​  <strong>The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  \begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\ \hline 1 & 62.3 \\ \hline 2 & 66.3 \\ \hline 3 & 73.3 \\ \hline 4 & 79.3 \\ \hline 5 & 85.3 \\ \hline 6 & 90.3 \\ \hline 7 & 93.3 \\ \hline 8 & 93.4 \\ \hline 9 & 89.3 \\ \hline 10 & 82.3 \\ \hline 11 & 72.3 \\ \hline 12 & 64.3 \\ \hline \end{array}  Select the correct scatter plot from the above data.</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  \begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\ \hline 1 & 62.3 \\ \hline 2 & 66.3 \\ \hline 3 & 73.3 \\ \hline 4 & 79.3 \\ \hline 5 & 85.3 \\ \hline 6 & 90.3 \\ \hline 7 & 93.3 \\ \hline 8 & 93.4 \\ \hline 9 & 89.3 \\ \hline 10 & 82.3 \\ \hline 11 & 72.3 \\ \hline 12 & 64.3 \\ \hline \end{array}  Select the correct scatter plot from the above data.</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  \begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\ \hline 1 & 62.3 \\ \hline 2 & 66.3 \\ \hline 3 & 73.3 \\ \hline 4 & 79.3 \\ \hline 5 & 85.3 \\ \hline 6 & 90.3 \\ \hline 7 & 93.3 \\ \hline 8 & 93.4 \\ \hline 9 & 89.3 \\ \hline 10 & 82.3 \\ \hline 11 & 72.3 \\ \hline 12 & 64.3 \\ \hline \end{array}  Select the correct scatter plot from the above data.</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  \begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\ \hline 1 & 62.3 \\ \hline 2 & 66.3 \\ \hline 3 & 73.3 \\ \hline 4 & 79.3 \\ \hline 5 & 85.3 \\ \hline 6 & 90.3 \\ \hline 7 & 93.3 \\ \hline 8 & 93.4 \\ \hline 9 & 89.3 \\ \hline 10 & 82.3 \\ \hline 11 & 72.3 \\ \hline 12 & 64.3 \\ \hline \end{array}  Select the correct scatter plot from the above data.</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  \begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\ \hline 1 & 62.3 \\ \hline 2 & 66.3 \\ \hline 3 & 73.3 \\ \hline 4 & 79.3 \\ \hline 5 & 85.3 \\ \hline 6 & 90.3 \\ \hline 7 & 93.3 \\ \hline 8 & 93.4 \\ \hline 9 & 89.3 \\ \hline 10 & 82.3 \\ \hline 11 & 72.3 \\ \hline 12 & 64.3 \\ \hline \end{array}  Select the correct scatter plot from the above data.</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Solve the following equation. tan4x1=0\tan ^ { 4 } x - 1 = 0

A)​ x=π2+nπx = \frac { \pi } { 2 } + n \pi ,where n is an integer
B) x=nπ and x=3π2+2nπx = n \pi \text { and } x = \frac { 3 \pi } { 2 } + 2 n \pi ,where n is an integer
C)​ x=nπ and x=3π4+nπx = n \pi \text { and } x = \frac { 3 \pi } { 4 } + n \pi ,where n is an integer
D) x=π4+nπ2x = \frac { \pi } { 4 } + \frac { n \pi } { 2 } ,where n is an integer
E)​ x=nπ and x=π2+nπx = n \pi \text { and } x = \frac { \pi } { 2 } + n \pi ,where n is an integer
Question
Solve the following equation.​ cos2x+cosx=0\cos ^ { 2 } x + \cos x = 0

A)​ x=3π4+nπ and x=5π4+nπx = \frac { 3 \pi } { 4 } + n \pi \text { and } x = \frac { 5 \pi } { 4 } + n \pi ,where n is an integer
B)​ x=π+2nπ and x=π2+nπx = \pi + 2 n \pi \text { and } x = \frac { \pi } { 2 } + n \pi ,where n is an integer
C)​ x=3π4+2nπ and x=5π4+2nπx = \frac { 3 \pi } { 4 } + 2 n \pi \text { and } x = \frac { 5 \pi } { 4 } + 2 n \pi ,where n is an integer
D)​ x=nπ and x=3π2+nπx = n \pi \text { and } x = \frac { 3 \pi } { 2 } + n \pi ,where n is an integer
E)​ x=π+nπ and x=π2+2nπx = \pi + n \pi \text { and } x = \frac { \pi } { 2 } + 2 n \pi ,where n is an integer
Question
Use a graphing utility to graph the function.​ f(x)=2(sinxcosx)f ( x ) = 2 ( \sin x \cos x )

A)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 2 ( \sin x \cos x )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 2 ( \sin x \cos x )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 2 ( \sin x \cos x )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 2 ( \sin x \cos x )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 2 ( \sin x \cos x )  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Use a graphing utility to graph the function. ​​ f(x)=(sin2xcosx)f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)

A)​  <strong>Use a graphing utility to graph the function. ​​  f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Use a graphing utility to graph the function. ​​  f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Use a graphing utility to graph the function. ​​  f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Use a graphing utility to graph the function. ​​  f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Use a graphing utility to graph the function. ​​  f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Solve the multiple-angle equation.​ cos3x6=22\cos \frac { 3 x } { 6 } = \frac { \sqrt { 2 } } { 2 }

A) π3+2nπ,2π3+2nπ\frac { \pi } { 3 } + 2 n \pi , \frac { 2 \pi } { 3 } + 2 n \pi
B)​ π3+4nπ,2π3+4nπ\frac { \pi } { 3 } + 4 n \pi , \frac { 2 \pi } { 3 } + 4 n \pi
C)​ π3+3nπ,2π3+3nπ\frac { \pi } { 3 } + 3 n \pi , \frac { 2 \pi } { 3 } + 3 n \pi
D)​ π2+4nπ,7π2+4nπ\frac { \pi } { 2 } + 4 n \pi , \frac { 7 \pi } { 2 } + 4 n \pi
E)​ 5π3+2nπ,4π3+3nπ\frac { 5 \pi } { 3 } + 2 n \pi , \frac { 4 \pi } { 3 } + 3 n \pi
Question
Use inverse functions where needed to find all solutions of the equation in the interval [0,2π).​ csc2x7cscx=0\csc ^ { 2 } x - 7 \csc x = 0

A)​ arcsin(17)+π,arcsin(17)\arcsin \left( - \frac { 1 } { 7 } \right) + \pi , \arcsin \left( - \frac { 1 } { 7 } \right)
B)​ arcsin(17)+π,arcsin(17)\arcsin \left( - \frac { 1 } { 7 } \right) + \pi , \arcsin \left( \frac { 1 } { 7 } \right)
C)​ arcsin(17)+π,arcsin(17)+2π\arcsin \left( - \frac { 1 } { 7 } \right) + \pi , \arcsin \left( \frac { 1 } { 7 } \right) + 2 \pi
D)​ arcsin(17)+2π,arcsin(17)\arcsin \left( - \frac { 1 } { 7 } \right) + 2 \pi , \arcsin \left( \frac { 1 } { 7 } \right)
E)​ arcsin(17)+π,arcsin(17)\arcsin \left( \frac { 1 } { 7 } \right) + \pi , \arcsin \left( \frac { 1 } { 7 } \right)
Question
Which of the following is a solution to the given equation? ​
Cscx + 2 = 0

A) x=7π4x = \frac { 7 \pi } { 4 }
B)​ x=π4x = \frac { \pi } { 4 }
C)​ x=7π5x = \frac { 7 \pi } { 5 }
D)​ x=7π6x = \frac { 7 \pi } { 6 }
E)​ x=2π3x = \frac { 2 \pi } { 3 }
Question
Which of the following is a solution to the given equation?​ 2cosx1=02 \cos x - 1 = 0

A) x=7π4x = \frac { 7 \pi } { 4 }
B) x=π6x = \frac { \pi } { 6 }
C) x=7π6x = \frac { 7 \pi } { 6 }
D) x=5π3x = \frac { 5 \pi } { 3 }
E) x=3π4x = \frac { 3 \pi } { 4 }
Question
Use a graphing utility to graph the function.​ f(x)=5(sin2x+cosx)f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)

A)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Determine whether the statement is true or false.Justify your answer. ​
The equation 2sin4t1=02 \sin 4 t - 1 = 0 has four times the number of solutions in the interval [0,2π)as the equation 2sint1=02 \sin t - 1 = 0 .

A)False
B)True
Question
Solve the following equation.​ 2sinx1=02 \sin x - 1 = 0

A)​ x=2π3+2nπ and x=4π3+2nπx = \frac { 2 \pi } { 3 } + 2 n \pi \text { and } x = \frac { 4 \pi } { 3 } + 2 n \pi ,where n is an integer
B)​ x=π6+2nπ and x=5π6+2nπx = \frac { \pi } { 6 } + 2 n \pi \text { and } x = \frac { 5 \pi } { 6 } + 2 n \pi ,where n is an integer
C)​ x=π3+2nπ and x=5π3+2nπx = \frac { \pi } { 3 } + 2 n \pi \text { and } x = \frac { 5 \pi } { 3 } + 2 n \pi ,where n is an integer
D)​ x=π4+2nπ and x=5π4+2nπx = \frac { \pi } { 4 } + 2 n \pi \text { and } x = \frac { 5 \pi } { 4 } + 2 n \pi ,where n is an integer
Question
Using the grid provided,sketch the graph of the given function in the interval (-5,5)and then determine the x-intercepts,if any. y=sin(πx2)1y = \sin \left( \frac { \pi x } { 2 } \right) - 1  <strong>Using the grid provided,sketch the graph of the given function in the interval (-5,5)and then determine the x-intercepts,if any.  y = \sin \left( \frac { \pi x } { 2 } \right) - 1     </strong> A)(-3,0)and (1,0) B)(-2,0) C)(-2,0)and (2,0) D)no x-intercepts E)(-4,0), (0,0),and (4,0) <div style=padding-top: 35px>   <strong>Using the grid provided,sketch the graph of the given function in the interval (-5,5)and then determine the x-intercepts,if any.  y = \sin \left( \frac { \pi x } { 2 } \right) - 1     </strong> A)(-3,0)and (1,0) B)(-2,0) C)(-2,0)and (2,0) D)no x-intercepts E)(-4,0), (0,0),and (4,0) <div style=padding-top: 35px>

A)(-3,0)and (1,0)
B)(-2,0)
C)(-2,0)and (2,0)
D)no x-intercepts
E)(-4,0), (0,0),and (4,0)
Question
Which of the following is a solution to the given equation? ​
Cscx - 2 = 0

A)​ x=2π3x = \frac { 2 \pi } { 3 }
B)​ x=π4x = \frac { \pi } { 4 }
C)​ x=π4x = \frac { \pi } { 4 } .
D)​ x=π6x = \frac { \pi } { 6 }
E)​ x=7π4x = \frac { 7 \pi } { 4 }
Question
A Ferris wheel is built such that the height h (in feet)above the ground of a seat on the wheel at time t (in seconds)can be modeled by h(t)=67+54sin(π18tπ2)h ( t ) = 67 + 54 \sin \left( \frac { \pi } { 18 } t - \frac { \pi } { 2 } \right) .The wheel makes one revolution every 36 seconds and the ride begins when t = 0.During the first 36 seconds of the ride,when will a person,who starts at the bottom of the Ferris wheel,be 67 feet above the ground? ​

A)9 seconds and 22 seconds
B)9 seconds and 27 seconds
C)10 seconds and 22 seconds
D)9 seconds and 17 seconds
E)10 seconds and 17 seconds
Question
Use the Quadratic Formula to solve the given equation on the interval [ 0,π20 , \frac { \pi } { 2 } );then use a graphing utility to approximate the angle x.Round answers to three decimal places.​ 75cos2x34cosx+3=075 \cos ^ { 2 } x - 34 \cos x + 3 = 0

A)x = 1.229,1.433
B)​x = 1.227,1.422
C)​x = 1.233,1.469
D)​x = 1.231,1.451
E)​x = 1.235,1.480
Question
Solve the multiple-angle equation. tanx2=33\tan \frac { x } { 2 } = \frac { \sqrt { 3 } } { 3 }

A)​ x=5π3+nπx = \frac { 5 \pi } { 3 } + n \pi
B)​ x=7π6+nπ and 11π6+nπx = \frac { 7 \pi } { 6 } + n \pi \text { and } \frac { 11 \pi } { 6 } + n \pi
C)​ x=2π3+nπx = \frac { 2 \pi } { 3 } + n \pi
D)​ x=5π6+nπ and 7π6+nπx = \frac { 5 \pi } { 6 } + n \pi \text { and } \frac { 7 \pi } { 6 } + n \pi
E) x=π3+2nπx = \frac { \pi } { 3 } + 2 n \pi
Question
Use a graphing utility to approximate the solutions (to three decimal places)of the given equation in the interval [0,2π).​ sin2x+1.5cosx=0\sin 2 x + 1.5 \cos x = 0

A)x = 1.624,1.932,5.776,5.997
B)​x = 1.101,2.118,3.982,5.104
C)​x = 1.571,3.990,4.712,5.435
D)​x = 1.055,3.785,4.652,5.721
E)​x = 1.484,3.799,4.626,5.490
Question
The monthly sales S (in hundreds of units)of baseball equipment for an Internet sporting goods site are approximated by S=55.737.5cosπt6S = 55.7 - 37.5 \cos \frac { \pi t } { 6 } where t is the time (in months),with t = 1 corresponding to January.Determine the months when sales exceed 7700 units at any time during the month.

A)April through August
B)July through May
C)June through August
D)April through July
E)May through July
Question
Use a graphing utility to approximate the solutions (to three decimal places)of the given equation in the interval (π2,π2)\left( - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right) . ​​ 6sin2x8cosx+9sinx=66 \sin 2 x - 8 \cos x + 9 \sin x = 6

A)​x = 0.398
B)​​x = 1.336
C)​​x = 0.094
D)​​x = 0.73
E)​​x = 0.139
Question
Use inverse functions where needed to find all solutions (if they exist)of the given equation on the interval [0,2π).​ 2cos2xcosx1=02 \cos ^ { 2 } x - \cos x - 1 = 0

A)​ x=π3,2π3x = \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }
B) x=0,2π3,4π3x = 0 , \frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 }
C) x=0,π3,2π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }
D) x=π3,π,5π3x = \frac { \pi } { 3 } , \pi , \frac { 5 \pi } { 3 }
E)​solution does not exist
Question
Find all solutions of the following equation in the interval [0,2π).​ sin3x=sinx\sin ^ { 3 } x = \sin x

A) x=0,π6,7π6x = 0 , \frac { \pi } { 6 } , \frac { 7 \pi } { 6 }
B) x=0,π4,7π4x = 0 , \frac { \pi } { 4 } , \frac { 7 \pi } { 4 }
C) x=0,π2,3π2x = 0 , \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
D) x=0,πx = 0 , \pi
E) x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
Question
Solve the multiple-angle equation.​ sinx2=22\sin \frac { x } { 2 } = \frac { \sqrt { 2 } } { 2 }

A)​​ x=2π3+2nπ and x=5π3+2nπx = \frac { 2 \pi } { 3 } + 2 n \pi \text { and } x = \frac { 5 \pi } { 3 } + 2 n \pi ,where n is an integer
B)​ x=7π6+2nπ and x=11π6+2nπx = \frac { 7 \pi } { 6 } + 2 n \pi \text { and } x = \frac { 11 \pi } { 6 } + 2 n \pi ,where n is an integer
C)​ x=π2+nπx = \frac { \pi } { 2 } + n \pi ,where n is an integer
D) x=π2+2nπ and x=3π2+2nπx = \frac { \pi } { 2 } + 2 n \pi \text { and } x = \frac { 3 \pi } { 2 } + 2 n \pi ,where n is an integer
E) x=π2+4nπ and x=3π2+4nπx = \frac { \pi } { 2 } + 4 n \pi \text { and } x = \frac { 3 \pi } { 2 } + 4 n \pi ,where n is an integer
Question
The horizontal distance d (in feet)traveled by a projectile with an initial speed of v feet per second is modeled by d=v232sin2θd = \frac { v ^ { 2 } } { 32 } \sin 2 \theta , where θ is the angle at which the projectile is launched.
Find the horizontal distance traveled by a golf ball that is hit with an initial speed of 80 feet per second when the ball is hit at an angle of θ=60\theta = 60 ^ { \circ } .Round to the nearest foot.

A)260
B)346
C)173
D)303
E)87
Question
Which of the following is a solution to the given equation? 2cosx1=02 \cos x - 1 = 0

A) x=π6x = \frac { \pi } { 6 }
B) x=7π6x = \frac { 7 \pi } { 6 }
C) x=3π4x = \frac { 3 \pi } { 4 }
D) x=5π3x = \frac { 5 \pi } { 3 }
E) x=7π4x = \frac { 7 \pi } { 4 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/54
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 33: Solving Trigonometric Equations
1
Solve the following equation.​ 2sin2x=6cos2x2 \sin ^ { 2 } x = 6 \cos ^ { 2 } x

A)​ π3+nπ,2π3+nπ\frac { \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
B)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
C)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
D)​ 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
E)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
π3+nπ,2π3+nπ\frac { \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
2
Find all solutions of the following equation in the interval [0,2π).​ 3sinx+cscx=03 \sin x + \csc x = 0

A) 5π2+2π,5π2+2π\frac { 5 \pi } { 2 } + 2 \pi , \frac { 5 \pi } { 2 } + 2 \pi
B)No solution
C)​ π2+2π,3π2+2π\frac { \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
D)​ 3π2+2π,3π2+2π\frac { 3 \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
E)​ 7π2+2π,3π2+2π\frac { 7 \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
No solution
3
Solve the following equation.​ tan3x(8tanx8)=0\tan 3 x ( 8 \tan x - 8 ) = 0

A) 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
B)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
C)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
D)​ nπ3,π4+nπ\frac { n \pi } { 3 } , \frac { \pi } { 4 } + n \pi
E)​ 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
nπ3,π4+nπ\frac { n \pi } { 3 } , \frac { \pi } { 4 } + n \pi
4
Solve the following equation.​ 12sec2x16=012 \sec ^ { 2 } x - 16 = 0

A) 3π2+2π,3π2+2π\frac { 3 \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
B)​ 7π2+2π,3π2+2π\frac { 7 \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
C)​ 5π2+2π,5π2+2π\frac { 5 \pi } { 2 } + 2 \pi , \frac { 5 \pi } { 2 } + 2 \pi
D)​ π6+nπ,5π6+nπ\frac { \pi } { 6 } + n \pi , \frac { 5 \pi } { 6 } + n \pi
E)​ π2+2π,3π2+2π\frac { \pi } { 2 } + 2 \pi , \frac { 3 \pi } { 2 } + 2 \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
5
Solve the following equation.​ 4cosx+2=04 \cos x + 2 = 0

A)​ 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
B)​ 2π3+2nπ,4π3+2nπ\frac { 2 \pi } { 3 } + 2 n \pi , \frac { 4 \pi } { 3 } + 2 n \pi
C)​ 7π6+2nπ,11π6+2nπ\frac { 7 \pi } { 6 } + 2 n \pi , \frac { 11 \pi } { 6 } + 2 n \pi
D)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
E)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
6
Find all solutions of the following equation in the interval [0,2π).​ 3secx3tanx=33 \sec x - 3 \tan x = 3

A) 7π2,2π,3π2\frac { 7 \pi } { 2 } , 2 \pi , \frac { 3 \pi } { 2 }
B)0
C)​ π2,2π,3π2\frac { \pi } { 2 } , 2 \pi , \frac { 3 \pi } { 2 }
D)​ 3π2,2π,3π4\frac { 3 \pi } { 2 } , 2 \pi , \frac { 3 \pi } { 4 }
E)​ 5π2,2π\frac { 5 \pi } { 2 } , 2 \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
7
Find all solutions of the following equation in the interval [0,2π).​ 4tanx+43=04 \tan x + 4 \sqrt { 3 } = 0

A) 5π3\frac { 5 \pi } { 3 }
B)​ π3\frac { \pi } { 3 }
C)​ 3π4\frac { 3 \pi } { 4 }
D)​ 2π3\frac { 2 \pi } { 3 }
E)​ 2π5\frac { 2 \pi } { 5 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
8
Solve the following equation.​ (3tan2x3)(tan2x3)=0\left( 3 \tan ^ { 2 } x - 3 \right) \left( \tan ^ { 2 } x - 3 \right) = 0

A)​ π4+nπ,π2+nπ,π6+nπ,5π6+nπ\frac { \pi } { 4 } + n \pi , \frac { \pi } { 2 } + n \pi , \frac { \pi } { 6 } + n \pi , \frac { 5 \pi } { 6 } + n \pi
B)​ π2+nπ,2π5+nπ,π6+nπ,5π6+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi , \frac { \pi } { 6 } + n \pi , \frac { 5 \pi } { 6 } + n \pi
C)​ 5π3+nπ,2π3+nπ,π6+nπ,5π6+nπ\frac { 5 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi , \frac { \pi } { 6 } + n \pi , \frac { 5 \pi } { 6 } + n \pi
D)​ π4+nπ,5π4+nπ,π3+nπ,2π3+nπ\frac { \pi } { 4 } + n \pi , \frac { 5 \pi } { 4 } + n \pi , \frac { \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
E)​ π3+nπ,2π3+nπ,π6+nπ,5π6+nπ\frac { \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi , \frac { \pi } { 6 } + n \pi , \frac { 5 \pi } { 6 } + n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
9
Find all solutions of the following equation in the interval [0,2π).​ 5secxcscx=10cscx5 \sec x \csc x = 10 \csc x

A) π3,5π3\frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
B)​ 5π2,5π3\frac { 5 \pi } { 2 } , \frac { 5 \pi } { 3 }
C)​ 7π2,π3\frac { 7 \pi } { 2 } , \frac { \pi } { 3 }
D)​ 3π2,π3\frac { 3 \pi } { 2 } , \frac { \pi } { 3 }
E)​ 2π,π2 \pi , \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
10
Solve the following equation.​ 2tan23x=62 \tan ^ { 2 } 3 x = 6

A) 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
B)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
C)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
D)​ π9+nπ3,2π9+nπ3\frac { \pi } { 9 } + \frac { n \pi } { 3 } , \frac { 2 \pi } { 9 } + \frac { n \pi } { 3 }
E)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
11
Solve the following equation.​ cos2x(4cosx+2)=0\cos 2 x ( 4 \cos x + 2 ) = 0

A) 4π3+nπ,2π3+nπ,4π3+2nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi , \frac { 4 \pi } { 3 } + 2 n \pi
B)​ π4+nπ2,2π3+2nπ,4π3+2nπ\frac { \pi } { 4 } + \frac { n \pi } { 2 } , \frac { 2 \pi } { 3 } + 2 n \pi , \frac { 4 \pi } { 3 } + 2 n \pi
C)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
D)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
E)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
12
Solve the following equation. ​​ 10sinx+5=010 \sin x + 5 = 0

A)​ 7π6+2nπ,11π6+2nπ\frac { 7 \pi } { 6 } + 2 n \pi , \frac { 11 \pi } { 6 } + 2 n \pi
B)​ 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
C)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
D)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
E)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
13
Solve the following equation.​ 9cot2x3=09 \cot ^ { 2 } x - 3 = 0

A)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
B)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
C)​ 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
D)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
E) π3+nπ,2π3+nπ\frac { \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
14
Solve the following equation.​ sinx(5sinx+5)=0\sin x ( 5 \sin x + 5 ) = 0

A)​ nπ,π2+2nπn \pi , \frac { \pi } { 2 } + 2 n \pi
B)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
C) nπ,3π2+2nπn \pi , \frac { 3 \pi } { 2 } + 2 n \pi
D)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
E)​ π,5π2+2nπ\pi , \frac { 5 \pi } { 2 } + 2 n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
15
Find all solutions of the following equation in the interval [0,2π).​ 5sec2x5=05 \sec ^ { 2 } x - 5 = 0

A) 0,π20 , \frac { \pi } { 2 }
B)​ π,2π3\pi , \frac { 2 \pi } { 3 }
C)​ 0,π0 , \pi
D)​ 0,5π30 , \frac { 5 \pi } { 3 }
E)​ 2π,3π42 \pi , \frac { 3 \pi } { 4 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
16
Solve the following equation.​ 8sin22x=48 \sin ^ { 2 } 2 x = 4

A) 4π3+nπ,2π3+nπ\frac { 4 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
B)​ π2+nπ,2π5+nπ\frac { \pi } { 2 } + n \pi , \frac { 2 \pi } { 5 } + n \pi
C)​ π8+nπ2,3π8+nπ2\frac { \pi } { 8 } + \frac { n \pi } { 2 } , \frac { 3 \pi } { 8 } + \frac { n \pi } { 2 }
D)​ 2π3+nπ,2π3+nπ\frac { 2 \pi } { 3 } + n \pi , \frac { 2 \pi } { 3 } + n \pi
E)​ π3+nπ,π3+nπ\frac { \pi } { 3 } + n \pi , \frac { \pi } { 3 } + n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
17
Find all solutions of the following equation in the interval [0,2π).​ 15tan3x=5tanx15 \tan ^ { 3 } x = 5 \tan x

A)​ 0,π,π6,nπ6,2nπ6,3nπ60 , \pi , \frac { \pi } { 6 } , \frac { n \pi } { 6 } , \frac { 2 n \pi } { 6 } , \frac { 3 n \pi } { 6 }
B)​ 0,π,π6,3π6,5π6,7π60 , \pi , \frac { \pi } { 6 } , \frac { 3 \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { 7 \pi } { 6 }
C)​ 0,π,π6,5π6,7π6,11π60 , \pi , \frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { 7 \pi } { 6 } , \frac { 11 \pi } { 6 }
D)​ 0,π,π6,2π6,3π6,11π60 , \pi , \frac { \pi } { 6 } , \frac { 2 \pi } { 6 } , \frac { 3 \pi } { 6 } , \frac { 11 \pi } { 6 }
E)​ 0,π,π6,5π6,π6,13π60 , \pi , \frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { \pi } { 6 } , \frac { 13 \pi } { 6 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
18
Solve the following equation.​ 53cscx10=05 \sqrt { 3 } \csc x - 10 = 0

A) π3+2nπ,2π3+2nπ\frac { \pi } { 3 } + 2 n \pi , \frac { 2 \pi } { 3 } + 2 n \pi
B)​ π2+2nπ,2π2+2nπ\frac { \pi } { 2 } + 2 n \pi , \frac { 2 \pi } { 2 } + 2 n \pi
C)​ π3+2nπ,2π3+π\frac { \pi } { 3 } + 2 n \pi , \frac { 2 \pi } { 3 } + \pi
D)​ π3+π,2π3+2nπ\frac { \pi } { 3 } + \pi , \frac { 2 \pi } { 3 } + 2 n \pi
E)​ π4+2nπ,π2+2nπ\frac { \pi } { 4 } + 2 n \pi , \frac { \pi } { 2 } + 2 n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
19
Find all solutions of the following equation in the interval [0,2π).​ 2cos3x=2cosx2 \cos ^ { 3 } x = 2 \cos x

A) 0,π2,2π,3π40 , \frac { \pi } { 2 } , 2 \pi , \frac { 3 \pi } { 4 }
B)​ 0,π2,3π,3π20 , \frac { \pi } { 2 } , 3 \pi , \frac { 3 \pi } { 2 }
C)​ 0,π3,π,2π30 , \frac { \pi } { 3 } , \pi , \frac { 2 \pi } { 3 }
D)​ 0,π4,π,2π30 , \frac { \pi } { 4 } , \pi , \frac { 2 \pi } { 3 }
E)​ 0,π2,π,3π20 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
20
Find all solutions of the following equation in the interval [0,2π).​ sinx3=cosx3\sin x - 3 = \cos x - 3

A) 3π4,5π4\frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 }
B)​ π2,5π2\frac { \pi } { 2 } , \frac { 5 \pi } { 2 }
C)​ 3π4,7π4\frac { 3 \pi } { 4 } , \frac { 7 \pi } { 4 }
D)​ π2,5π2\frac{\pi}{2}, \frac{5 \pi}{2}
E)​ π4,5π4\frac { \pi } { 4 } , \frac { 5 \pi } { 4 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
21
Solve the following equation. ​
Secx - 2 = 0

A)​ x=π5+2nπx = \frac { \pi } { 5 } + 2 n \pi and x=7π5+2nπx = \frac { 7 \pi } { 5 } + 2 n \pi ,where n is a integer
B)​ x=π3+2nπx = \frac { \pi } { 3 } + 2 n \pi and x=5π3+2nπx = \frac { 5 \pi } { 3 } + 2 n \pi ,where n is a integer
C)​ x=π6+2nπx = \frac { \pi } { 6 } + 2 n \pi and x=7π6+2nπx = \frac { 7 \pi } { 6 } + 2 n \pi ,where n is a integer
D)​ x=π6+2nπx = \frac { \pi } { 6 } + 2 n \pi and x=5π6+2nπx = \frac { 5 \pi } { 6 } + 2 n \pi ,where n is a integer
E)​ x=π4+2nπx = \frac { \pi } { 4 } + 2 n \pi and x=5π4+2nπx = \frac { 5 \pi } { 4 } + 2 n \pi ,where n is a integer
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
22
Use a graphing utility to graph the function.​ f(x)=1.1(2sinx+cos2x)f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )

A)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
23
Solve the multiple-angle equation.​ 2sec4x=42 \sec 4 x = 4

A) π12nπ3,5π12+nπ2\frac { \pi } { 12 } - \frac { n \pi } { 3 } , \frac { 5 \pi } { 12 } + \frac { n \pi } { 2 }
B)​ 3π4+nπ3,π12+nπ2\frac { 3 \pi } { 4 } + \frac { n \pi } { 3 } , \frac { \pi } { 12 } + \frac { n \pi } { 2 }
C)​ π2+nπ3,π12+nπ2\frac { \pi } { 2 } + \frac { n \pi } { 3 } , \frac { \pi } { 12 } + \frac { n \pi } { 2 }
D)​ 5π12+nπ3,π12+nπ2\frac { 5 \pi } { 12 } + \frac { n \pi } { 3 } , \frac { \pi } { 12 } + \frac { n \pi } { 2 }
E)​ π12+nπ2,5π12+nπ2\frac { \pi } { 12 } + \frac { n \pi } { 2 } , \frac { 5 \pi } { 12 } + \frac { n \pi } { 2 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
24
Use inverse functions where needed to find all solutions of the equation in the interval [0,2π).​ sec2x6secx=0\sec ^ { 2 } x - 6 \sec x = 0

A) arccos(16),2π+arccos(16)\arccos \left( \frac { 1 } { 6 } \right) , 2 \pi + \arccos \left( \frac { 1 } { 6 } \right)
B)​ arccos(16),arccos(16)2π\arccos \left( \frac { 1 } { 6 } \right) , \arccos \left( \frac { 1 } { 6 } \right) - 2 \pi
C)​ arccos(16)+π,arccos(16)π\arccos \left( \frac { 1 } { 6 } \right) + \pi , \arccos \left( \frac { 1 } { 6 } \right) - \pi
D)​ arccos(16),2πarccos(16)\arccos \left( \frac { 1 } { 6 } \right) , 2 \pi - \arccos \left( \frac { 1 } { 6 } \right)
E)​ arccos(16)+2π,arccos(16)2π\arccos \left( \frac { 1 } { 6 } \right) + 2 \pi , \arccos \left( \frac { 1 } { 6 } \right) - 2 \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
25
Solve the multiple-angle equation.​ 4tan3x=44 \tan 3 x = 4

A) 5π12+nπ2\frac { 5 \pi } { 12 } + \frac { n \pi } { 2 }
B)​ π12π2\frac { \pi } { 12 } - \frac { \pi } { 2 }
C)​ π3+nπ3\frac { \pi } { 3 } + \frac { n \pi } { 3 }
D)​ π12+nπ3\frac { \pi } { 12 } + \frac { n \pi } { 3 }
E)​ 3π4+nπ3\frac { 3 \pi } { 4 } + \frac { n \pi } { 3 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
26
Use a graphing utility to graph the function.​ f(x)=sinxcosxf ( x ) = \sin x - \cos x

A)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = \sin x - \cos x  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = \sin x - \cos x  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = \sin x - \cos x  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = \sin x - \cos x  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = \sin x - \cos x  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
27
Solve the multiple-angle equation.​ sin3x6=32\sin \frac { 3 x } { 6 } = - \frac { \sqrt { 3 } } { 2 }

A) π3+3nπ,2π3+3nπ\frac { \pi } { 3 } + 3 n \pi , \frac { 2 \pi } { 3 } + 3 n \pi
B)​ π3+2nπ,2π3+2nπ\frac { \pi } { 3 } + 2 n \pi , \frac { 2 \pi } { 3 } + 2 n \pi
C)​ 8π3+4nπ,10π3+4nπ\frac { 8 \pi } { 3 } + 4 n \pi , \frac { 10 \pi } { 3 } + 4 n \pi
D)​ 5π3+2nπ,4π3+3nπ\frac { 5 \pi } { 3 } + 2 n \pi , \frac { 4 \pi } { 3 } + 3 n \pi
E)​ π3+4nπ,2π3+4nπ\frac { \pi } { 3 } + 4 n \pi , \frac { 2 \pi } { 3 } + 4 n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
28
Use inverse functions where needed to find all solutions of the equation in the interval [0,2π).​ cot2x25=0\cot ^ { 2 } x - 25 = 0

A) arctan(15),arctan(15)+π,arctan(15)+π,arctan(15)+2π\arctan \left( \frac { 1 } { 5 } \right) , \arctan \left( \frac { 1 } { 5 } \right) + \pi , \arctan \left( \frac { 1 } { 5 } \right) + \pi , \arctan \left( \frac { 1 } { 5 } \right) + 2 \pi
B)​ arctan(15),arctan(15)+π,arctan(15)+π,arctan(15)+π\arctan \left( \frac { 1 } { 5 } \right) , \arctan \left( \frac { 1 } { 5 } \right) + \pi , \arctan \left( \frac { 1 } { 5 } \right) + \pi , \arctan \left( \frac { 1 } { 5 } \right) + \pi
C)​ arctan(15),arctan(15)+π,arctan(15)+π,arctan(15)+2π\arctan \left( \frac { 1 } { 5 } \right) , \arctan \left( \frac { 1 } { 5 } \right) + \pi , \arctan \left( - \frac { 1 } { 5 } \right) + \pi , \arctan \left( - \frac { 1 } { 5 } \right) + 2 \pi
D)​ arctan(15),arctan(15)+2π,arctan(15)+2π,arctan(15)+2π\arctan \left( \frac { 1 } { 5 } \right) , \arctan \left( \frac { 1 } { 5 } \right) + 2 \pi , \arctan \left( - \frac { 1 } { 5 } \right) + 2 \pi , \arctan \left( - \frac { 1 } { 5 } \right) + 2 \pi
E)​ arctan(15),arctan(15)+2π,arctan(15)+π,arctan(15)+2π\arctan \left( \frac { 1 } { 5 } \right) , \arctan \left( \frac { 1 } { 5 } \right) + 2 \pi , \arctan \left( - \frac { 1 } { 5 } \right) + \pi , \arctan \left( - \frac { 1 } { 5 } \right) + 2 \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
29
A weight is oscillating on the end of a spring (see figure).The position of the weight relative to the point of equilibrium is given by y=112(cos7t3sin7t)y = \frac { 1 } { 12 } ( \cos 7 t - 3 \sin 7 t ) ,where y is the displacement (in meters)and t is the time (in seconds).Find the times when the weight is at the point of equilibrium (y = 0)for 0t10 \leq t \leq 1 .​  <strong>A weight is oscillating on the end of a spring (see figure).The position of the weight relative to the point of equilibrium is given by  y = \frac { 1 } { 12 } ( \cos 7 t - 3 \sin 7 t )  ,where y is the displacement (in meters)and t is the time (in seconds).Find the times when the weight is at the point of equilibrium (y = 0)for  0 \leq t \leq 1  .​   ​ ​</strong> A)0.05sec,0.49sec,0.94sec B)0.05sec,0.05sec,0.94sec C)-0.40sec,0.49sec,0.94sec D)-0.40sec,0.49sec,-0.40sec E)0.05sec,-0.40sec,0.94sec  ​ ​

A)0.05sec,0.49sec,0.94sec
B)0.05sec,0.05sec,0.94sec
C)-0.40sec,0.49sec,0.94sec
D)-0.40sec,0.49sec,-0.40sec
E)0.05sec,-0.40sec,0.94sec
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
30
The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  Month, t Houston, H162.3266.3373.3479.3585.3690.3793.3893.4989.31082.31172.31264.3\begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\\hline 1 & 62.3 \\\hline 2 & 66.3 \\\hline 3 & 73.3 \\\hline 4 & 79.3 \\\hline 5 & 85.3 \\\hline 6 & 90.3 \\\hline 7 & 93.3 \\\hline 8 & 93.4 \\\hline 9 & 89.3 \\\hline 10 & 82.3 \\\hline 11 & 72.3 \\\hline 12 & 64.3 \\\hline\end{array}
Select the correct scatter plot from the above data.

A)​  <strong>The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  \begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\ \hline 1 & 62.3 \\ \hline 2 & 66.3 \\ \hline 3 & 73.3 \\ \hline 4 & 79.3 \\ \hline 5 & 85.3 \\ \hline 6 & 90.3 \\ \hline 7 & 93.3 \\ \hline 8 & 93.4 \\ \hline 9 & 89.3 \\ \hline 10 & 82.3 \\ \hline 11 & 72.3 \\ \hline 12 & 64.3 \\ \hline \end{array}  Select the correct scatter plot from the above data.</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  \begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\ \hline 1 & 62.3 \\ \hline 2 & 66.3 \\ \hline 3 & 73.3 \\ \hline 4 & 79.3 \\ \hline 5 & 85.3 \\ \hline 6 & 90.3 \\ \hline 7 & 93.3 \\ \hline 8 & 93.4 \\ \hline 9 & 89.3 \\ \hline 10 & 82.3 \\ \hline 11 & 72.3 \\ \hline 12 & 64.3 \\ \hline \end{array}  Select the correct scatter plot from the above data.</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  \begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\ \hline 1 & 62.3 \\ \hline 2 & 66.3 \\ \hline 3 & 73.3 \\ \hline 4 & 79.3 \\ \hline 5 & 85.3 \\ \hline 6 & 90.3 \\ \hline 7 & 93.3 \\ \hline 8 & 93.4 \\ \hline 9 & 89.3 \\ \hline 10 & 82.3 \\ \hline 11 & 72.3 \\ \hline 12 & 64.3 \\ \hline \end{array}  Select the correct scatter plot from the above data.</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  \begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\ \hline 1 & 62.3 \\ \hline 2 & 66.3 \\ \hline 3 & 73.3 \\ \hline 4 & 79.3 \\ \hline 5 & 85.3 \\ \hline 6 & 90.3 \\ \hline 7 & 93.3 \\ \hline 8 & 93.4 \\ \hline 9 & 89.3 \\ \hline 10 & 82.3 \\ \hline 11 & 72.3 \\ \hline 12 & 64.3 \\ \hline \end{array}  Select the correct scatter plot from the above data.</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>The table shows the average daily high temperatures in Houston H (in degrees Fahrenheit)for month t,with t = 1 corresponding to January.  \begin{array} { | c | c | } \hline \text { Month, } t & \text { Houston, } H \\ \hline 1 & 62.3 \\ \hline 2 & 66.3 \\ \hline 3 & 73.3 \\ \hline 4 & 79.3 \\ \hline 5 & 85.3 \\ \hline 6 & 90.3 \\ \hline 7 & 93.3 \\ \hline 8 & 93.4 \\ \hline 9 & 89.3 \\ \hline 10 & 82.3 \\ \hline 11 & 72.3 \\ \hline 12 & 64.3 \\ \hline \end{array}  Select the correct scatter plot from the above data.</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
31
Solve the following equation. tan4x1=0\tan ^ { 4 } x - 1 = 0

A)​ x=π2+nπx = \frac { \pi } { 2 } + n \pi ,where n is an integer
B) x=nπ and x=3π2+2nπx = n \pi \text { and } x = \frac { 3 \pi } { 2 } + 2 n \pi ,where n is an integer
C)​ x=nπ and x=3π4+nπx = n \pi \text { and } x = \frac { 3 \pi } { 4 } + n \pi ,where n is an integer
D) x=π4+nπ2x = \frac { \pi } { 4 } + \frac { n \pi } { 2 } ,where n is an integer
E)​ x=nπ and x=π2+nπx = n \pi \text { and } x = \frac { \pi } { 2 } + n \pi ,where n is an integer
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
32
Solve the following equation.​ cos2x+cosx=0\cos ^ { 2 } x + \cos x = 0

A)​ x=3π4+nπ and x=5π4+nπx = \frac { 3 \pi } { 4 } + n \pi \text { and } x = \frac { 5 \pi } { 4 } + n \pi ,where n is an integer
B)​ x=π+2nπ and x=π2+nπx = \pi + 2 n \pi \text { and } x = \frac { \pi } { 2 } + n \pi ,where n is an integer
C)​ x=3π4+2nπ and x=5π4+2nπx = \frac { 3 \pi } { 4 } + 2 n \pi \text { and } x = \frac { 5 \pi } { 4 } + 2 n \pi ,where n is an integer
D)​ x=nπ and x=3π2+nπx = n \pi \text { and } x = \frac { 3 \pi } { 2 } + n \pi ,where n is an integer
E)​ x=π+nπ and x=π2+2nπx = \pi + n \pi \text { and } x = \frac { \pi } { 2 } + 2 n \pi ,where n is an integer
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
33
Use a graphing utility to graph the function.​ f(x)=2(sinxcosx)f ( x ) = 2 ( \sin x \cos x )

A)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 2 ( \sin x \cos x )  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 2 ( \sin x \cos x )  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 2 ( \sin x \cos x )  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 2 ( \sin x \cos x )  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 2 ( \sin x \cos x )  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
34
Use a graphing utility to graph the function. ​​ f(x)=(sin2xcosx)f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)

A)​  <strong>Use a graphing utility to graph the function. ​​  f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Use a graphing utility to graph the function. ​​  f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Use a graphing utility to graph the function. ​​  f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Use a graphing utility to graph the function. ​​  f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Use a graphing utility to graph the function. ​​  f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
35
Solve the multiple-angle equation.​ cos3x6=22\cos \frac { 3 x } { 6 } = \frac { \sqrt { 2 } } { 2 }

A) π3+2nπ,2π3+2nπ\frac { \pi } { 3 } + 2 n \pi , \frac { 2 \pi } { 3 } + 2 n \pi
B)​ π3+4nπ,2π3+4nπ\frac { \pi } { 3 } + 4 n \pi , \frac { 2 \pi } { 3 } + 4 n \pi
C)​ π3+3nπ,2π3+3nπ\frac { \pi } { 3 } + 3 n \pi , \frac { 2 \pi } { 3 } + 3 n \pi
D)​ π2+4nπ,7π2+4nπ\frac { \pi } { 2 } + 4 n \pi , \frac { 7 \pi } { 2 } + 4 n \pi
E)​ 5π3+2nπ,4π3+3nπ\frac { 5 \pi } { 3 } + 2 n \pi , \frac { 4 \pi } { 3 } + 3 n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
36
Use inverse functions where needed to find all solutions of the equation in the interval [0,2π).​ csc2x7cscx=0\csc ^ { 2 } x - 7 \csc x = 0

A)​ arcsin(17)+π,arcsin(17)\arcsin \left( - \frac { 1 } { 7 } \right) + \pi , \arcsin \left( - \frac { 1 } { 7 } \right)
B)​ arcsin(17)+π,arcsin(17)\arcsin \left( - \frac { 1 } { 7 } \right) + \pi , \arcsin \left( \frac { 1 } { 7 } \right)
C)​ arcsin(17)+π,arcsin(17)+2π\arcsin \left( - \frac { 1 } { 7 } \right) + \pi , \arcsin \left( \frac { 1 } { 7 } \right) + 2 \pi
D)​ arcsin(17)+2π,arcsin(17)\arcsin \left( - \frac { 1 } { 7 } \right) + 2 \pi , \arcsin \left( \frac { 1 } { 7 } \right)
E)​ arcsin(17)+π,arcsin(17)\arcsin \left( \frac { 1 } { 7 } \right) + \pi , \arcsin \left( \frac { 1 } { 7 } \right)
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
37
Which of the following is a solution to the given equation? ​
Cscx + 2 = 0

A) x=7π4x = \frac { 7 \pi } { 4 }
B)​ x=π4x = \frac { \pi } { 4 }
C)​ x=7π5x = \frac { 7 \pi } { 5 }
D)​ x=7π6x = \frac { 7 \pi } { 6 }
E)​ x=2π3x = \frac { 2 \pi } { 3 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
38
Which of the following is a solution to the given equation?​ 2cosx1=02 \cos x - 1 = 0

A) x=7π4x = \frac { 7 \pi } { 4 }
B) x=π6x = \frac { \pi } { 6 }
C) x=7π6x = \frac { 7 \pi } { 6 }
D) x=5π3x = \frac { 5 \pi } { 3 }
E) x=3π4x = \frac { 3 \pi } { 4 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
39
Use a graphing utility to graph the function.​ f(x)=5(sin2x+cosx)f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)

A)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Use a graphing utility to graph the function.​  f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
40
Determine whether the statement is true or false.Justify your answer. ​
The equation 2sin4t1=02 \sin 4 t - 1 = 0 has four times the number of solutions in the interval [0,2π)as the equation 2sint1=02 \sin t - 1 = 0 .

A)False
B)True
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
41
Solve the following equation.​ 2sinx1=02 \sin x - 1 = 0

A)​ x=2π3+2nπ and x=4π3+2nπx = \frac { 2 \pi } { 3 } + 2 n \pi \text { and } x = \frac { 4 \pi } { 3 } + 2 n \pi ,where n is an integer
B)​ x=π6+2nπ and x=5π6+2nπx = \frac { \pi } { 6 } + 2 n \pi \text { and } x = \frac { 5 \pi } { 6 } + 2 n \pi ,where n is an integer
C)​ x=π3+2nπ and x=5π3+2nπx = \frac { \pi } { 3 } + 2 n \pi \text { and } x = \frac { 5 \pi } { 3 } + 2 n \pi ,where n is an integer
D)​ x=π4+2nπ and x=5π4+2nπx = \frac { \pi } { 4 } + 2 n \pi \text { and } x = \frac { 5 \pi } { 4 } + 2 n \pi ,where n is an integer
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
42
Using the grid provided,sketch the graph of the given function in the interval (-5,5)and then determine the x-intercepts,if any. y=sin(πx2)1y = \sin \left( \frac { \pi x } { 2 } \right) - 1  <strong>Using the grid provided,sketch the graph of the given function in the interval (-5,5)and then determine the x-intercepts,if any.  y = \sin \left( \frac { \pi x } { 2 } \right) - 1     </strong> A)(-3,0)and (1,0) B)(-2,0) C)(-2,0)and (2,0) D)no x-intercepts E)(-4,0), (0,0),and (4,0)   <strong>Using the grid provided,sketch the graph of the given function in the interval (-5,5)and then determine the x-intercepts,if any.  y = \sin \left( \frac { \pi x } { 2 } \right) - 1     </strong> A)(-3,0)and (1,0) B)(-2,0) C)(-2,0)and (2,0) D)no x-intercepts E)(-4,0), (0,0),and (4,0)

A)(-3,0)and (1,0)
B)(-2,0)
C)(-2,0)and (2,0)
D)no x-intercepts
E)(-4,0), (0,0),and (4,0)
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
43
Which of the following is a solution to the given equation? ​
Cscx - 2 = 0

A)​ x=2π3x = \frac { 2 \pi } { 3 }
B)​ x=π4x = \frac { \pi } { 4 }
C)​ x=π4x = \frac { \pi } { 4 } .
D)​ x=π6x = \frac { \pi } { 6 }
E)​ x=7π4x = \frac { 7 \pi } { 4 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
44
A Ferris wheel is built such that the height h (in feet)above the ground of a seat on the wheel at time t (in seconds)can be modeled by h(t)=67+54sin(π18tπ2)h ( t ) = 67 + 54 \sin \left( \frac { \pi } { 18 } t - \frac { \pi } { 2 } \right) .The wheel makes one revolution every 36 seconds and the ride begins when t = 0.During the first 36 seconds of the ride,when will a person,who starts at the bottom of the Ferris wheel,be 67 feet above the ground? ​

A)9 seconds and 22 seconds
B)9 seconds and 27 seconds
C)10 seconds and 22 seconds
D)9 seconds and 17 seconds
E)10 seconds and 17 seconds
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
45
Use the Quadratic Formula to solve the given equation on the interval [ 0,π20 , \frac { \pi } { 2 } );then use a graphing utility to approximate the angle x.Round answers to three decimal places.​ 75cos2x34cosx+3=075 \cos ^ { 2 } x - 34 \cos x + 3 = 0

A)x = 1.229,1.433
B)​x = 1.227,1.422
C)​x = 1.233,1.469
D)​x = 1.231,1.451
E)​x = 1.235,1.480
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
46
Solve the multiple-angle equation. tanx2=33\tan \frac { x } { 2 } = \frac { \sqrt { 3 } } { 3 }

A)​ x=5π3+nπx = \frac { 5 \pi } { 3 } + n \pi
B)​ x=7π6+nπ and 11π6+nπx = \frac { 7 \pi } { 6 } + n \pi \text { and } \frac { 11 \pi } { 6 } + n \pi
C)​ x=2π3+nπx = \frac { 2 \pi } { 3 } + n \pi
D)​ x=5π6+nπ and 7π6+nπx = \frac { 5 \pi } { 6 } + n \pi \text { and } \frac { 7 \pi } { 6 } + n \pi
E) x=π3+2nπx = \frac { \pi } { 3 } + 2 n \pi
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
47
Use a graphing utility to approximate the solutions (to three decimal places)of the given equation in the interval [0,2π).​ sin2x+1.5cosx=0\sin 2 x + 1.5 \cos x = 0

A)x = 1.624,1.932,5.776,5.997
B)​x = 1.101,2.118,3.982,5.104
C)​x = 1.571,3.990,4.712,5.435
D)​x = 1.055,3.785,4.652,5.721
E)​x = 1.484,3.799,4.626,5.490
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
48
The monthly sales S (in hundreds of units)of baseball equipment for an Internet sporting goods site are approximated by S=55.737.5cosπt6S = 55.7 - 37.5 \cos \frac { \pi t } { 6 } where t is the time (in months),with t = 1 corresponding to January.Determine the months when sales exceed 7700 units at any time during the month.

A)April through August
B)July through May
C)June through August
D)April through July
E)May through July
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
49
Use a graphing utility to approximate the solutions (to three decimal places)of the given equation in the interval (π2,π2)\left( - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right) . ​​ 6sin2x8cosx+9sinx=66 \sin 2 x - 8 \cos x + 9 \sin x = 6

A)​x = 0.398
B)​​x = 1.336
C)​​x = 0.094
D)​​x = 0.73
E)​​x = 0.139
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
50
Use inverse functions where needed to find all solutions (if they exist)of the given equation on the interval [0,2π).​ 2cos2xcosx1=02 \cos ^ { 2 } x - \cos x - 1 = 0

A)​ x=π3,2π3x = \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }
B) x=0,2π3,4π3x = 0 , \frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 }
C) x=0,π3,2π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }
D) x=π3,π,5π3x = \frac { \pi } { 3 } , \pi , \frac { 5 \pi } { 3 }
E)​solution does not exist
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
51
Find all solutions of the following equation in the interval [0,2π).​ sin3x=sinx\sin ^ { 3 } x = \sin x

A) x=0,π6,7π6x = 0 , \frac { \pi } { 6 } , \frac { 7 \pi } { 6 }
B) x=0,π4,7π4x = 0 , \frac { \pi } { 4 } , \frac { 7 \pi } { 4 }
C) x=0,π2,3π2x = 0 , \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
D) x=0,πx = 0 , \pi
E) x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
52
Solve the multiple-angle equation.​ sinx2=22\sin \frac { x } { 2 } = \frac { \sqrt { 2 } } { 2 }

A)​​ x=2π3+2nπ and x=5π3+2nπx = \frac { 2 \pi } { 3 } + 2 n \pi \text { and } x = \frac { 5 \pi } { 3 } + 2 n \pi ,where n is an integer
B)​ x=7π6+2nπ and x=11π6+2nπx = \frac { 7 \pi } { 6 } + 2 n \pi \text { and } x = \frac { 11 \pi } { 6 } + 2 n \pi ,where n is an integer
C)​ x=π2+nπx = \frac { \pi } { 2 } + n \pi ,where n is an integer
D) x=π2+2nπ and x=3π2+2nπx = \frac { \pi } { 2 } + 2 n \pi \text { and } x = \frac { 3 \pi } { 2 } + 2 n \pi ,where n is an integer
E) x=π2+4nπ and x=3π2+4nπx = \frac { \pi } { 2 } + 4 n \pi \text { and } x = \frac { 3 \pi } { 2 } + 4 n \pi ,where n is an integer
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
53
The horizontal distance d (in feet)traveled by a projectile with an initial speed of v feet per second is modeled by d=v232sin2θd = \frac { v ^ { 2 } } { 32 } \sin 2 \theta , where θ is the angle at which the projectile is launched.
Find the horizontal distance traveled by a golf ball that is hit with an initial speed of 80 feet per second when the ball is hit at an angle of θ=60\theta = 60 ^ { \circ } .Round to the nearest foot.

A)260
B)346
C)173
D)303
E)87
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
54
Which of the following is a solution to the given equation? 2cosx1=02 \cos x - 1 = 0

A) x=π6x = \frac { \pi } { 6 }
B) x=7π6x = \frac { 7 \pi } { 6 }
C) x=3π4x = \frac { 3 \pi } { 4 }
D) x=5π3x = \frac { 5 \pi } { 3 }
E) x=7π4x = \frac { 7 \pi } { 4 }
Unlock Deck
Unlock for access to all 54 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 54 flashcards in this deck.