Deck 35: Multiple Angle and Product to Sum Formulas

Full screen (f)
exit full mode
Question
Use the product-to-sum formulas to rewrite the product as a sum or difference.​ sinπ3cosπ6\sin \frac { \pi } { 3 } \cos \frac { \pi } { 6 }

A)​ 12(sinπ2+cosπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } + \cos \frac { \pi } { 6 } \right)
B)​ 12(sinπ2+sinπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } + \sin \frac { \pi } { 6 } \right)
C)​ 12(sinπ2cosπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } - \cos \frac { \pi } { 6 } \right)
D)​ 12(sinπ2sinπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } - \sin \frac { \pi } { 6 } \right)
E)​ (sinπ2+cosπ6)\left( \sin \frac { \pi } { 2 } + \cos \frac { \pi } { 6 } \right)
Use Space or
up arrow
down arrow
to flip the card.
Question
Use the sum-to-product formulas to rewrite the sum or difference as a product.​ sin9θ+sin7θ\sin 9 \theta + \sin 7 \theta

A)​ 2sin8θsinθ2 \sin 8 \theta \sin \theta
B)​ 2cos8θcosθ2 \cos 8 \theta \cos \theta
C)​ 2sin8θcosθ2 \sin 8 \theta \cos \theta
D)​ 2cos8θsinθ2 \cos 8 \theta \sin \theta
E)​ 2sin9θcos7θ2 \sin 9 \theta \cos 7 \theta
Question
Use the product-to-sum formulas to rewrite the product as a sum or difference.​ 10cos45cos2010 \cos 45 ^ { \circ } \cos 20 ^ { \circ }

A)​ 10(cos25+cos65)10 \left( \cos 25 ^ { \circ } + \cos 65 ^ { \circ } \right)
B)​ cos25+cos65\cos 25 ^ { \circ } + \cos 65 ^ { \circ }
C)​ 5(cos65cos25)5 \left( \cos 65 ^ { \circ } - \cos 25 ^ { \circ } \right)
D) 5(cos25+cos65)5 \left( \cos 25 ^ { \circ } + \cos 65 ^ { \circ } \right)
E)​ 5(cos65+sin25)5 \left( \cos 65 ^ { \circ } + \sin 25 ^ { \circ } \right)
Question
Use the product-to-sum formulas to rewrite the product as a sum or difference.​ 8sin65cos258 \sin 65 ^ { \circ } \cos 25 ^ { \circ }

A)​ 8(sin90+sin40)8 \left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
B)​ 4(cos90+cos40)4 \left( \cos 90 ^ { \circ } + \cos 40 ^ { \circ } \right)
C)​ 4(cos90cos40)4 \left( \cos 90 ^ { \circ } - \cos 40 ^ { \circ } \right)
D)​ (sin90+sin40)\left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
E)​ 4(sin90+sin40)4 \left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
Question
Use a double-angle formula to rewrite the expression. ​
10 cos2 x - 5

A)5 cos x
B)​cos 5x
C)​10 cos 2x
D)​10 cos x
E)​5 cos 2x
Question
Use the sum-to-product formulas to rewrite the sum or difference as a product.​ sin3θsinθ\sin 3 \theta - \sin \theta

A)​ 2sin3θcosθ2 \sin 3 \theta \cos \theta
B)​ 2sin2θcosθ2 \sin 2 \theta \cos \theta
C)​ 2cos2θcosθ2 \cos 2 \theta \cos \theta
D)​ 2sin2θsinθ2 \sin 2 \theta \sin \theta
E)​ 2cos2θsinθ2 \cos 2 \theta \sin \theta
Question
Use the product-to-sum formulas to rewrite the product as a sum or difference.​ 4cosπ2sin5π44 \cos \frac { \pi } { 2 } \sin \frac { 5 \pi } { 4 }

A)​ 2(sin7π4sin3π4)2 \left( \sin \frac { 7 \pi } { 4 } - \sin \frac { 3 \pi } { 4 } \right)
B)​ 2(cos7π4cos3π4)2 \left( \cos \frac { 7 \pi } { 4 } - \cos \frac { 3 \pi } { 4 } \right)
C)​ 2(sin7π4+cos3π4)2 \left( \sin \frac { 7 \pi } { 4 } + \cos \frac { 3 \pi } { 4 } \right)
D)​ 2(sin7π4+sin3π4)2 \left( \sin \frac { 7 \pi } { 4 } + \sin \frac { 3 \pi } { 4 } \right)
E)​ 2(cos7π4+cos3π4)2 \left( \cos \frac { 7 \pi } { 4 } + \cos \frac { 3 \pi } { 4 } \right)
Question
Use a double-angle formula to rewrite the expression. ​
3 - 6 sin2 x

A)6 cos x
B)​3 sin 2x
C)​3 sin x
D)​3 cos 2x
E)​6 cos 2x
Question
Use the figure to find the exact value of the trigonometric function. ​
Csc 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Csc 2θ​   ​ A = 1,b = 6 ​</strong> A)​  \frac { 37 } { 12 }  B)​  \frac { 13 } { 37 }  C)  \frac { 37 } { 13 }  D)​  \frac { 12 } { 13 }  E)  \frac { 12 } { 37 }  <div style=padding-top: 35px>
A = 1,b = 6

A)​ 3712\frac { 37 } { 12 }
B)​ 1337\frac { 13 } { 37 }
C) 3713\frac { 37 } { 13 }
D)​ 1213\frac { 12 } { 13 }
E) 1237\frac { 12 } { 37 }
Question
Use the half-angle formulas to simplify the expression. ​​ 1cos10x2\sqrt { \frac { 1 - \cos 10 x } { 2 } }

A)|sin 5x|
B)- |sin x|
C)|sin 10x|
D)- |sin 5x|
E)|sin x|
Question
Use the figure to find the exact value of the trigonometric function. ​
Cot 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Cot 2θ​   ​ A = 1,b = 6 ​</strong> A)​  \frac { 12 } { 35 }  B)  \frac { 35 } { 37 }  C)  \frac { 12 } { 37 }  D)​  \frac { 37 } { 35 }  E)  \frac { 35 } { 12 }  <div style=padding-top: 35px>
A = 1,b = 6

A)​ 1235\frac { 12 } { 35 }
B) 3537\frac { 35 } { 37 }
C) 1237\frac { 12 } { 37 }
D)​ 3735\frac { 37 } { 35 }
E) 3512\frac { 35 } { 12 }
Question
Use the figure to find the exact value of the trigonometric function. ​
Tan 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Tan 2θ​   ​ A = 1,b = 6 ​</strong> A)  \frac { 35 } { 12 }  B)  \frac { 12 } { 35 }  C)​  \frac { 12 } { 37 }  D)​  \frac { 35 } { 37 }  E)​  \frac { 37 } { 35 }  <div style=padding-top: 35px>
A = 1,b = 6

A) 3512\frac { 35 } { 12 }
B) 1235\frac { 12 } { 35 }
C)​ 1237\frac { 12 } { 37 }
D)​ 3537\frac { 35 } { 37 }
E)​ 3735\frac { 37 } { 35 }
Question
Use the half-angle formulas to simplify the expression.​ 1cos(x3)2- \sqrt { \frac { 1 - \cos ( x - 3 ) } { 2 } }

A)​ sin(x32)- \left| \sin \left( \frac { x - 3 } { 2 } \right) \right|
B)​ sin1(x+32)- \left| \sin ^ { - 1 } \left( \frac { x + 3 } { 2 } \right) \right|
C)​ sin(x3)- | \sin ( x - 3 ) |
D)​ sin1(x32)- \left| \sin ^ { - 1 } \left( \frac { x - 3 } { 2 } \right) \right|
E)​ sin(x+32)- \left| \sin \left( \frac { x + 3 } { 2 } \right) \right|
Question
Use the figure to find the exact value of the trigonometric function. ​
Cos 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Cos 2θ​   ​ A = 1,b = 2 ​</strong> A)​  \frac { 3 } { 4 }  B)  \frac { 3 } { 5 }  C)​  \frac { 5 } { 3 }  D)​  \frac { 4 } { 5 }  E)​  \frac { 5 } { 4 }  <div style=padding-top: 35px>
A = 1,b = 2

A)​ 34\frac { 3 } { 4 }
B) 35\frac { 3 } { 5 }
C)​ 53\frac { 5 } { 3 }
D)​ 45\frac { 4 } { 5 }
E)​ 54\frac { 5 } { 4 }
Question
Use a double-angle formula to rewrite the expression. ​​ 2sinxcosx2 \sin x \cos x

A)​sin x
B)​​2 sin x
C)​​​2 sin 2x
D)​ sin x
E)​ sin 2x
Question
Use the figure to find the exact value of the trigonometric function. ​
Sec 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Sec 2θ​   ​ A = 1,b = 8 ​</strong> A)​  \frac { 63 } { 64 }  B)  \frac { 63 } { 65 }  C)​  \frac { 64 } { 65 }  D)​  \frac { 65 } { 63 }  E)  \frac { 65 } { 64 }  <div style=padding-top: 35px>
A = 1,b = 8

A)​ 6364\frac { 63 } { 64 }
B) 6365\frac { 63 } { 65 }
C)​ 6465\frac { 64 } { 65 }
D)​ 6563\frac { 65 } { 63 }
E) 6564\frac { 65 } { 64 }
Question
Use the half-angle formulas to simplify the expression. ​​ 1+cos8x2\sqrt { \frac { 1 + \cos 8 x } { 2 } }

A)​- ​|cos x|
B)​|cos x|
C)​​|cos 4x|
D)​​- |cos 4x|
E)​- ​|cos 8x|
Question
Use the half-angle formulas to simplify the expression.​ 1+cos6x1cos6x- \sqrt { \frac { 1 + \cos 6 x } { 1 - \cos 6 x } }

A)​- |cot x|
B)​- |3 tan x|
C)​- |3 tan 6x|
D)​- |3 cot 3x|
E)​- |cot 3x|
Question
Use a double-angle formula to rewrite the expression. ​
2 sin2 x - 1

A)cos x
B)cos 2x ​
C)-2 cos x ​
D)2 cos 2x ​
E)- cos 2x ​
Question
Use the figure to find the exact value of the trigonometric function. ​
Sin 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Sin 2θ​   ​ A = 1,b = 2 ​</strong> A) \frac { 5 } { 5 }  ​ B)  \frac { 4 } { 5 }  ​ C)  \frac { 5 } { 4 }  ​ <div style=padding-top: 35px>
A = 1,b = 2

A) 55\frac { 5 } { 5 }
B) 45\frac { 4 } { 5 }
C) 54\frac { 5 } { 4 }

Question
Use the figure below to determine the exact value of the given function.​ csc2θ\csc 2 \theta  <strong>Use the figure below to determine the exact value of the given function.​  \csc 2 \theta   </strong> A)​  \csc 2 \theta = \frac { 13 } { 5 }  B)​  \csc 2 \theta = \frac { 13 } { 7 }  C)​  \csc 2 \theta = \frac { 13 } { 5 } . D)​  \csc 2 \theta = \frac { 13 } { 9 }  E)​  \csc 2 \theta = \frac { 13 } { 12 }  <div style=padding-top: 35px>

A)​ csc2θ=135\csc 2 \theta = \frac { 13 } { 5 }
B)​ csc2θ=137\csc 2 \theta = \frac { 13 } { 7 }
C)​ csc2θ=135\csc 2 \theta = \frac { 13 } { 5 } .
D)​ csc2θ=139\csc 2 \theta = \frac { 13 } { 9 }
E)​ csc2θ=1312\csc 2 \theta = \frac { 13 } { 12 }
Question
Use a double angle formula to rewrite the given expression. 10cos2x510 \cos ^ { 2 } x - 5

A) 5cos5x5 \cos 5 x
B) 5cos2x5 \cos 2 x
C) 10cos2x10 \cos 2 x
D) 2cos10x2 \cos 10 x
E) 2cos5x2 \cos 5 x
Question
Convert the expression. ​​ 1+cos4y1 + \cos 4 y

A) 2cos22y2 \cos ^ { 2 } 2 y
B)​ cos24y\cos ^ { 2 } 4 y
C)​ cos22y\cos ^ { 2 } 2 y
D)​ 4cos24y4 \cos ^ { 2 } 4 y
E)​ 2cos24y2 \cos ^ { 2 } 4 y
Question
Find the exact solutions of the given equation in the interval [0,2π).​ cos2x+3cosx+2=0\cos 2 x + 3 \cos x + 2 = 0

A)​ x=0,π,2π3,5π3x = 0 , \pi , \frac { 2 \pi } { 3 } , \frac { 5 \pi } { 3 }
B)​ x=π,π3,5π3x = \pi , \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
C)​ x=π,2π3,4π3x = \pi , \frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 }
D)​x = 0
E)​ x=0,π,π3,4π3x = 0 , \pi , \frac { \pi } { 3 } , \frac { 4 \pi } { 3 }
Question
Convert the expression.​ 7sec2θ7 \sec 2 \theta

A)​ 7sec2θ2+sec2θ\frac { 7 \sec ^ { 2 } \theta } { 2 + \sec ^ { 2 } \theta }
B)​ sec2θ2sec2θ\frac { \sec ^ { 2 } \theta } { 2 - \sec ^ { 2 } \theta }
C)​ 7sec2θ2sec2θ\frac { 7 \sec ^ { 2 } \theta } { 2 - \sec ^ { 2 } \theta }
D)​ 7sec2θ2cos2θ\frac { 7 \sec ^ { 2 } \theta } { 2 - \cos ^ { 2 } \theta }
E)​ 7cos2θ2cos2θ\frac { 7 \cos ^ { 2 } \theta } { 2 - \cos ^ { 2 } \theta }
Question
The mach number M of an airplane is the ratio of its speed to the speed of sound.When an airplane travels faster than the speed of sound,the sound waves form a cone behind the airplane (see figure).The mach number is related to the apex angle θ of the cone by sin(θ/5)=1/M\sin ( \theta / 5 ) = 1 / M .​  <strong>The mach number M of an airplane is the ratio of its speed to the speed of sound.When an airplane travels faster than the speed of sound,the sound waves form a cone behind the airplane (see figure).The mach number is related to the apex angle θ of the cone by  \sin ( \theta / 5 ) = 1 / M  .​   ​ Rewrite the equation in terms of θ. ​</strong> A)​  \theta = 5 \sin \left( \frac { 1 } { M } \right)  B)​  \theta = \sin \left( \frac { 1 } { M } \right)  C)​  \theta = \sin ^ { - 1 } \left( \frac { 1 } { M } \right)  D)​  \theta = 5 \sin ^ { - 1 } \left( \frac { 5 } { M } \right)  E)  \theta = 5 \sin ^ { - 1 } \left( \frac { 1 } { M } \right)  <div style=padding-top: 35px>  ​ Rewrite the equation in terms of θ.

A)​ θ=5sin(1M)\theta = 5 \sin \left( \frac { 1 } { M } \right)
B)​ θ=sin(1M)\theta = \sin \left( \frac { 1 } { M } \right)
C)​ θ=sin1(1M)\theta = \sin ^ { - 1 } \left( \frac { 1 } { M } \right)
D)​ θ=5sin1(5M)\theta = 5 \sin ^ { - 1 } \left( \frac { 5 } { M } \right)
E) θ=5sin1(1M)\theta = 5 \sin ^ { - 1 } \left( \frac { 1 } { M } \right)
Question
Use the sum-to-product formulas to rewrite the sum or difference as a product. ​
Cos 3θ + cos 8θ

A)​ cos11θ2cos5θ2\cos \frac { 11 \theta } { 2 } \cos \frac { 5 \theta } { 2 }
B)​ 2cos11θ2sin5θ22 \cos \frac { 11 \theta } { 2 } \sin - \frac { 5 \theta } { 2 }
C)​ 2sin11θ2sin5θ22 \sin \frac { 11 \theta } { 2 } \sin \frac { 5 \theta } { 2 }
D)​ cos11θ2cos5θ2\cos - \frac { 11 \theta } { 2 } \cos \frac { 5 \theta } { 2 }
E) 2cos11θ2cos5θ22 \cos \frac { 11 \theta } { 2 } \cos - \frac { 5 \theta } { 2 }
Question
Use the figure to find the exact value of the trigonometric function.​  <strong>Use the figure to find the exact value of the trigonometric function.​    \begin{array} { l } a = 8 , b = 9 \\ c = 2 , d = 5 \end{array}  ​ sin 2α ​</strong> A)​  \frac { 8 } { 145 }  B)​  \frac { 9 } { 145 }  C)​  \frac { 145 } { 2 }  ​ D)​  \frac { 145 } { 144 }  E)  \frac { 144 } { 145 }  <div style=padding-top: 35px>  a=8,b=9c=2,d=5\begin{array} { l } a = 8 , b = 9 \\c = 2 , d = 5\end{array} ​ sin 2α

A)​ 8145\frac { 8 } { 145 }
B)​ 9145\frac { 9 } { 145 }
C)​ 1452\frac { 145 } { 2 }
D)​ 145144\frac { 145 } { 144 }
E) 144145\frac { 144 } { 145 }
Question
Convert the expression.​ cos4α\cos 4 \alpha

A)​ cos22αsin22α\cos ^ { 2 } 2 \alpha - \sin ^ { 2 } 2 \alpha
B)​ cos22α+sin22α\cos ^ { 2 } 2 \alpha + \sin ^ { 2 } 2 \alpha
C)​ cos42α+sin42α\cos ^ { 4 } 2 \alpha + \sin ^ { 4 } 2 \alpha
D)​ cos42αsin42α\cos ^ { 4 } 2 \alpha - \sin ^ { 4 } 2 \alpha
E)​ cos42αsin22α\cos ^ { 4 } 2 \alpha - \sin ^ { 2 } 2 \alpha
Question
Convert the expression.​ secb2\sec \frac { b } { 2 }

A)​ ±2tanbtanb+sinb\pm \sqrt { \frac { 2 \tan b } { \tan b + \sin b } }
B)​ ±2tanbtanb+cscb\pm \sqrt { \frac { 2 \tan b } { \tan b + \csc b } }
C)​ ±tanbtanbsinb\pm \sqrt { \frac { \tan b } { \tan b - \sin b } }
D)​ ±tanbtanb+sinb\pm \sqrt { \frac { \tan b } { \tan b + \sin b } }
E)​ ±2tanbtanbsinb\pm \sqrt { \frac { 2 \tan b } { \tan b - \sin b } }
Question
Convert the expression.​ 3csc2θ3 \csc 2 \theta

A)​ 3cscθ2sinθ\frac { 3 \csc \theta } { 2 \sin \theta }
B)​ 3cscθ2secθ\frac { 3 \csc \theta } { 2 \sec \theta }
C)​ 3cscθcosθ\frac { 3 \csc \theta } { \cos \theta }
D) 3cscθ2cosθ\frac { 3 \csc \theta } { 2 \cos \theta }
E)​ 3secθ2cosθ\frac { 3 \sec \theta } { 2 \cos \theta }
Question
Use the sum-to-product formulas to rewrite the sum or difference as a product.​ cos12θ+cos8θ\cos 12 \theta + \cos 8 \theta

A)​ 2sin10θcos2θ2 \sin 10 \theta \cos 2 \theta
B)​ 2cos10θsin2θ2 \cos 10 \theta \sin 2 \theta
C)​ 2sin12θcos8θ2 \sin 12 \theta \cos 8 \theta
D)​ 2cos10θcos2θ2 \cos 10 \theta \cos 2 \theta
E)​ 2sin10θsin2θ2 \sin 10 \theta \sin 2 \theta
Question
Convert the expression.​ cos4bsin4b\cos ^ { 4 } b - \sin ^ { 4 } b

A)2 cos b
B)​cos 2b
C)​​cos b
D)2 ​cos 2b
E)​4 cos b
Question
When two railroad tracks merge,the overlapping portions of the tracks are in the shapes of circular arcs (see figure).The radius of each arc r (in feet)and the angle θ are related by​ x2=2rsin2θ2\frac { x } { 2 } = 2 r \sin ^ { 2 } \frac { \theta } { 2 } ​ Write a formula for x in terms of cos θ.​  <strong>When two railroad tracks merge,the overlapping portions of the tracks are in the shapes of circular arcs (see figure).The radius of each arc r (in feet)and the angle θ are related by​  \frac { x } { 2 } = 2 r \sin ^ { 2 } \frac { \theta } { 2 }  ​ Write a formula for x in terms of cos θ.​   ​</strong> A)​  x = r \left( 1 - \cos \frac { \theta } { 2 } \right)  B)​  x = r ( 1 - \cos \theta )  C)  x = 2 r ( 1 - \cos \theta )  ​ D)  x = 2 r ( 1 + \cos \theta )  ​ E)  x = 2 r \left( 1 - \cos \frac { \theta } { 2 } \right)  ​ <div style=padding-top: 35px>

A)​ x=r(1cosθ2)x = r \left( 1 - \cos \frac { \theta } { 2 } \right)
B)​ x=r(1cosθ)x = r ( 1 - \cos \theta )
C) x=2r(1cosθ)x = 2 r ( 1 - \cos \theta )
D) x=2r(1+cosθ)x = 2 r ( 1 + \cos \theta )
E) x=2r(1cosθ2)x = 2 r \left( 1 - \cos \frac { \theta } { 2 } \right)
Question
Convert the expression.​ tana2\tan \frac { a } { 2 } ​ ​

A)​ cscatana\csc a - \tan a
B) csca+cota\csc a + \cot a
C)​ cosacota\cos a - \cot a
D) cosa+cota\cos a + \cot a
E) cscacota\csc a - \cot a
Question
Use a double-angle formula to find the exact value of cos2u when​ sinu=725, where π2<u<π\sin u = \frac { 7 } { 25 } \text {, where } \frac { \pi } { 2 } < u < \pi

A) cos2u=527625\cos 2 u = \frac { 527 } { 625 }
B)​ cos2u=1152625\cos 2 u = - \frac { 1152 } { 625 }
C)​ cos2u=336625\cos 2 u = \frac { 336 } { 625 }
D)​ cos2u=168625\cos 2 u = \frac { 168 } { 625 }
E)​ cos2u=478625\cos 2 u = - \frac { 478 } { 625 }
Question
Use the figure to find the exact value of the trigonometric function.​  <strong>Use the figure to find the exact value of the trigonometric function.​    \begin{array} { l } a = 12 , b = 3 \\ c = 5 , d = 4 \end{array}  ​ cos 2β ​</strong> A)​  \frac { 41 } { 5 }  B)​  \frac { 3 } { 10 }  C)  \frac { 9 } { 41 }  D)​  \frac { 12 } { 13 }  E)​  \frac { 41 } { 9 }  <div style=padding-top: 35px>  a=12,b=3c=5,d=4\begin{array} { l } a = 12 , b = 3 \\c = 5 , d = 4\end{array} ​ cos 2β

A)​ 415\frac { 41 } { 5 }
B)​ 310\frac { 3 } { 10 }
C) 941\frac { 9 } { 41 }
D)​ 1213\frac { 12 } { 13 }
E)​ 419\frac { 41 } { 9 }
Question
Convert the expression. ​​ (2sinx+2cosx)2( 2 \sin x + 2 \cos x ) ^ { 2 }

A)​ 44sin2x4 - 4 \sin 2 x
B)​ 2+4sinx2 + 4 \sin x
C)​ 4+4sinx4 + 4 \sin x
D)​ 44sinx4 - 4 \sin x
E)​ 4+4sin2x4 + 4 \sin 2 x
Question
Find the exact solutions of the given equation in the interval [0,2π). ​​ 2sin2x+3sinx=12 \sin ^ { 2 } x + 3 \sin x = - 1

A)​ x=π,7π4,3π2,11π6x = \pi , \frac { 7 \pi } { 4 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
B)​ x=7π4,3π2,11π4x = \frac { 7 \pi } { 4 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 4 }
C)​ x=7π6,3π2,11π6x = \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
D)​ x=π4,7π6,3π2,11π2x = \frac { \pi } { 4 } , \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 2 }
E)​ x=0,7π2,3π2,11π2x = 0 , \frac { 7 \pi } { 2 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 2 }
Question
Use the sum-to-product formulas to select the sum or difference as a product.​ cos(5ϕ+2π)+cos5ϕ\cos ( 5 \phi + 2 \pi ) + \cos 5 \phi

A)​ 2cos5ϕcosπ- 2 \cos 5 \phi \cos \pi
B)​ 2cos5π- 2 \cos 5 \pi
C) 2cos(5ϕ+π)cosπ2 \cos ( 5 \phi + \pi ) \cos \pi
D)​ 2cos(ϕ+π)cosπ2 \cos ( \phi + \pi ) \cos \pi
E)​ 2cos(5ϕ+π)2 \cos ( 5 \phi + \pi )
Question
Use the half-angle formulas to determine the exact value of the given trigonometric expression. ​​ tan3π8\tan \frac { 3 \pi } { 8 }

A)​ tan3π8=21\tan \frac { 3 \pi } { 8 } = \sqrt { 2 } - 1
B)​ tan3π8=224\tan \frac { 3 \pi } { 8 } = \frac { \sqrt { 2 - \sqrt { 2 } } } { 4 }
C)​ tan3π8=2+2\tan \frac { 3 \pi } { 8 } = \sqrt { 2 + \sqrt { 2 } }
D)​ tan3π8=2+1\tan \frac { 3 \pi } { 8 } = \sqrt { 2 } + 1
E)​ tan3π8=2+24\tan \frac { 3 \pi } { 8 } = - \frac { \sqrt { 2 + \sqrt { 2 } } } { 4 }
Question
​Use the figure below to find the exact value of the given trigonometric expression. sinθ2\sin \frac { \theta } { 2 } ​​  <strong>​Use the figure below to find the exact value of the given trigonometric expression.  \sin \frac { \theta } { 2 }  ​​   10 24 (figure not necessarily to scale) ​</strong> A)​  \frac { 5 } { 12 }  B)​  \frac { 5 } { 26 }  C)​  \frac { 5 \sqrt { 26 } } { 26 }  D)​  \frac { \sqrt { 26 } } { 26 }  E)​  \frac { \sqrt { 26 } } { 12 }  <div style=padding-top: 35px>  10 24
(figure not necessarily to scale)

A)​ 512\frac { 5 } { 12 }
B)​ 526\frac { 5 } { 26 }
C)​ 52626\frac { 5 \sqrt { 26 } } { 26 }
D)​ 2626\frac { \sqrt { 26 } } { 26 }
E)​ 2612\frac { \sqrt { 26 } } { 12 }
Question
Use the half-angle formula to simplify the given expression. ​​ 1+cos8x2\sqrt { \frac { 1 + \cos 8 x } { 2 } }

A)​​cos |2x|
B)​​cos |8x|
C)​​cos |16x|
D)​​cos |32x|
E)​cos |4x|
Question
Use the figure below to find the exact value of the given trigonometric expression. cosθ2\cos \frac { \theta } { 2 }  <strong>Use the figure below to find the exact value of the given trigonometric expression.  \cos \frac { \theta } { 2 }   </strong> A)​  \cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 10 }  B)​  \cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 7 }  C)​  \cos \frac { \theta } { 2 } = \frac { \sqrt { 2 } } { 10 }  D)​  \cos \frac { \theta } { 2 } = 7  E)​  \cos \frac { x } { 2 } = \frac { 7 \sqrt { 2 } } { 12 }  <div style=padding-top: 35px>

A)​ cosθ2=7210\cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 10 }
B)​ cosθ2=727\cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 7 }
C)​ cosθ2=210\cos \frac { \theta } { 2 } = \frac { \sqrt { 2 } } { 10 }
D)​ cosθ2=7\cos \frac { \theta } { 2 } = 7
E)​ cosx2=7212\cos \frac { x } { 2 } = \frac { 7 \sqrt { 2 } } { 12 }
Question
The range of a projectile fired at an angle θ with the horizontal and with an initial velocity of v0 feet per second is r=132v02sin2θr = \frac { 1 } { 32 } v _ { 0 } ^ { 2 } \sin 2 \theta where r is measured in feet.A golfer strikes a golf ball at 90 feet per second.Ignoring the effects of air resistance,at what angle must the golfer hit the ball so that it travels 150 feet? (Round your answer to the nearest degree. )

A)14°
B)36°
C)18°
D)27°
E)41°
Question
Find all solutions of the given equation in the interval [0,2π). ​​ 12sin2x=cosx\frac { 1 } { 2 } \sin 2 x = \cos x

A)​ x=π2,3π2x = \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
B)​ x=0,π2,πx = 0 , \frac { \pi } { 2 } , \pi
C)​ x=0,π,π2,3π4x = 0 , \pi , \frac { \pi } { 2 } , \frac { 3 \pi } { 4 }
D)​ x=0,πx = 0 , \pi
E)​x = 0
Question
Find all solutions of the given equation in the interval [0,2π). ​​ cos3x=cosx\cos 3 x = \cos x

A)​ x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
B)​ x=π4,π2,3π2x = \frac { \pi } { 4 } , \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
C)​ x=0,π4,π2,πx = 0 , \frac { \pi } { 4 } , \frac { \pi } { 2 } , \pi
D)​ x=0,π4,π,3π4x = 0 , \frac { \pi } { 4 } , \pi , \frac { 3 \pi } { 4 }
E)​ x=π8,2π8,π2,3π8,π,3π2x = \frac { \pi } { 8 } , \frac { 2 \pi } { 8 } , \frac { \pi } { 2 } , \frac { 3 \pi } { 8 } , \pi , \frac { 3 \pi } { 2 }
Question
Use the product-to-sum formula to write the given product as a sum or difference.​ 12sinπ6cosπ612 \sin \frac { \pi } { 6 } \cos \frac { \pi } { 6 }

A)​ 66cosπ126 - 6 \cos \frac { \pi } { 12 }
B) 6sinπ6+6cosπ66 \sin \frac { \pi } { 6 } + 6 \cos \frac { \pi } { 6 }
C) 6sinπ3+6sin06 \sin \frac { \pi } { 3 } + 6 \sin 0
D) 6+6cosπ126 + 6 \cos \frac { \pi } { 12 }
E) 6sinπ12- 6 \sin \frac { \pi } { 12 }
Question
Use the sum-to-product formulas to find the exact value of the given expression. ​​ cos150+cos30\cos 150 ^ { \circ } + \cos 30 ^ { \circ }

A)​ 32\frac { - \sqrt { 3 } } { 2 }
B)​1
C)​ 32\frac { \sqrt { 3 } } { 2 }
D)-1
E)0
Question
Use the sum-to-product formulas to write the given expression as a product. ​​ sin5θsin3θ\sin 5 \theta - \sin 3 \theta

A)​​2 sin 4θ cos θ
B)​-2 sin 4θ sin θ
C)-​2 cos 4θ cos θ
D)​2 cos 4θ sin θ
E)​​2 cos 4θ cos θ
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/50
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 35: Multiple Angle and Product to Sum Formulas
1
Use the product-to-sum formulas to rewrite the product as a sum or difference.​ sinπ3cosπ6\sin \frac { \pi } { 3 } \cos \frac { \pi } { 6 }

A)​ 12(sinπ2+cosπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } + \cos \frac { \pi } { 6 } \right)
B)​ 12(sinπ2+sinπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } + \sin \frac { \pi } { 6 } \right)
C)​ 12(sinπ2cosπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } - \cos \frac { \pi } { 6 } \right)
D)​ 12(sinπ2sinπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } - \sin \frac { \pi } { 6 } \right)
E)​ (sinπ2+cosπ6)\left( \sin \frac { \pi } { 2 } + \cos \frac { \pi } { 6 } \right)
12(sinπ2+sinπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } + \sin \frac { \pi } { 6 } \right)
2
Use the sum-to-product formulas to rewrite the sum or difference as a product.​ sin9θ+sin7θ\sin 9 \theta + \sin 7 \theta

A)​ 2sin8θsinθ2 \sin 8 \theta \sin \theta
B)​ 2cos8θcosθ2 \cos 8 \theta \cos \theta
C)​ 2sin8θcosθ2 \sin 8 \theta \cos \theta
D)​ 2cos8θsinθ2 \cos 8 \theta \sin \theta
E)​ 2sin9θcos7θ2 \sin 9 \theta \cos 7 \theta
2sin8θcosθ2 \sin 8 \theta \cos \theta
3
Use the product-to-sum formulas to rewrite the product as a sum or difference.​ 10cos45cos2010 \cos 45 ^ { \circ } \cos 20 ^ { \circ }

A)​ 10(cos25+cos65)10 \left( \cos 25 ^ { \circ } + \cos 65 ^ { \circ } \right)
B)​ cos25+cos65\cos 25 ^ { \circ } + \cos 65 ^ { \circ }
C)​ 5(cos65cos25)5 \left( \cos 65 ^ { \circ } - \cos 25 ^ { \circ } \right)
D) 5(cos25+cos65)5 \left( \cos 25 ^ { \circ } + \cos 65 ^ { \circ } \right)
E)​ 5(cos65+sin25)5 \left( \cos 65 ^ { \circ } + \sin 25 ^ { \circ } \right)
5(cos25+cos65)5 \left( \cos 25 ^ { \circ } + \cos 65 ^ { \circ } \right)
4
Use the product-to-sum formulas to rewrite the product as a sum or difference.​ 8sin65cos258 \sin 65 ^ { \circ } \cos 25 ^ { \circ }

A)​ 8(sin90+sin40)8 \left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
B)​ 4(cos90+cos40)4 \left( \cos 90 ^ { \circ } + \cos 40 ^ { \circ } \right)
C)​ 4(cos90cos40)4 \left( \cos 90 ^ { \circ } - \cos 40 ^ { \circ } \right)
D)​ (sin90+sin40)\left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
E)​ 4(sin90+sin40)4 \left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
5
Use a double-angle formula to rewrite the expression. ​
10 cos2 x - 5

A)5 cos x
B)​cos 5x
C)​10 cos 2x
D)​10 cos x
E)​5 cos 2x
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
6
Use the sum-to-product formulas to rewrite the sum or difference as a product.​ sin3θsinθ\sin 3 \theta - \sin \theta

A)​ 2sin3θcosθ2 \sin 3 \theta \cos \theta
B)​ 2sin2θcosθ2 \sin 2 \theta \cos \theta
C)​ 2cos2θcosθ2 \cos 2 \theta \cos \theta
D)​ 2sin2θsinθ2 \sin 2 \theta \sin \theta
E)​ 2cos2θsinθ2 \cos 2 \theta \sin \theta
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
7
Use the product-to-sum formulas to rewrite the product as a sum or difference.​ 4cosπ2sin5π44 \cos \frac { \pi } { 2 } \sin \frac { 5 \pi } { 4 }

A)​ 2(sin7π4sin3π4)2 \left( \sin \frac { 7 \pi } { 4 } - \sin \frac { 3 \pi } { 4 } \right)
B)​ 2(cos7π4cos3π4)2 \left( \cos \frac { 7 \pi } { 4 } - \cos \frac { 3 \pi } { 4 } \right)
C)​ 2(sin7π4+cos3π4)2 \left( \sin \frac { 7 \pi } { 4 } + \cos \frac { 3 \pi } { 4 } \right)
D)​ 2(sin7π4+sin3π4)2 \left( \sin \frac { 7 \pi } { 4 } + \sin \frac { 3 \pi } { 4 } \right)
E)​ 2(cos7π4+cos3π4)2 \left( \cos \frac { 7 \pi } { 4 } + \cos \frac { 3 \pi } { 4 } \right)
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
8
Use a double-angle formula to rewrite the expression. ​
3 - 6 sin2 x

A)6 cos x
B)​3 sin 2x
C)​3 sin x
D)​3 cos 2x
E)​6 cos 2x
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
9
Use the figure to find the exact value of the trigonometric function. ​
Csc 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Csc 2θ​   ​ A = 1,b = 6 ​</strong> A)​  \frac { 37 } { 12 }  B)​  \frac { 13 } { 37 }  C)  \frac { 37 } { 13 }  D)​  \frac { 12 } { 13 }  E)  \frac { 12 } { 37 }
A = 1,b = 6

A)​ 3712\frac { 37 } { 12 }
B)​ 1337\frac { 13 } { 37 }
C) 3713\frac { 37 } { 13 }
D)​ 1213\frac { 12 } { 13 }
E) 1237\frac { 12 } { 37 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
10
Use the half-angle formulas to simplify the expression. ​​ 1cos10x2\sqrt { \frac { 1 - \cos 10 x } { 2 } }

A)|sin 5x|
B)- |sin x|
C)|sin 10x|
D)- |sin 5x|
E)|sin x|
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
11
Use the figure to find the exact value of the trigonometric function. ​
Cot 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Cot 2θ​   ​ A = 1,b = 6 ​</strong> A)​  \frac { 12 } { 35 }  B)  \frac { 35 } { 37 }  C)  \frac { 12 } { 37 }  D)​  \frac { 37 } { 35 }  E)  \frac { 35 } { 12 }
A = 1,b = 6

A)​ 1235\frac { 12 } { 35 }
B) 3537\frac { 35 } { 37 }
C) 1237\frac { 12 } { 37 }
D)​ 3735\frac { 37 } { 35 }
E) 3512\frac { 35 } { 12 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
12
Use the figure to find the exact value of the trigonometric function. ​
Tan 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Tan 2θ​   ​ A = 1,b = 6 ​</strong> A)  \frac { 35 } { 12 }  B)  \frac { 12 } { 35 }  C)​  \frac { 12 } { 37 }  D)​  \frac { 35 } { 37 }  E)​  \frac { 37 } { 35 }
A = 1,b = 6

A) 3512\frac { 35 } { 12 }
B) 1235\frac { 12 } { 35 }
C)​ 1237\frac { 12 } { 37 }
D)​ 3537\frac { 35 } { 37 }
E)​ 3735\frac { 37 } { 35 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
13
Use the half-angle formulas to simplify the expression.​ 1cos(x3)2- \sqrt { \frac { 1 - \cos ( x - 3 ) } { 2 } }

A)​ sin(x32)- \left| \sin \left( \frac { x - 3 } { 2 } \right) \right|
B)​ sin1(x+32)- \left| \sin ^ { - 1 } \left( \frac { x + 3 } { 2 } \right) \right|
C)​ sin(x3)- | \sin ( x - 3 ) |
D)​ sin1(x32)- \left| \sin ^ { - 1 } \left( \frac { x - 3 } { 2 } \right) \right|
E)​ sin(x+32)- \left| \sin \left( \frac { x + 3 } { 2 } \right) \right|
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
14
Use the figure to find the exact value of the trigonometric function. ​
Cos 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Cos 2θ​   ​ A = 1,b = 2 ​</strong> A)​  \frac { 3 } { 4 }  B)  \frac { 3 } { 5 }  C)​  \frac { 5 } { 3 }  D)​  \frac { 4 } { 5 }  E)​  \frac { 5 } { 4 }
A = 1,b = 2

A)​ 34\frac { 3 } { 4 }
B) 35\frac { 3 } { 5 }
C)​ 53\frac { 5 } { 3 }
D)​ 45\frac { 4 } { 5 }
E)​ 54\frac { 5 } { 4 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
15
Use a double-angle formula to rewrite the expression. ​​ 2sinxcosx2 \sin x \cos x

A)​sin x
B)​​2 sin x
C)​​​2 sin 2x
D)​ sin x
E)​ sin 2x
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
16
Use the figure to find the exact value of the trigonometric function. ​
Sec 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Sec 2θ​   ​ A = 1,b = 8 ​</strong> A)​  \frac { 63 } { 64 }  B)  \frac { 63 } { 65 }  C)​  \frac { 64 } { 65 }  D)​  \frac { 65 } { 63 }  E)  \frac { 65 } { 64 }
A = 1,b = 8

A)​ 6364\frac { 63 } { 64 }
B) 6365\frac { 63 } { 65 }
C)​ 6465\frac { 64 } { 65 }
D)​ 6563\frac { 65 } { 63 }
E) 6564\frac { 65 } { 64 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
17
Use the half-angle formulas to simplify the expression. ​​ 1+cos8x2\sqrt { \frac { 1 + \cos 8 x } { 2 } }

A)​- ​|cos x|
B)​|cos x|
C)​​|cos 4x|
D)​​- |cos 4x|
E)​- ​|cos 8x|
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
18
Use the half-angle formulas to simplify the expression.​ 1+cos6x1cos6x- \sqrt { \frac { 1 + \cos 6 x } { 1 - \cos 6 x } }

A)​- |cot x|
B)​- |3 tan x|
C)​- |3 tan 6x|
D)​- |3 cot 3x|
E)​- |cot 3x|
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
19
Use a double-angle formula to rewrite the expression. ​
2 sin2 x - 1

A)cos x
B)cos 2x ​
C)-2 cos x ​
D)2 cos 2x ​
E)- cos 2x ​
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
20
Use the figure to find the exact value of the trigonometric function. ​
Sin 2θ​  <strong>Use the figure to find the exact value of the trigonometric function. ​ Sin 2θ​   ​ A = 1,b = 2 ​</strong> A) \frac { 5 } { 5 }  ​ B)  \frac { 4 } { 5 }  ​ C)  \frac { 5 } { 4 }  ​
A = 1,b = 2

A) 55\frac { 5 } { 5 }
B) 45\frac { 4 } { 5 }
C) 54\frac { 5 } { 4 }

Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
21
Use the figure below to determine the exact value of the given function.​ csc2θ\csc 2 \theta  <strong>Use the figure below to determine the exact value of the given function.​  \csc 2 \theta   </strong> A)​  \csc 2 \theta = \frac { 13 } { 5 }  B)​  \csc 2 \theta = \frac { 13 } { 7 }  C)​  \csc 2 \theta = \frac { 13 } { 5 } . D)​  \csc 2 \theta = \frac { 13 } { 9 }  E)​  \csc 2 \theta = \frac { 13 } { 12 }

A)​ csc2θ=135\csc 2 \theta = \frac { 13 } { 5 }
B)​ csc2θ=137\csc 2 \theta = \frac { 13 } { 7 }
C)​ csc2θ=135\csc 2 \theta = \frac { 13 } { 5 } .
D)​ csc2θ=139\csc 2 \theta = \frac { 13 } { 9 }
E)​ csc2θ=1312\csc 2 \theta = \frac { 13 } { 12 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
22
Use a double angle formula to rewrite the given expression. 10cos2x510 \cos ^ { 2 } x - 5

A) 5cos5x5 \cos 5 x
B) 5cos2x5 \cos 2 x
C) 10cos2x10 \cos 2 x
D) 2cos10x2 \cos 10 x
E) 2cos5x2 \cos 5 x
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
23
Convert the expression. ​​ 1+cos4y1 + \cos 4 y

A) 2cos22y2 \cos ^ { 2 } 2 y
B)​ cos24y\cos ^ { 2 } 4 y
C)​ cos22y\cos ^ { 2 } 2 y
D)​ 4cos24y4 \cos ^ { 2 } 4 y
E)​ 2cos24y2 \cos ^ { 2 } 4 y
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
24
Find the exact solutions of the given equation in the interval [0,2π).​ cos2x+3cosx+2=0\cos 2 x + 3 \cos x + 2 = 0

A)​ x=0,π,2π3,5π3x = 0 , \pi , \frac { 2 \pi } { 3 } , \frac { 5 \pi } { 3 }
B)​ x=π,π3,5π3x = \pi , \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
C)​ x=π,2π3,4π3x = \pi , \frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 }
D)​x = 0
E)​ x=0,π,π3,4π3x = 0 , \pi , \frac { \pi } { 3 } , \frac { 4 \pi } { 3 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
25
Convert the expression.​ 7sec2θ7 \sec 2 \theta

A)​ 7sec2θ2+sec2θ\frac { 7 \sec ^ { 2 } \theta } { 2 + \sec ^ { 2 } \theta }
B)​ sec2θ2sec2θ\frac { \sec ^ { 2 } \theta } { 2 - \sec ^ { 2 } \theta }
C)​ 7sec2θ2sec2θ\frac { 7 \sec ^ { 2 } \theta } { 2 - \sec ^ { 2 } \theta }
D)​ 7sec2θ2cos2θ\frac { 7 \sec ^ { 2 } \theta } { 2 - \cos ^ { 2 } \theta }
E)​ 7cos2θ2cos2θ\frac { 7 \cos ^ { 2 } \theta } { 2 - \cos ^ { 2 } \theta }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
26
The mach number M of an airplane is the ratio of its speed to the speed of sound.When an airplane travels faster than the speed of sound,the sound waves form a cone behind the airplane (see figure).The mach number is related to the apex angle θ of the cone by sin(θ/5)=1/M\sin ( \theta / 5 ) = 1 / M .​  <strong>The mach number M of an airplane is the ratio of its speed to the speed of sound.When an airplane travels faster than the speed of sound,the sound waves form a cone behind the airplane (see figure).The mach number is related to the apex angle θ of the cone by  \sin ( \theta / 5 ) = 1 / M  .​   ​ Rewrite the equation in terms of θ. ​</strong> A)​  \theta = 5 \sin \left( \frac { 1 } { M } \right)  B)​  \theta = \sin \left( \frac { 1 } { M } \right)  C)​  \theta = \sin ^ { - 1 } \left( \frac { 1 } { M } \right)  D)​  \theta = 5 \sin ^ { - 1 } \left( \frac { 5 } { M } \right)  E)  \theta = 5 \sin ^ { - 1 } \left( \frac { 1 } { M } \right)   ​ Rewrite the equation in terms of θ.

A)​ θ=5sin(1M)\theta = 5 \sin \left( \frac { 1 } { M } \right)
B)​ θ=sin(1M)\theta = \sin \left( \frac { 1 } { M } \right)
C)​ θ=sin1(1M)\theta = \sin ^ { - 1 } \left( \frac { 1 } { M } \right)
D)​ θ=5sin1(5M)\theta = 5 \sin ^ { - 1 } \left( \frac { 5 } { M } \right)
E) θ=5sin1(1M)\theta = 5 \sin ^ { - 1 } \left( \frac { 1 } { M } \right)
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
27
Use the sum-to-product formulas to rewrite the sum or difference as a product. ​
Cos 3θ + cos 8θ

A)​ cos11θ2cos5θ2\cos \frac { 11 \theta } { 2 } \cos \frac { 5 \theta } { 2 }
B)​ 2cos11θ2sin5θ22 \cos \frac { 11 \theta } { 2 } \sin - \frac { 5 \theta } { 2 }
C)​ 2sin11θ2sin5θ22 \sin \frac { 11 \theta } { 2 } \sin \frac { 5 \theta } { 2 }
D)​ cos11θ2cos5θ2\cos - \frac { 11 \theta } { 2 } \cos \frac { 5 \theta } { 2 }
E) 2cos11θ2cos5θ22 \cos \frac { 11 \theta } { 2 } \cos - \frac { 5 \theta } { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
28
Use the figure to find the exact value of the trigonometric function.​  <strong>Use the figure to find the exact value of the trigonometric function.​    \begin{array} { l } a = 8 , b = 9 \\ c = 2 , d = 5 \end{array}  ​ sin 2α ​</strong> A)​  \frac { 8 } { 145 }  B)​  \frac { 9 } { 145 }  C)​  \frac { 145 } { 2 }  ​ D)​  \frac { 145 } { 144 }  E)  \frac { 144 } { 145 }   a=8,b=9c=2,d=5\begin{array} { l } a = 8 , b = 9 \\c = 2 , d = 5\end{array} ​ sin 2α

A)​ 8145\frac { 8 } { 145 }
B)​ 9145\frac { 9 } { 145 }
C)​ 1452\frac { 145 } { 2 }
D)​ 145144\frac { 145 } { 144 }
E) 144145\frac { 144 } { 145 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
29
Convert the expression.​ cos4α\cos 4 \alpha

A)​ cos22αsin22α\cos ^ { 2 } 2 \alpha - \sin ^ { 2 } 2 \alpha
B)​ cos22α+sin22α\cos ^ { 2 } 2 \alpha + \sin ^ { 2 } 2 \alpha
C)​ cos42α+sin42α\cos ^ { 4 } 2 \alpha + \sin ^ { 4 } 2 \alpha
D)​ cos42αsin42α\cos ^ { 4 } 2 \alpha - \sin ^ { 4 } 2 \alpha
E)​ cos42αsin22α\cos ^ { 4 } 2 \alpha - \sin ^ { 2 } 2 \alpha
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
30
Convert the expression.​ secb2\sec \frac { b } { 2 }

A)​ ±2tanbtanb+sinb\pm \sqrt { \frac { 2 \tan b } { \tan b + \sin b } }
B)​ ±2tanbtanb+cscb\pm \sqrt { \frac { 2 \tan b } { \tan b + \csc b } }
C)​ ±tanbtanbsinb\pm \sqrt { \frac { \tan b } { \tan b - \sin b } }
D)​ ±tanbtanb+sinb\pm \sqrt { \frac { \tan b } { \tan b + \sin b } }
E)​ ±2tanbtanbsinb\pm \sqrt { \frac { 2 \tan b } { \tan b - \sin b } }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
31
Convert the expression.​ 3csc2θ3 \csc 2 \theta

A)​ 3cscθ2sinθ\frac { 3 \csc \theta } { 2 \sin \theta }
B)​ 3cscθ2secθ\frac { 3 \csc \theta } { 2 \sec \theta }
C)​ 3cscθcosθ\frac { 3 \csc \theta } { \cos \theta }
D) 3cscθ2cosθ\frac { 3 \csc \theta } { 2 \cos \theta }
E)​ 3secθ2cosθ\frac { 3 \sec \theta } { 2 \cos \theta }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
32
Use the sum-to-product formulas to rewrite the sum or difference as a product.​ cos12θ+cos8θ\cos 12 \theta + \cos 8 \theta

A)​ 2sin10θcos2θ2 \sin 10 \theta \cos 2 \theta
B)​ 2cos10θsin2θ2 \cos 10 \theta \sin 2 \theta
C)​ 2sin12θcos8θ2 \sin 12 \theta \cos 8 \theta
D)​ 2cos10θcos2θ2 \cos 10 \theta \cos 2 \theta
E)​ 2sin10θsin2θ2 \sin 10 \theta \sin 2 \theta
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
33
Convert the expression.​ cos4bsin4b\cos ^ { 4 } b - \sin ^ { 4 } b

A)2 cos b
B)​cos 2b
C)​​cos b
D)2 ​cos 2b
E)​4 cos b
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
34
When two railroad tracks merge,the overlapping portions of the tracks are in the shapes of circular arcs (see figure).The radius of each arc r (in feet)and the angle θ are related by​ x2=2rsin2θ2\frac { x } { 2 } = 2 r \sin ^ { 2 } \frac { \theta } { 2 } ​ Write a formula for x in terms of cos θ.​  <strong>When two railroad tracks merge,the overlapping portions of the tracks are in the shapes of circular arcs (see figure).The radius of each arc r (in feet)and the angle θ are related by​  \frac { x } { 2 } = 2 r \sin ^ { 2 } \frac { \theta } { 2 }  ​ Write a formula for x in terms of cos θ.​   ​</strong> A)​  x = r \left( 1 - \cos \frac { \theta } { 2 } \right)  B)​  x = r ( 1 - \cos \theta )  C)  x = 2 r ( 1 - \cos \theta )  ​ D)  x = 2 r ( 1 + \cos \theta )  ​ E)  x = 2 r \left( 1 - \cos \frac { \theta } { 2 } \right)  ​

A)​ x=r(1cosθ2)x = r \left( 1 - \cos \frac { \theta } { 2 } \right)
B)​ x=r(1cosθ)x = r ( 1 - \cos \theta )
C) x=2r(1cosθ)x = 2 r ( 1 - \cos \theta )
D) x=2r(1+cosθ)x = 2 r ( 1 + \cos \theta )
E) x=2r(1cosθ2)x = 2 r \left( 1 - \cos \frac { \theta } { 2 } \right)
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
35
Convert the expression.​ tana2\tan \frac { a } { 2 } ​ ​

A)​ cscatana\csc a - \tan a
B) csca+cota\csc a + \cot a
C)​ cosacota\cos a - \cot a
D) cosa+cota\cos a + \cot a
E) cscacota\csc a - \cot a
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
36
Use a double-angle formula to find the exact value of cos2u when​ sinu=725, where π2<u<π\sin u = \frac { 7 } { 25 } \text {, where } \frac { \pi } { 2 } < u < \pi

A) cos2u=527625\cos 2 u = \frac { 527 } { 625 }
B)​ cos2u=1152625\cos 2 u = - \frac { 1152 } { 625 }
C)​ cos2u=336625\cos 2 u = \frac { 336 } { 625 }
D)​ cos2u=168625\cos 2 u = \frac { 168 } { 625 }
E)​ cos2u=478625\cos 2 u = - \frac { 478 } { 625 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
37
Use the figure to find the exact value of the trigonometric function.​  <strong>Use the figure to find the exact value of the trigonometric function.​    \begin{array} { l } a = 12 , b = 3 \\ c = 5 , d = 4 \end{array}  ​ cos 2β ​</strong> A)​  \frac { 41 } { 5 }  B)​  \frac { 3 } { 10 }  C)  \frac { 9 } { 41 }  D)​  \frac { 12 } { 13 }  E)​  \frac { 41 } { 9 }   a=12,b=3c=5,d=4\begin{array} { l } a = 12 , b = 3 \\c = 5 , d = 4\end{array} ​ cos 2β

A)​ 415\frac { 41 } { 5 }
B)​ 310\frac { 3 } { 10 }
C) 941\frac { 9 } { 41 }
D)​ 1213\frac { 12 } { 13 }
E)​ 419\frac { 41 } { 9 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
38
Convert the expression. ​​ (2sinx+2cosx)2( 2 \sin x + 2 \cos x ) ^ { 2 }

A)​ 44sin2x4 - 4 \sin 2 x
B)​ 2+4sinx2 + 4 \sin x
C)​ 4+4sinx4 + 4 \sin x
D)​ 44sinx4 - 4 \sin x
E)​ 4+4sin2x4 + 4 \sin 2 x
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
39
Find the exact solutions of the given equation in the interval [0,2π). ​​ 2sin2x+3sinx=12 \sin ^ { 2 } x + 3 \sin x = - 1

A)​ x=π,7π4,3π2,11π6x = \pi , \frac { 7 \pi } { 4 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
B)​ x=7π4,3π2,11π4x = \frac { 7 \pi } { 4 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 4 }
C)​ x=7π6,3π2,11π6x = \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
D)​ x=π4,7π6,3π2,11π2x = \frac { \pi } { 4 } , \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 2 }
E)​ x=0,7π2,3π2,11π2x = 0 , \frac { 7 \pi } { 2 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
40
Use the sum-to-product formulas to select the sum or difference as a product.​ cos(5ϕ+2π)+cos5ϕ\cos ( 5 \phi + 2 \pi ) + \cos 5 \phi

A)​ 2cos5ϕcosπ- 2 \cos 5 \phi \cos \pi
B)​ 2cos5π- 2 \cos 5 \pi
C) 2cos(5ϕ+π)cosπ2 \cos ( 5 \phi + \pi ) \cos \pi
D)​ 2cos(ϕ+π)cosπ2 \cos ( \phi + \pi ) \cos \pi
E)​ 2cos(5ϕ+π)2 \cos ( 5 \phi + \pi )
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
41
Use the half-angle formulas to determine the exact value of the given trigonometric expression. ​​ tan3π8\tan \frac { 3 \pi } { 8 }

A)​ tan3π8=21\tan \frac { 3 \pi } { 8 } = \sqrt { 2 } - 1
B)​ tan3π8=224\tan \frac { 3 \pi } { 8 } = \frac { \sqrt { 2 - \sqrt { 2 } } } { 4 }
C)​ tan3π8=2+2\tan \frac { 3 \pi } { 8 } = \sqrt { 2 + \sqrt { 2 } }
D)​ tan3π8=2+1\tan \frac { 3 \pi } { 8 } = \sqrt { 2 } + 1
E)​ tan3π8=2+24\tan \frac { 3 \pi } { 8 } = - \frac { \sqrt { 2 + \sqrt { 2 } } } { 4 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
42
​Use the figure below to find the exact value of the given trigonometric expression. sinθ2\sin \frac { \theta } { 2 } ​​  <strong>​Use the figure below to find the exact value of the given trigonometric expression.  \sin \frac { \theta } { 2 }  ​​   10 24 (figure not necessarily to scale) ​</strong> A)​  \frac { 5 } { 12 }  B)​  \frac { 5 } { 26 }  C)​  \frac { 5 \sqrt { 26 } } { 26 }  D)​  \frac { \sqrt { 26 } } { 26 }  E)​  \frac { \sqrt { 26 } } { 12 }   10 24
(figure not necessarily to scale)

A)​ 512\frac { 5 } { 12 }
B)​ 526\frac { 5 } { 26 }
C)​ 52626\frac { 5 \sqrt { 26 } } { 26 }
D)​ 2626\frac { \sqrt { 26 } } { 26 }
E)​ 2612\frac { \sqrt { 26 } } { 12 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
43
Use the half-angle formula to simplify the given expression. ​​ 1+cos8x2\sqrt { \frac { 1 + \cos 8 x } { 2 } }

A)​​cos |2x|
B)​​cos |8x|
C)​​cos |16x|
D)​​cos |32x|
E)​cos |4x|
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
44
Use the figure below to find the exact value of the given trigonometric expression. cosθ2\cos \frac { \theta } { 2 }  <strong>Use the figure below to find the exact value of the given trigonometric expression.  \cos \frac { \theta } { 2 }   </strong> A)​  \cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 10 }  B)​  \cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 7 }  C)​  \cos \frac { \theta } { 2 } = \frac { \sqrt { 2 } } { 10 }  D)​  \cos \frac { \theta } { 2 } = 7  E)​  \cos \frac { x } { 2 } = \frac { 7 \sqrt { 2 } } { 12 }

A)​ cosθ2=7210\cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 10 }
B)​ cosθ2=727\cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 7 }
C)​ cosθ2=210\cos \frac { \theta } { 2 } = \frac { \sqrt { 2 } } { 10 }
D)​ cosθ2=7\cos \frac { \theta } { 2 } = 7
E)​ cosx2=7212\cos \frac { x } { 2 } = \frac { 7 \sqrt { 2 } } { 12 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
45
The range of a projectile fired at an angle θ with the horizontal and with an initial velocity of v0 feet per second is r=132v02sin2θr = \frac { 1 } { 32 } v _ { 0 } ^ { 2 } \sin 2 \theta where r is measured in feet.A golfer strikes a golf ball at 90 feet per second.Ignoring the effects of air resistance,at what angle must the golfer hit the ball so that it travels 150 feet? (Round your answer to the nearest degree. )

A)14°
B)36°
C)18°
D)27°
E)41°
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
46
Find all solutions of the given equation in the interval [0,2π). ​​ 12sin2x=cosx\frac { 1 } { 2 } \sin 2 x = \cos x

A)​ x=π2,3π2x = \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
B)​ x=0,π2,πx = 0 , \frac { \pi } { 2 } , \pi
C)​ x=0,π,π2,3π4x = 0 , \pi , \frac { \pi } { 2 } , \frac { 3 \pi } { 4 }
D)​ x=0,πx = 0 , \pi
E)​x = 0
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
47
Find all solutions of the given equation in the interval [0,2π). ​​ cos3x=cosx\cos 3 x = \cos x

A)​ x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
B)​ x=π4,π2,3π2x = \frac { \pi } { 4 } , \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
C)​ x=0,π4,π2,πx = 0 , \frac { \pi } { 4 } , \frac { \pi } { 2 } , \pi
D)​ x=0,π4,π,3π4x = 0 , \frac { \pi } { 4 } , \pi , \frac { 3 \pi } { 4 }
E)​ x=π8,2π8,π2,3π8,π,3π2x = \frac { \pi } { 8 } , \frac { 2 \pi } { 8 } , \frac { \pi } { 2 } , \frac { 3 \pi } { 8 } , \pi , \frac { 3 \pi } { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
48
Use the product-to-sum formula to write the given product as a sum or difference.​ 12sinπ6cosπ612 \sin \frac { \pi } { 6 } \cos \frac { \pi } { 6 }

A)​ 66cosπ126 - 6 \cos \frac { \pi } { 12 }
B) 6sinπ6+6cosπ66 \sin \frac { \pi } { 6 } + 6 \cos \frac { \pi } { 6 }
C) 6sinπ3+6sin06 \sin \frac { \pi } { 3 } + 6 \sin 0
D) 6+6cosπ126 + 6 \cos \frac { \pi } { 12 }
E) 6sinπ12- 6 \sin \frac { \pi } { 12 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
49
Use the sum-to-product formulas to find the exact value of the given expression. ​​ cos150+cos30\cos 150 ^ { \circ } + \cos 30 ^ { \circ }

A)​ 32\frac { - \sqrt { 3 } } { 2 }
B)​1
C)​ 32\frac { \sqrt { 3 } } { 2 }
D)-1
E)0
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
50
Use the sum-to-product formulas to write the given expression as a product. ​​ sin5θsin3θ\sin 5 \theta - \sin 3 \theta

A)​​2 sin 4θ cos θ
B)​-2 sin 4θ sin θ
C)-​2 cos 4θ cos θ
D)​2 cos 4θ sin θ
E)​​2 cos 4θ cos θ
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 50 flashcards in this deck.