Deck 38:Vectors in the Plane

Full screen (f)
exit full mode
Question
Find a unit vector in the direction of the given vector.? w=5j\mathbf { w } = 5 \mathbf { j } ?

A)j
B)i
C)- j
D)- i
E)?i - j
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the component form of v given its magnitude and the angle it makes with the positive x-axis. ?
Magnitude
Angle v=4\| \mathbf { v } \| = 4
?
?

A) 0,0\langle 0,0 \rangle
B)? 4,4\langle 4,4 \rangle
C)? 0,4\langle 0,4 \rangle
D)? 4,0\langle 4,0 \rangle
E)? 4,0\langle - 4,0 \rangle
Question
Find 2u - 3v.? u=4i,v=5j\mathbf { u } = 4 \mathbf { i } , \mathbf { v } = 5 \mathbf { j } ?

A)? 15i8j15 \mathbf { i } - 8 \mathbf { j }
B) 4i5j4 \mathbf { i } - 5 \mathbf { j }
C) 8i15j- 8 \mathbf { i } - 15 \mathbf { j } ?
D) 8i15j8 \mathbf { i } - 15 \mathbf { j }
E) 8i+15j8 \mathbf { i } + 15 \mathbf { j } ?
Question
A gun with a muzzle velocity of 1700 feet per second is fired at an angle of 4° above the horizontal.Find the vertical and horizontal components of the velocity.(Round your answer to one decimal place. ) ​

A)Vertical ≈ 118.6 ft/sec,Horisontal ≈ 1,695.9 ft/sec.
B)​Vertical ≈ 119.6 ft/sec,Horisontal ≈ 1,696.9 ft/sec.
C)​Vertical ≈ 1,695.9 ft/sec,Horisontal ≈ 1,695.9 ft/sec.
D)​Vertical ≈ 1,695.9 ft/sec,Horisontal ≈ 118.6 ft/sec.
E)​Vertical ≈ 118.6 ft/sec,Horisontal ≈ 118.6 ft/sec.
Question
Find u + v.? u=5,3,v=0,0\mathbf { u } = \langle - 5,3 \rangle , \mathbf { v } = \langle 0,0 \rangle ?

A)? 4,4\langle - 4,4 \rangle
B) 5,5\langle - 5 , - 5 \rangle ?
C)? 3,3\langle 3,3 \rangle
D)? 5,3\langle - 5,3 \rangle
E)? 3,5\langle 3 , - 5 \rangle
Question
Find the component form of v given its magnitude and the angle it makes with the positive x-axis. ?
Magnitude
Angle v=6\| \mathbf { v } \| = 6 4545 ^ { \circ } ?

A)? 32,32\langle - 3 \sqrt { 2 } , 3 \sqrt { 2 } \rangle
B)? 32,32\langle - 3 \sqrt { 2 } , - 3 \sqrt { 2 } \rangle
C)? 3,3\langle 3,3 \rangle
D)? 32,32\langle 3 \sqrt { 2 } , 3 \sqrt { 2 } \rangle
E)? 32,32\langle 3 \sqrt { 2 } , - 3 \sqrt { 2 } \rangle
Question
Find a unit vector in the direction of the given vector. ?? u=4,0\mathbf { u } = \langle 4,0 \rangle ?

A) 1,1\langle 1,1 \rangle
B) 1,0\langle 1,0 \rangle
C) 0,0\langle 0,0 \rangle
D) 4,0\langle 4,0 \rangle
E) 0,1\langle 0,1 \rangle
Question
Find a unit vector in the direction of the given vector.? u=0,4\mathbf { u } = \langle 0 , - 4 \rangle ?

A)? 1,1\langle - 1 , - 1 \rangle
B)? 1,0\langle - 1,0 \rangle
C)? 0,0\langle 0,0 \rangle
D) 0,1\langle 0 , - 1 \rangle
E)? 1,0\langle 1,0 \rangle
Question
Find a unit vector in the direction of the given vector.? v=2i+2j\mathbf { v } = 2 \mathbf { i } + 2 \mathbf { j } ?

A)? 22i22j- \frac { \sqrt { 2 } } { 2 } \mathbf { i } - \frac { \sqrt { 2 } } { 2 } j
B)? 22i+22j- \frac { \sqrt { 2 } } { 2 } \mathbf { i } + \frac { \sqrt { 2 } } { 2 } j
C)? 22i22j\frac { \sqrt { 2 } } { 2 } \mathbf { i } - \frac { \sqrt { 2 } } { 2 } \mathbf { j }
D)? 2i+2j\sqrt { 2 } \mathbf { i } + \sqrt { 2 } \mathbf { j }
E) 22i+22j\frac { \sqrt { 2 } } { 2 } \mathbf { i } + \frac { \sqrt { 2 } } { 2 } \mathbf { j }
Question
Find 2u - 3v.? u=6i,v=j\mathbf { u } = 6 \mathbf { i } , \mathbf { v } = \mathbf { j } ?

A) 12i3j12 \mathbf { i } - 3 \mathbf { j }
B)? 12i3j- 12 \mathbf { i } - 3 \mathbf { j }
C)? 6i3j6 \mathbf { i } - 3 \mathbf { j }
D)? 12i+3j12 \mathbf { i } + 3 \mathbf { j }
E)? 6ij6 i - j
Question
Find u - v.? u=0,0,v=2,1\mathbf { u } = \langle 0,0 \rangle , \mathbf { v } = \langle 2,1 \rangle ?

A)? 1,2\langle - 1 , - 2 \rangle
B)? 1,1\langle - 1 , - 1 \rangle
C) 2,1\langle - 2 , - 1 \rangle
D)? 2,2\langle - 2 , - 2 \rangle
E)? 1,0\langle - 1,0 \rangle
Question
Detroit Tigers pitcher Joel Zumaya was recorded throwing a pitch at a velocity of 107 miles per hour.If he threw the pitch at an angle of 32° below the horizontal,find the vertical and horizontal components of the velocity.(Round your answers to one decimal place. ) ​

A)Vertical ≈ -55.7 mi/h,Horisontal ≈ 91.7 mi/h.
B)Vertical ≈ 90.7 mi/h,Horisontal ≈ -56.7 mi/h.
C)Vertical ≈ -56.7 mi/h,Horisontal ≈ -56.7 mi/h.
D)Vertical ≈ -56.7 mi/h,Horisontal ≈ 90.7 mi/h.
E)Vertical ≈ 90.7 mi/h,Horisontal ≈ 90.7 mi/h.
Question
Select a linear combination of the standard unit vectors i and j of given initial and terminal points of a vector.. ​
Initial Point
Terminal Point
(0,-8)
​(9,12)


A)​9i + 20j
B)​-9i - 20j
C)​20i - 9j
D)​​20i + 9j
E)​9i - 20j
Question
Find u + v.? u=4,5,v=6,0\mathbf { u } = \langle 4,5 \rangle , \mathbf { v } = \langle 6,0 \rangle ?

A)? 10,10\langle 10,10 \rangle
B)? 11,6\langle 11,6 \rangle
C)? 5,5\langle 5,5 \rangle
D)? 5,10\langle 5,10 \rangle
E) 10,5\langle 10,5 \rangle
Question
Find a unit vector in the direction of the given vector.? u=6,6\mathbf { u } = \langle - 6,6 \rangle ?

A) 0,0\langle 0,0 \rangle
B)? 22,22\left\langle - \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right\rangle
C)? 22,22\left\langle - \frac { \sqrt { 2 } } { 2 } , - \frac { \sqrt { 2 } } { 2 } \right\rangle
D)? 22,22\left\langle \frac { \sqrt { 2 } } { 2 } , - \frac { \sqrt { 2 } } { 2 } \right\rangle
E)? 22,22\left\langle \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right\rangle
Question
Select a linear combination of the standard unit vectors i and j of given initial and terminal points of a vector. Initial Point
Terminal Point
(-9,9)​
​(10,-10)

A)19i - 19j
B)​-19i + 19j
C)​​-19i - 19j
D)​19i + 19j
E)​-19i - 19j
Question
Find the component form and the magnitude of the vector v. Initial Point
Terminal Point
(1,3)
(-8,-9)

A) v=1,8;v=15\mathbf { v } = \langle 1 , - 8 \rangle ; \| \mathbf { v } \| = 15
B) v=9,12;v=8\mathbf { v } = \langle - 9 , - 12 \rangle ; \| \mathbf { v } \| = 8
C)? v=9,12;v=15\mathbf { v } = \langle - 9 , - 12 \rangle ; \| \mathbf { v } \| = 15
D)? v=8,9;v=12\mathbf { v } = \langle - 8 , - 9 \rangle ; \| \mathbf { v } \| = 12
E)? v=1,8;v=8\mathbf { v } = \langle 1 , - 8 \rangle ; \| \mathbf { v } \| = 8
Question
Find u - v.? u=3i+2j,v=4j\mathbf { u } = - 3 \mathbf { i } + 2 \mathbf { j } , \mathbf { v } = 4 \mathbf { j } ?

A)? 2i2j- 2 \mathbf { i } - 2 \mathbf { j }

B)? 3i2j- 3 \mathbf { i } - 2 \mathbf { j } .

C)? 2i2j- 2 \mathbf { i } - 2 \mathbf { j } .

D)? 2i2j2 \mathbf { i } - 2 \mathbf { j } .

E)? ij\mathrm { i } - \mathrm { j }
Question
Find u - v.? u=i+j,v=2i3j\mathbf { u } = \mathbf { i } + \mathbf { j } , \mathbf { v } = 2 \mathbf { i } - 3 \mathbf { j } ?

A)?-i - 4j
B)-2i - 4j
C)-i + 4j
D)-2i + 4j
E)-i + 5j
Question
Find u + v.? u=6,1,v=1,7\mathbf { u } = \langle 6,1 \rangle , \mathbf { v } = \langle 1,7 \rangle ?

A)? 8,9\langle 8,9 \rangle
B) 7,8\langle 7,8 \rangle
C)? 8,8\langle 8,8 \rangle
D)? 8,7\langle 8,7 \rangle
E)? 7,7\langle 7,7 \rangle
Question
Let w be a vector with initial point (4,-4)and terminal point (2,5).Write w as a linear combination of the standard unit vectors i and j.

A)? w=8i3j\mathbf { w } = 8 \mathbf { i } - 3 \mathbf { j }
B)? w=0i+3j\mathbf { w } = 0 \mathbf { i } + 3 \mathbf { j }
C)? w=i+6j\mathbf { w } = \mathbf { i } + 6 \mathbf { j }
D)? w=2i+9j\mathbf { w } = - 2 \mathbf { i } + 9 \mathbf { j }
E)? w=6i9j\mathbf { w } = 6 \mathbf { i } - 9 \mathbf { j }
Question
?Find a unit vector in the direction of u=4i2j\mathbf { u } = 4 \mathbf { i } - 2 \mathbf { j } . ?

A)? 255,55\left\langle - \frac { 2 \sqrt { 5 } } { 5 } , \frac { \sqrt { 5 } } { 5 } \right\rangle
B)? 455,255\left\langle \frac { 4 \sqrt { 5 } } { 5 } , - \frac { 2 \sqrt { 5 } } { 5 } \right\rangle
C)? 855,455\left\langle \frac { 8 \sqrt { 5 } } { 5 } , - \frac { 4 \sqrt { 5 } } { 5 } \right\rangle
D)? 255,255\left\langle \frac { 2 \sqrt { 5 } } { 5 } , - \frac { 2 \sqrt { 5 } } { 5 } \right\rangle
E)? 255,55\left\langle \frac { 2 \sqrt { 5 } } { 5 } , - \frac { \sqrt { 5 } } { 5 } \right\rangle
Question
?Find the magnitude of vector v with initial point (7,5)and terminal point (-3,-5). ?

A)? 10210 \sqrt { 2 }
B)?14
C)? 20220 \sqrt { 2 }
D)? 74\sqrt { 74 }
E)? 2512 \sqrt { 51 }
Question
A force of F pounds is required to pull an object weighing W pounds up a ramp inclined at θ degrees from the horizontal. ​
Find F if W = 5,700 pounds and θ = 29°.Approximate the answer to one decimal place.

A)2,761.4 lb
B)2,764.4 lb
C)2,763.4 lb
D)2,765.4 lb
E)2,762.4 lb
Question
A loaded barge is being towed by two tugboats,and the magnitude of the resultant is 6,400 pounds directed along the axis of the barge (see figure).Find the tension in the tow lines if they each make an angle 21° with the axis of the barge.Approximate the answer to one decimal place.​ <strong>A loaded barge is being towed by two tugboats,and the magnitude of the resultant is 6,400 pounds directed along the axis of the barge (see figure).Find the tension in the tow lines if they each make an angle 21° with the axis of the barge.Approximate the answer to one decimal place.​   ​ where a = 21°.</strong> A)3,425.7 lb B)3,429.7 lb C)3,426.7 lb D)3,428.7 lb E)3,427.7 lb <div style=padding-top: 35px> ​ where a = 21°.

A)3,425.7 lb
B)3,429.7 lb
C)3,426.7 lb
D)3,428.7 lb
E)3,427.7 lb
Question
A force of F pounds is required to pull an object weighing W pounds up a ramp inclined at θ degrees from the horizontal. ​
Find F if W = 100 pounds and θ = 11°.Approximate the answer to one decimal place.

A)18.1 lb
B)21.1 lb
C)19.1 lb
D)20.1 lb
E)17.1 lb
Question
A traffic light weighing 15 pounds is suspended by two cables (see figure).Find the tension in each cable if θ1 = 40° and θ2 = 35°.Approximate the answers to one decimal place.​ <strong>A traffic light weighing 15 pounds is suspended by two cables (see figure).Find the tension in each cable if θ<sub>1</sub> = 40° and θ<sub>2</sub> = 35°.Approximate the answers to one decimal place.​   ​</strong> A)​​T<sub>L</sub> = 12.7 lb;TR = 12.7 lb B)​T<sub>L</sub> = 11.9 lb;TR = 11.9 lb C)​T<sub>L</sub> = 11.9 lb;TR = 12.7 lb D)T<sub>L</sub> = 12.7 lb;TR = 11.9 lb E)​​T<sub>L</sub> = 13.7 lb;TR = 12.9 lb <div style=padding-top: 35px>

A)​​TL = 12.7 lb;TR = 12.7 lb
B)​TL = 11.9 lb;TR = 11.9 lb
C)​TL = 11.9 lb;TR = 12.7 lb
D)TL = 12.7 lb;TR = 11.9 lb
E)​​TL = 13.7 lb;TR = 12.9 lb
Question
Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]? u-u  <strong>Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]?  -u    ?</strong> A)?   B)?   C)?   D)?   E)none of these <div style=padding-top: 35px>  ?

A)?  <strong>Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]?  -u    ?</strong> A)?   B)?   C)?   D)?   E)none of these <div style=padding-top: 35px>
B)?  <strong>Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]?  -u    ?</strong> A)?   B)?   C)?   D)?   E)none of these <div style=padding-top: 35px>
C)?  <strong>Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]?  -u    ?</strong> A)?   B)?   C)?   D)?   E)none of these <div style=padding-top: 35px>
D)?  <strong>Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]?  -u    ?</strong> A)?   B)?   C)?   D)?   E)none of these <div style=padding-top: 35px>
E)none of these
Question
The initial and terminal points of vector v are (3,-8)and (7,1),respectively.Select v in component form. ?

A)? v=4,9\mathbf { v } = \langle - 4 , - 9 \rangle
B)? v=4,9\mathbf { v } = \langle - 4,9 \rangle
C) v=4,9\mathbf { v } = \langle 4,9 \rangle
D) v=4,9\mathbf { v } = \langle 4 , - 9 \rangle
E)? v=9,4\mathbf { v } = \langle 9,4 \rangle
Question
Find the magnitude of vector v.?  <strong>Find the magnitude of vector v.?  </strong> A)  \| \mathbf { v } \| = 5  B)?  \| \mathbf { v } \| = 2 \sqrt { 7 }  C)?  \| \mathbf { v } \| = 6  D)?  \| \mathbf { v } \| = 4 \sqrt { 2 }  E)?  \| \mathbf { v } \| = 6 \sqrt { 3 }  <div style=padding-top: 35px>

A) v=5\| \mathbf { v } \| = 5
B)? v=27\| \mathbf { v } \| = 2 \sqrt { 7 }
C)? v=6\| \mathbf { v } \| = 6
D)? v=42\| \mathbf { v } \| = 4 \sqrt { 2 }
E)? v=63\| \mathbf { v } \| = 6 \sqrt { 3 }
Question
Find the component form of vector v. ??  <strong>Find the component form of vector v. ??   ?</strong> A)  \mathbf { v } = \langle 4 , - 5 \rangle  B)?  \mathbf { v } = \langle - 4 , - 5 \rangle  C)?  \mathbf { v } = \langle 4 , - 3 \rangle  D)?  \mathbf { v } = \langle 5,4 \rangle  E)?  \mathbf { v } = \langle - 5,4 \rangle  <div style=padding-top: 35px>  ?

A) v=4,5\mathbf { v } = \langle 4 , - 5 \rangle
B)? v=4,5\mathbf { v } = \langle - 4 , - 5 \rangle
C)? v=4,3\mathbf { v } = \langle 4 , - 3 \rangle
D)? v=5,4\mathbf { v } = \langle 5,4 \rangle
E)? v=5,4\mathbf { v } = \langle - 5,4 \rangle
Question
Given u=3,2\mathbf { u } = \langle 3 , - 2 \rangle and v=3,2\mathbf { v } = \langle - 3,2 \rangle ,determine 4uv- 4 \mathbf { u } - \mathbf { v } .

A)? 4uv=9,14- 4 \mathbf { u } - \mathbf { v } = \langle 9 , - 14 \rangle
B) 4uv=9,6- 4 \mathbf { u } - \mathbf { v } = \langle - 9,6 \rangle
C)? 4uv=14,14- 4 \mathbf { u } - \mathbf { v } = \langle - 14 , - 14 \rangle
D)? 4uv=11,14- 4 \mathbf { u } - \mathbf { v } = \langle 11 , - 14 \rangle
E)? 4uv=11,10- 4 \mathbf { u } - \mathbf { v } = \langle - 11,10 \rangle
Question
A traffic light weighing 16 pounds is suspended by two cables (see figure).Find the tension in each cable.Approximate the answer to one decimal place. ​​ <strong>A traffic light weighing 16 pounds is suspended by two cables (see figure).Find the tension in each cable.Approximate the answer to one decimal place. ​​   ​ Where b = 28° ​</strong> A)18.0 lb B)17.0 lb C)16.0 lb D)19.0 lb E)15.0 lb <div style=padding-top: 35px>
Where b = 28°

A)18.0 lb
B)17.0 lb
C)16.0 lb
D)19.0 lb
E)15.0 lb
Question
?Find the vector v that has a magnitude of 9 and is in the same direction as u,where u=6,5\mathbf { u } = \langle 6 , - 5 \rangle . ?

A)? v=56161,66161\mathbf { v } = \left\langle \frac { 5 \sqrt { 61 } } { 61 } , - \frac { 6 \sqrt { 61 } } { 61 } \right\rangle
B)? v=456161,546161\mathrm { v } = \left\langle \frac { 45 \sqrt { 61 } } { 61 } , - \frac { 54 \sqrt { 61 } } { 61 } \right\rangle
C)? v=6161,6161\mathbf { v } = \left\langle \frac { \sqrt { 61 } } { 61 } , - \frac { \sqrt { 61 } } { 61 } \right\rangle
D)? v=66161,56161\mathbf { v } = \left\langle \frac { 6 \sqrt { 61 } } { 61 } , - \frac { 5 \sqrt { 61 } } { 61 } \right\rangle
E)? v=546161,456161\mathbf { v } = \left\langle \frac { 54 \sqrt { 61 } } { 61 } , - \frac { 45 \sqrt { 61 } } { 61 } \right\rangle
Question
A force of F pounds is required to pull an object weighing W pounds up a ramp inclined at θ degrees from the horizontal. ​
Find θ if F = 5,100 pounds and W = 14,000 lb.Approximate the answer to one decimal place.

A)19.4°
B)​21.4°
C)​23.4°
D)​20.4°
E)​22.4°
Question
Find the component form of vector v with initial point (1,-7)and terminal point (-3,1).

A)? v=4,8\mathbf { v } = \langle - 4 , - 8 \rangle
B) v=4,8\mathbf { v } = \langle - 4,8 \rangle
C)? v=8,4v = \langle 8 , - 4 \rangle
D)? v=0,4v = \langle 0 , - 4 \rangle
E)? v=8,4\mathbf { v } = \langle - 8 , - 4 \rangle
Question
?Find a unit vector in the direction of w=4,6\mathbf { w } = \langle - 4 , - 6 \rangle . ?

A)? 21313,31313\left\langle - \frac { 2 \sqrt { 13 } } { 13 } , - \frac { 3 \sqrt { 13 } } { 13 } \right\rangle
B)? 1339,1326\left\langle - \frac { \sqrt { 13 } } { 39 } , - \frac { \sqrt { 13 } } { 26 } \right\rangle
C)? 134,136\left\langle - \frac { \sqrt { 13 } } { 4 } , - \frac { \sqrt { 13 } } { 6 } \right\rangle
D)? 1313,1313\left\langle - \frac { \sqrt { 13 } } { 13 } , - \frac { \sqrt { 13 } } { 13 } \right\rangle
E)? 81313,121313\left\langle - \frac { 8 \sqrt { 13 } } { 13 } , - \frac { 12 \sqrt { 13 } } { 13 } \right\rangle
Question
A force of F pounds is required to pull an object weighing W pounds up a ramp inclined at θ degrees from the horizontal. ​
Find W if F = 620 pounds and θ = 20°.Approximate the answer to one decimal place.

A)1,812.8 lb
B)1,810.8 lb
C)1,814.8 lb
D)1,811.8 lb
E)1,813.8 lb
Question
Given u=5i3j\mathbf { u } = 5 \mathbf { i } - 3 \mathbf { j } and v=i+2j\mathbf { v } = \mathbf { i } + 2 \mathbf { j } ,determine 9u3v9 \mathbf { u } - 3 \mathbf { v } .

A)? 9u3v=39i39j9 \mathbf { u } - 3 \mathbf { v } = 39 \mathrm { i } - 39 \mathrm { j }
B)? 9u3v=3i+3j9 \mathbf { u } - 3 \mathbf { v } = 3 \mathbf { i } + 3 \mathbf { j }
C)? 9u3v=42i33j9 \mathbf { u } - 3 \mathbf { v } = 42 \mathbf { i } - 33 \mathbf { j }
D)? 9u3v=6i+39j9 \mathbf { u } - 3 \mathbf { v } = - 6 \mathbf { i } + 39 \mathbf { j }
E)? 9u3v=30i+39j9 \mathbf { u } - 3 \mathbf { v } = - 30 \mathbf { i } + 39 \mathbf { j }
Question
Select a linear combination of the standard unit vectors i and j of given initial and terminal points of a vector. Initial Point
Terminal Point
(-9,7)
​(0,2)

A)-9i - 5j
B)​-5i + 9j
C)​​-5i ​- 9j
D)​9i - 5j
E)​9i + 5j
Question
Given that Force 1 = 55 pounds and Force 2 = 130 pounds,find the angle between the forces if the magnitude of the resultant force is 120 pounds.Round your answer to the nearest degree. ​

A)72°
B)59°
C)67°
D)79°
E)64°
Question
?If u=3i+6j\mathbf { u } = - 3 \mathbf { i } + 6 \mathbf { j } and v=6i+5j\mathbf { v } = - 6 \mathbf { i } + 5 \mathbf { j } ,find w=3u+5v\mathbf { w } = 3 \mathbf { u } + 5 \mathbf { v } .

A)? w=39i+43j\mathbf { w } = - 39 \mathbf { i } + 43 \mathbf { j }
B)? w=33i+43j\mathbf { w } = - 33 \mathbf { i } + 43 \mathbf { j }
C)? w=27i+55j\mathbf { w } = - 27 \mathbf { i } + 55 \mathbf { j }
D)? w=39i+45j\mathbf { w } = - 39 \mathbf { i } + 45 \mathbf { j }
E)? w=16i12j\mathbf { w } = 16 \mathbf { i } - 12 \mathbf { j }
Question
If u=4\| \mathbf { u } \| = 4 and v=6\| \mathbf { v } \| = 6 ,and the vectors make angles of 140° and 20° with the x-axis respectively,find the component form of the sum of u and v.Round answers to two decimal places.

A) 2.57,4.62\langle 2.57,4.62 \rangle
B)? 0.84,5.22\langle - 0.84,5.22 \rangle
C)? 8.7,0.52\langle - 8.7,0.52 \rangle
D)? 8.21,1.01\langle 8.21 , - 1.01 \rangle
E)? 3.07,5.12\langle - 3.07 , - 5.12 \rangle
Question
Find the component form of v if v=8\| \mathbf { v } \| = 8 and the angle it makes with the x-axis is 30°.

A)? 43,4\langle 4 \sqrt { 3 } , 4 \rangle
B)? 4,43\langle 4,4 \sqrt { 3 } \rangle
C)? 8,83\langle 8,8 \sqrt { 3 } \rangle
D)? 83,8\langle 8 \sqrt { 3 } , 8 \rangle
E)? 42,42\langle 4 \sqrt { 2 } , 4 \sqrt { 2 } \rangle
Question
?Find the magnitude and direction angle of v=2i6j\mathbf { v } = - 2 \mathbf { i } - 6 \mathbf { j } .Round the direction angle to the nearest degree.

A)??||v|| = 373 \sqrt { 7 } ;? = 269°
B)??||v|| = 30\sqrt { 30 } ;? = 239°
C)??||v|| = 2132 \sqrt { 13 } ;? = 260°
D)?||v|| = 2102 \sqrt { 10 } ;? = 252°
E)??||v|| = 67\sqrt { 67 } ;? = 279°
Question
Find the magnitude and direction angle of v=6(cos80i+sin80j)\mathbf { v } = 6 \left( \cos 80 ^ { \circ } \mathbf { i } + \sin 80 ^ { \circ } \mathbf { j } \right) .

A)? v=6;θ=80\| \mathbf { v } \| = \sqrt { 6 } ; \theta = 80 ^ { \circ }
B)? v=6;θ=100\| \mathbf { v } \| = 6 ; \theta = 100 ^ { \circ }
C)? v=6;θ=80\| \mathbf { v } \| = 6 ; \theta = 80 ^ { \circ }
D)? v=6;θ=10\| \mathbf { v } \| = 6 ; \theta = 10 ^ { \circ }
E)? v=6;θ=100\| \mathbf { v } \| = \sqrt { 6 } ; \theta = 100 ^ { \circ }
Question
Three forces with magnitudes of 74 pounds,98 pounds,and 105 pounds act on an object at angles 170°,220°,and 330°,respectively,with the positive x-axis.Find the magnitude and direction of the resultant force.Round answers to two decimal places.

A)99.08 pounds;240.95°
B)99.08 pounds;60.95°
C)117.42 pounds;240.95°
D)139.13 pounds;272.47°
E)117.42 pounds;60.95°
Question
Find the component form of v if v=8\| \mathbf { v } \| = 8 and the angle it makes with the x-axis is 60°.

A)? 43,4\langle 4 \sqrt { 3 } , 4 \rangle
B)? 8,83\langle 8,8 \sqrt { 3 } \rangle
C) 4,43\langle 4,4 \sqrt { 3 } \rangle
D)? 83,8\langle 8 \sqrt { 3 } , 8 \rangle
E)? 42,42\langle 4 \sqrt { 2 } , 4 \sqrt { 2 } \rangle
Question
Find the component form of v if v=10\| \mathbf { v } \| = 10 and the angle it makes with the x-axis is 120°.

A)? 53,5\langle - 5 \sqrt { 3 } , 5 \rangle
B)? 53,10\langle - 5 \sqrt { 3 } , - 10 \rangle
C)? 52,52\langle - 5 \sqrt { 2 } , 5 \sqrt { 2 } \rangle
D)? 5,53\langle - 5,5 \sqrt { 3 } \rangle
E)? 10,103\langle - 10,10 \sqrt { 3 } \rangle
Question
Find the component form of v if v=6\| \mathbf { v } \| = 6 and the angle it makes with the x-axis is 150°.

A)? 63,6\langle - 6 \sqrt { 3 } , - 6 \rangle
B)? 6,63\langle - 6,6 \sqrt { 3 } \rangle
C)? 33,3\langle - 3 \sqrt { 3 } , 3 \rangle
D)? 32,32\langle - 3 \sqrt { 2 } , 3 \sqrt { 2 } \rangle
E)? 3,33\langle - 3,3 \sqrt { 3 } \rangle
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/50
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 38:Vectors in the Plane
1
Find a unit vector in the direction of the given vector.? w=5j\mathbf { w } = 5 \mathbf { j } ?

A)j
B)i
C)- j
D)- i
E)?i - j
j
2
Find the component form of v given its magnitude and the angle it makes with the positive x-axis. ?
Magnitude
Angle v=4\| \mathbf { v } \| = 4
?
?

A) 0,0\langle 0,0 \rangle
B)? 4,4\langle 4,4 \rangle
C)? 0,4\langle 0,4 \rangle
D)? 4,0\langle 4,0 \rangle
E)? 4,0\langle - 4,0 \rangle
? 4,0\langle 4,0 \rangle
3
Find 2u - 3v.? u=4i,v=5j\mathbf { u } = 4 \mathbf { i } , \mathbf { v } = 5 \mathbf { j } ?

A)? 15i8j15 \mathbf { i } - 8 \mathbf { j }
B) 4i5j4 \mathbf { i } - 5 \mathbf { j }
C) 8i15j- 8 \mathbf { i } - 15 \mathbf { j } ?
D) 8i15j8 \mathbf { i } - 15 \mathbf { j }
E) 8i+15j8 \mathbf { i } + 15 \mathbf { j } ?
8i15j8 \mathbf { i } - 15 \mathbf { j }
4
A gun with a muzzle velocity of 1700 feet per second is fired at an angle of 4° above the horizontal.Find the vertical and horizontal components of the velocity.(Round your answer to one decimal place. ) ​

A)Vertical ≈ 118.6 ft/sec,Horisontal ≈ 1,695.9 ft/sec.
B)​Vertical ≈ 119.6 ft/sec,Horisontal ≈ 1,696.9 ft/sec.
C)​Vertical ≈ 1,695.9 ft/sec,Horisontal ≈ 1,695.9 ft/sec.
D)​Vertical ≈ 1,695.9 ft/sec,Horisontal ≈ 118.6 ft/sec.
E)​Vertical ≈ 118.6 ft/sec,Horisontal ≈ 118.6 ft/sec.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
5
Find u + v.? u=5,3,v=0,0\mathbf { u } = \langle - 5,3 \rangle , \mathbf { v } = \langle 0,0 \rangle ?

A)? 4,4\langle - 4,4 \rangle
B) 5,5\langle - 5 , - 5 \rangle ?
C)? 3,3\langle 3,3 \rangle
D)? 5,3\langle - 5,3 \rangle
E)? 3,5\langle 3 , - 5 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
6
Find the component form of v given its magnitude and the angle it makes with the positive x-axis. ?
Magnitude
Angle v=6\| \mathbf { v } \| = 6 4545 ^ { \circ } ?

A)? 32,32\langle - 3 \sqrt { 2 } , 3 \sqrt { 2 } \rangle
B)? 32,32\langle - 3 \sqrt { 2 } , - 3 \sqrt { 2 } \rangle
C)? 3,3\langle 3,3 \rangle
D)? 32,32\langle 3 \sqrt { 2 } , 3 \sqrt { 2 } \rangle
E)? 32,32\langle 3 \sqrt { 2 } , - 3 \sqrt { 2 } \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
7
Find a unit vector in the direction of the given vector. ?? u=4,0\mathbf { u } = \langle 4,0 \rangle ?

A) 1,1\langle 1,1 \rangle
B) 1,0\langle 1,0 \rangle
C) 0,0\langle 0,0 \rangle
D) 4,0\langle 4,0 \rangle
E) 0,1\langle 0,1 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
8
Find a unit vector in the direction of the given vector.? u=0,4\mathbf { u } = \langle 0 , - 4 \rangle ?

A)? 1,1\langle - 1 , - 1 \rangle
B)? 1,0\langle - 1,0 \rangle
C)? 0,0\langle 0,0 \rangle
D) 0,1\langle 0 , - 1 \rangle
E)? 1,0\langle 1,0 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
9
Find a unit vector in the direction of the given vector.? v=2i+2j\mathbf { v } = 2 \mathbf { i } + 2 \mathbf { j } ?

A)? 22i22j- \frac { \sqrt { 2 } } { 2 } \mathbf { i } - \frac { \sqrt { 2 } } { 2 } j
B)? 22i+22j- \frac { \sqrt { 2 } } { 2 } \mathbf { i } + \frac { \sqrt { 2 } } { 2 } j
C)? 22i22j\frac { \sqrt { 2 } } { 2 } \mathbf { i } - \frac { \sqrt { 2 } } { 2 } \mathbf { j }
D)? 2i+2j\sqrt { 2 } \mathbf { i } + \sqrt { 2 } \mathbf { j }
E) 22i+22j\frac { \sqrt { 2 } } { 2 } \mathbf { i } + \frac { \sqrt { 2 } } { 2 } \mathbf { j }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
10
Find 2u - 3v.? u=6i,v=j\mathbf { u } = 6 \mathbf { i } , \mathbf { v } = \mathbf { j } ?

A) 12i3j12 \mathbf { i } - 3 \mathbf { j }
B)? 12i3j- 12 \mathbf { i } - 3 \mathbf { j }
C)? 6i3j6 \mathbf { i } - 3 \mathbf { j }
D)? 12i+3j12 \mathbf { i } + 3 \mathbf { j }
E)? 6ij6 i - j
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
11
Find u - v.? u=0,0,v=2,1\mathbf { u } = \langle 0,0 \rangle , \mathbf { v } = \langle 2,1 \rangle ?

A)? 1,2\langle - 1 , - 2 \rangle
B)? 1,1\langle - 1 , - 1 \rangle
C) 2,1\langle - 2 , - 1 \rangle
D)? 2,2\langle - 2 , - 2 \rangle
E)? 1,0\langle - 1,0 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
12
Detroit Tigers pitcher Joel Zumaya was recorded throwing a pitch at a velocity of 107 miles per hour.If he threw the pitch at an angle of 32° below the horizontal,find the vertical and horizontal components of the velocity.(Round your answers to one decimal place. ) ​

A)Vertical ≈ -55.7 mi/h,Horisontal ≈ 91.7 mi/h.
B)Vertical ≈ 90.7 mi/h,Horisontal ≈ -56.7 mi/h.
C)Vertical ≈ -56.7 mi/h,Horisontal ≈ -56.7 mi/h.
D)Vertical ≈ -56.7 mi/h,Horisontal ≈ 90.7 mi/h.
E)Vertical ≈ 90.7 mi/h,Horisontal ≈ 90.7 mi/h.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
13
Select a linear combination of the standard unit vectors i and j of given initial and terminal points of a vector.. ​
Initial Point
Terminal Point
(0,-8)
​(9,12)


A)​9i + 20j
B)​-9i - 20j
C)​20i - 9j
D)​​20i + 9j
E)​9i - 20j
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
14
Find u + v.? u=4,5,v=6,0\mathbf { u } = \langle 4,5 \rangle , \mathbf { v } = \langle 6,0 \rangle ?

A)? 10,10\langle 10,10 \rangle
B)? 11,6\langle 11,6 \rangle
C)? 5,5\langle 5,5 \rangle
D)? 5,10\langle 5,10 \rangle
E) 10,5\langle 10,5 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
15
Find a unit vector in the direction of the given vector.? u=6,6\mathbf { u } = \langle - 6,6 \rangle ?

A) 0,0\langle 0,0 \rangle
B)? 22,22\left\langle - \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right\rangle
C)? 22,22\left\langle - \frac { \sqrt { 2 } } { 2 } , - \frac { \sqrt { 2 } } { 2 } \right\rangle
D)? 22,22\left\langle \frac { \sqrt { 2 } } { 2 } , - \frac { \sqrt { 2 } } { 2 } \right\rangle
E)? 22,22\left\langle \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right\rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
16
Select a linear combination of the standard unit vectors i and j of given initial and terminal points of a vector. Initial Point
Terminal Point
(-9,9)​
​(10,-10)

A)19i - 19j
B)​-19i + 19j
C)​​-19i - 19j
D)​19i + 19j
E)​-19i - 19j
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
17
Find the component form and the magnitude of the vector v. Initial Point
Terminal Point
(1,3)
(-8,-9)

A) v=1,8;v=15\mathbf { v } = \langle 1 , - 8 \rangle ; \| \mathbf { v } \| = 15
B) v=9,12;v=8\mathbf { v } = \langle - 9 , - 12 \rangle ; \| \mathbf { v } \| = 8
C)? v=9,12;v=15\mathbf { v } = \langle - 9 , - 12 \rangle ; \| \mathbf { v } \| = 15
D)? v=8,9;v=12\mathbf { v } = \langle - 8 , - 9 \rangle ; \| \mathbf { v } \| = 12
E)? v=1,8;v=8\mathbf { v } = \langle 1 , - 8 \rangle ; \| \mathbf { v } \| = 8
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
18
Find u - v.? u=3i+2j,v=4j\mathbf { u } = - 3 \mathbf { i } + 2 \mathbf { j } , \mathbf { v } = 4 \mathbf { j } ?

A)? 2i2j- 2 \mathbf { i } - 2 \mathbf { j }

B)? 3i2j- 3 \mathbf { i } - 2 \mathbf { j } .

C)? 2i2j- 2 \mathbf { i } - 2 \mathbf { j } .

D)? 2i2j2 \mathbf { i } - 2 \mathbf { j } .

E)? ij\mathrm { i } - \mathrm { j }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
19
Find u - v.? u=i+j,v=2i3j\mathbf { u } = \mathbf { i } + \mathbf { j } , \mathbf { v } = 2 \mathbf { i } - 3 \mathbf { j } ?

A)?-i - 4j
B)-2i - 4j
C)-i + 4j
D)-2i + 4j
E)-i + 5j
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
20
Find u + v.? u=6,1,v=1,7\mathbf { u } = \langle 6,1 \rangle , \mathbf { v } = \langle 1,7 \rangle ?

A)? 8,9\langle 8,9 \rangle
B) 7,8\langle 7,8 \rangle
C)? 8,8\langle 8,8 \rangle
D)? 8,7\langle 8,7 \rangle
E)? 7,7\langle 7,7 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
21
Let w be a vector with initial point (4,-4)and terminal point (2,5).Write w as a linear combination of the standard unit vectors i and j.

A)? w=8i3j\mathbf { w } = 8 \mathbf { i } - 3 \mathbf { j }
B)? w=0i+3j\mathbf { w } = 0 \mathbf { i } + 3 \mathbf { j }
C)? w=i+6j\mathbf { w } = \mathbf { i } + 6 \mathbf { j }
D)? w=2i+9j\mathbf { w } = - 2 \mathbf { i } + 9 \mathbf { j }
E)? w=6i9j\mathbf { w } = 6 \mathbf { i } - 9 \mathbf { j }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
22
?Find a unit vector in the direction of u=4i2j\mathbf { u } = 4 \mathbf { i } - 2 \mathbf { j } . ?

A)? 255,55\left\langle - \frac { 2 \sqrt { 5 } } { 5 } , \frac { \sqrt { 5 } } { 5 } \right\rangle
B)? 455,255\left\langle \frac { 4 \sqrt { 5 } } { 5 } , - \frac { 2 \sqrt { 5 } } { 5 } \right\rangle
C)? 855,455\left\langle \frac { 8 \sqrt { 5 } } { 5 } , - \frac { 4 \sqrt { 5 } } { 5 } \right\rangle
D)? 255,255\left\langle \frac { 2 \sqrt { 5 } } { 5 } , - \frac { 2 \sqrt { 5 } } { 5 } \right\rangle
E)? 255,55\left\langle \frac { 2 \sqrt { 5 } } { 5 } , - \frac { \sqrt { 5 } } { 5 } \right\rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
23
?Find the magnitude of vector v with initial point (7,5)and terminal point (-3,-5). ?

A)? 10210 \sqrt { 2 }
B)?14
C)? 20220 \sqrt { 2 }
D)? 74\sqrt { 74 }
E)? 2512 \sqrt { 51 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
24
A force of F pounds is required to pull an object weighing W pounds up a ramp inclined at θ degrees from the horizontal. ​
Find F if W = 5,700 pounds and θ = 29°.Approximate the answer to one decimal place.

A)2,761.4 lb
B)2,764.4 lb
C)2,763.4 lb
D)2,765.4 lb
E)2,762.4 lb
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
25
A loaded barge is being towed by two tugboats,and the magnitude of the resultant is 6,400 pounds directed along the axis of the barge (see figure).Find the tension in the tow lines if they each make an angle 21° with the axis of the barge.Approximate the answer to one decimal place.​ <strong>A loaded barge is being towed by two tugboats,and the magnitude of the resultant is 6,400 pounds directed along the axis of the barge (see figure).Find the tension in the tow lines if they each make an angle 21° with the axis of the barge.Approximate the answer to one decimal place.​   ​ where a = 21°.</strong> A)3,425.7 lb B)3,429.7 lb C)3,426.7 lb D)3,428.7 lb E)3,427.7 lb ​ where a = 21°.

A)3,425.7 lb
B)3,429.7 lb
C)3,426.7 lb
D)3,428.7 lb
E)3,427.7 lb
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
26
A force of F pounds is required to pull an object weighing W pounds up a ramp inclined at θ degrees from the horizontal. ​
Find F if W = 100 pounds and θ = 11°.Approximate the answer to one decimal place.

A)18.1 lb
B)21.1 lb
C)19.1 lb
D)20.1 lb
E)17.1 lb
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
27
A traffic light weighing 15 pounds is suspended by two cables (see figure).Find the tension in each cable if θ1 = 40° and θ2 = 35°.Approximate the answers to one decimal place.​ <strong>A traffic light weighing 15 pounds is suspended by two cables (see figure).Find the tension in each cable if θ<sub>1</sub> = 40° and θ<sub>2</sub> = 35°.Approximate the answers to one decimal place.​   ​</strong> A)​​T<sub>L</sub> = 12.7 lb;TR = 12.7 lb B)​T<sub>L</sub> = 11.9 lb;TR = 11.9 lb C)​T<sub>L</sub> = 11.9 lb;TR = 12.7 lb D)T<sub>L</sub> = 12.7 lb;TR = 11.9 lb E)​​T<sub>L</sub> = 13.7 lb;TR = 12.9 lb

A)​​TL = 12.7 lb;TR = 12.7 lb
B)​TL = 11.9 lb;TR = 11.9 lb
C)​TL = 11.9 lb;TR = 12.7 lb
D)TL = 12.7 lb;TR = 11.9 lb
E)​​TL = 13.7 lb;TR = 12.9 lb
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
28
Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]? u-u  <strong>Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]?  -u    ?</strong> A)?   B)?   C)?   D)?   E)none of these  ?

A)?  <strong>Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]?  -u    ?</strong> A)?   B)?   C)?   D)?   E)none of these
B)?  <strong>Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]?  -u    ?</strong> A)?   B)?   C)?   D)?   E)none of these
C)?  <strong>Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]?  -u    ?</strong> A)?   B)?   C)?   D)?   E)none of these
D)?  <strong>Using the figure below,sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]?  -u    ?</strong> A)?   B)?   C)?   D)?   E)none of these
E)none of these
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
29
The initial and terminal points of vector v are (3,-8)and (7,1),respectively.Select v in component form. ?

A)? v=4,9\mathbf { v } = \langle - 4 , - 9 \rangle
B)? v=4,9\mathbf { v } = \langle - 4,9 \rangle
C) v=4,9\mathbf { v } = \langle 4,9 \rangle
D) v=4,9\mathbf { v } = \langle 4 , - 9 \rangle
E)? v=9,4\mathbf { v } = \langle 9,4 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
30
Find the magnitude of vector v.?  <strong>Find the magnitude of vector v.?  </strong> A)  \| \mathbf { v } \| = 5  B)?  \| \mathbf { v } \| = 2 \sqrt { 7 }  C)?  \| \mathbf { v } \| = 6  D)?  \| \mathbf { v } \| = 4 \sqrt { 2 }  E)?  \| \mathbf { v } \| = 6 \sqrt { 3 }

A) v=5\| \mathbf { v } \| = 5
B)? v=27\| \mathbf { v } \| = 2 \sqrt { 7 }
C)? v=6\| \mathbf { v } \| = 6
D)? v=42\| \mathbf { v } \| = 4 \sqrt { 2 }
E)? v=63\| \mathbf { v } \| = 6 \sqrt { 3 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
31
Find the component form of vector v. ??  <strong>Find the component form of vector v. ??   ?</strong> A)  \mathbf { v } = \langle 4 , - 5 \rangle  B)?  \mathbf { v } = \langle - 4 , - 5 \rangle  C)?  \mathbf { v } = \langle 4 , - 3 \rangle  D)?  \mathbf { v } = \langle 5,4 \rangle  E)?  \mathbf { v } = \langle - 5,4 \rangle   ?

A) v=4,5\mathbf { v } = \langle 4 , - 5 \rangle
B)? v=4,5\mathbf { v } = \langle - 4 , - 5 \rangle
C)? v=4,3\mathbf { v } = \langle 4 , - 3 \rangle
D)? v=5,4\mathbf { v } = \langle 5,4 \rangle
E)? v=5,4\mathbf { v } = \langle - 5,4 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
32
Given u=3,2\mathbf { u } = \langle 3 , - 2 \rangle and v=3,2\mathbf { v } = \langle - 3,2 \rangle ,determine 4uv- 4 \mathbf { u } - \mathbf { v } .

A)? 4uv=9,14- 4 \mathbf { u } - \mathbf { v } = \langle 9 , - 14 \rangle
B) 4uv=9,6- 4 \mathbf { u } - \mathbf { v } = \langle - 9,6 \rangle
C)? 4uv=14,14- 4 \mathbf { u } - \mathbf { v } = \langle - 14 , - 14 \rangle
D)? 4uv=11,14- 4 \mathbf { u } - \mathbf { v } = \langle 11 , - 14 \rangle
E)? 4uv=11,10- 4 \mathbf { u } - \mathbf { v } = \langle - 11,10 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
33
A traffic light weighing 16 pounds is suspended by two cables (see figure).Find the tension in each cable.Approximate the answer to one decimal place. ​​ <strong>A traffic light weighing 16 pounds is suspended by two cables (see figure).Find the tension in each cable.Approximate the answer to one decimal place. ​​   ​ Where b = 28° ​</strong> A)18.0 lb B)17.0 lb C)16.0 lb D)19.0 lb E)15.0 lb
Where b = 28°

A)18.0 lb
B)17.0 lb
C)16.0 lb
D)19.0 lb
E)15.0 lb
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
34
?Find the vector v that has a magnitude of 9 and is in the same direction as u,where u=6,5\mathbf { u } = \langle 6 , - 5 \rangle . ?

A)? v=56161,66161\mathbf { v } = \left\langle \frac { 5 \sqrt { 61 } } { 61 } , - \frac { 6 \sqrt { 61 } } { 61 } \right\rangle
B)? v=456161,546161\mathrm { v } = \left\langle \frac { 45 \sqrt { 61 } } { 61 } , - \frac { 54 \sqrt { 61 } } { 61 } \right\rangle
C)? v=6161,6161\mathbf { v } = \left\langle \frac { \sqrt { 61 } } { 61 } , - \frac { \sqrt { 61 } } { 61 } \right\rangle
D)? v=66161,56161\mathbf { v } = \left\langle \frac { 6 \sqrt { 61 } } { 61 } , - \frac { 5 \sqrt { 61 } } { 61 } \right\rangle
E)? v=546161,456161\mathbf { v } = \left\langle \frac { 54 \sqrt { 61 } } { 61 } , - \frac { 45 \sqrt { 61 } } { 61 } \right\rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
35
A force of F pounds is required to pull an object weighing W pounds up a ramp inclined at θ degrees from the horizontal. ​
Find θ if F = 5,100 pounds and W = 14,000 lb.Approximate the answer to one decimal place.

A)19.4°
B)​21.4°
C)​23.4°
D)​20.4°
E)​22.4°
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
36
Find the component form of vector v with initial point (1,-7)and terminal point (-3,1).

A)? v=4,8\mathbf { v } = \langle - 4 , - 8 \rangle
B) v=4,8\mathbf { v } = \langle - 4,8 \rangle
C)? v=8,4v = \langle 8 , - 4 \rangle
D)? v=0,4v = \langle 0 , - 4 \rangle
E)? v=8,4\mathbf { v } = \langle - 8 , - 4 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
37
?Find a unit vector in the direction of w=4,6\mathbf { w } = \langle - 4 , - 6 \rangle . ?

A)? 21313,31313\left\langle - \frac { 2 \sqrt { 13 } } { 13 } , - \frac { 3 \sqrt { 13 } } { 13 } \right\rangle
B)? 1339,1326\left\langle - \frac { \sqrt { 13 } } { 39 } , - \frac { \sqrt { 13 } } { 26 } \right\rangle
C)? 134,136\left\langle - \frac { \sqrt { 13 } } { 4 } , - \frac { \sqrt { 13 } } { 6 } \right\rangle
D)? 1313,1313\left\langle - \frac { \sqrt { 13 } } { 13 } , - \frac { \sqrt { 13 } } { 13 } \right\rangle
E)? 81313,121313\left\langle - \frac { 8 \sqrt { 13 } } { 13 } , - \frac { 12 \sqrt { 13 } } { 13 } \right\rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
38
A force of F pounds is required to pull an object weighing W pounds up a ramp inclined at θ degrees from the horizontal. ​
Find W if F = 620 pounds and θ = 20°.Approximate the answer to one decimal place.

A)1,812.8 lb
B)1,810.8 lb
C)1,814.8 lb
D)1,811.8 lb
E)1,813.8 lb
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
39
Given u=5i3j\mathbf { u } = 5 \mathbf { i } - 3 \mathbf { j } and v=i+2j\mathbf { v } = \mathbf { i } + 2 \mathbf { j } ,determine 9u3v9 \mathbf { u } - 3 \mathbf { v } .

A)? 9u3v=39i39j9 \mathbf { u } - 3 \mathbf { v } = 39 \mathrm { i } - 39 \mathrm { j }
B)? 9u3v=3i+3j9 \mathbf { u } - 3 \mathbf { v } = 3 \mathbf { i } + 3 \mathbf { j }
C)? 9u3v=42i33j9 \mathbf { u } - 3 \mathbf { v } = 42 \mathbf { i } - 33 \mathbf { j }
D)? 9u3v=6i+39j9 \mathbf { u } - 3 \mathbf { v } = - 6 \mathbf { i } + 39 \mathbf { j }
E)? 9u3v=30i+39j9 \mathbf { u } - 3 \mathbf { v } = - 30 \mathbf { i } + 39 \mathbf { j }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
40
Select a linear combination of the standard unit vectors i and j of given initial and terminal points of a vector. Initial Point
Terminal Point
(-9,7)
​(0,2)

A)-9i - 5j
B)​-5i + 9j
C)​​-5i ​- 9j
D)​9i - 5j
E)​9i + 5j
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
41
Given that Force 1 = 55 pounds and Force 2 = 130 pounds,find the angle between the forces if the magnitude of the resultant force is 120 pounds.Round your answer to the nearest degree. ​

A)72°
B)59°
C)67°
D)79°
E)64°
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
42
?If u=3i+6j\mathbf { u } = - 3 \mathbf { i } + 6 \mathbf { j } and v=6i+5j\mathbf { v } = - 6 \mathbf { i } + 5 \mathbf { j } ,find w=3u+5v\mathbf { w } = 3 \mathbf { u } + 5 \mathbf { v } .

A)? w=39i+43j\mathbf { w } = - 39 \mathbf { i } + 43 \mathbf { j }
B)? w=33i+43j\mathbf { w } = - 33 \mathbf { i } + 43 \mathbf { j }
C)? w=27i+55j\mathbf { w } = - 27 \mathbf { i } + 55 \mathbf { j }
D)? w=39i+45j\mathbf { w } = - 39 \mathbf { i } + 45 \mathbf { j }
E)? w=16i12j\mathbf { w } = 16 \mathbf { i } - 12 \mathbf { j }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
43
If u=4\| \mathbf { u } \| = 4 and v=6\| \mathbf { v } \| = 6 ,and the vectors make angles of 140° and 20° with the x-axis respectively,find the component form of the sum of u and v.Round answers to two decimal places.

A) 2.57,4.62\langle 2.57,4.62 \rangle
B)? 0.84,5.22\langle - 0.84,5.22 \rangle
C)? 8.7,0.52\langle - 8.7,0.52 \rangle
D)? 8.21,1.01\langle 8.21 , - 1.01 \rangle
E)? 3.07,5.12\langle - 3.07 , - 5.12 \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
44
Find the component form of v if v=8\| \mathbf { v } \| = 8 and the angle it makes with the x-axis is 30°.

A)? 43,4\langle 4 \sqrt { 3 } , 4 \rangle
B)? 4,43\langle 4,4 \sqrt { 3 } \rangle
C)? 8,83\langle 8,8 \sqrt { 3 } \rangle
D)? 83,8\langle 8 \sqrt { 3 } , 8 \rangle
E)? 42,42\langle 4 \sqrt { 2 } , 4 \sqrt { 2 } \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
45
?Find the magnitude and direction angle of v=2i6j\mathbf { v } = - 2 \mathbf { i } - 6 \mathbf { j } .Round the direction angle to the nearest degree.

A)??||v|| = 373 \sqrt { 7 } ;? = 269°
B)??||v|| = 30\sqrt { 30 } ;? = 239°
C)??||v|| = 2132 \sqrt { 13 } ;? = 260°
D)?||v|| = 2102 \sqrt { 10 } ;? = 252°
E)??||v|| = 67\sqrt { 67 } ;? = 279°
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
46
Find the magnitude and direction angle of v=6(cos80i+sin80j)\mathbf { v } = 6 \left( \cos 80 ^ { \circ } \mathbf { i } + \sin 80 ^ { \circ } \mathbf { j } \right) .

A)? v=6;θ=80\| \mathbf { v } \| = \sqrt { 6 } ; \theta = 80 ^ { \circ }
B)? v=6;θ=100\| \mathbf { v } \| = 6 ; \theta = 100 ^ { \circ }
C)? v=6;θ=80\| \mathbf { v } \| = 6 ; \theta = 80 ^ { \circ }
D)? v=6;θ=10\| \mathbf { v } \| = 6 ; \theta = 10 ^ { \circ }
E)? v=6;θ=100\| \mathbf { v } \| = \sqrt { 6 } ; \theta = 100 ^ { \circ }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
47
Three forces with magnitudes of 74 pounds,98 pounds,and 105 pounds act on an object at angles 170°,220°,and 330°,respectively,with the positive x-axis.Find the magnitude and direction of the resultant force.Round answers to two decimal places.

A)99.08 pounds;240.95°
B)99.08 pounds;60.95°
C)117.42 pounds;240.95°
D)139.13 pounds;272.47°
E)117.42 pounds;60.95°
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
48
Find the component form of v if v=8\| \mathbf { v } \| = 8 and the angle it makes with the x-axis is 60°.

A)? 43,4\langle 4 \sqrt { 3 } , 4 \rangle
B)? 8,83\langle 8,8 \sqrt { 3 } \rangle
C) 4,43\langle 4,4 \sqrt { 3 } \rangle
D)? 83,8\langle 8 \sqrt { 3 } , 8 \rangle
E)? 42,42\langle 4 \sqrt { 2 } , 4 \sqrt { 2 } \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
49
Find the component form of v if v=10\| \mathbf { v } \| = 10 and the angle it makes with the x-axis is 120°.

A)? 53,5\langle - 5 \sqrt { 3 } , 5 \rangle
B)? 53,10\langle - 5 \sqrt { 3 } , - 10 \rangle
C)? 52,52\langle - 5 \sqrt { 2 } , 5 \sqrt { 2 } \rangle
D)? 5,53\langle - 5,5 \sqrt { 3 } \rangle
E)? 10,103\langle - 10,10 \sqrt { 3 } \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
50
Find the component form of v if v=6\| \mathbf { v } \| = 6 and the angle it makes with the x-axis is 150°.

A)? 63,6\langle - 6 \sqrt { 3 } , - 6 \rangle
B)? 6,63\langle - 6,6 \sqrt { 3 } \rangle
C)? 33,3\langle - 3 \sqrt { 3 } , 3 \rangle
D)? 32,32\langle - 3 \sqrt { 2 } , 3 \sqrt { 2 } \rangle
E)? 3,33\langle - 3,3 \sqrt { 3 } \rangle
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 50 flashcards in this deck.