Deck 12: The Conic Sections

Full screen (f)
exit full mode
Question
Use the given information to find the equation of the hyperbola. The foci are (±6,0)( \pm 6,0 ) and the directrices are x=±3x = \pm 3

A) 9x25y2=189 x ^ { 2 } - 5 y ^ { 2 } = 18
B) 9x2y2=619 x ^ { 2 } - y ^ { 2 } = 61
C) x25y2=61x ^ { 2 } - 5 y ^ { 2 } = 61
D) x2y2=18x ^ { 2 } - y ^ { 2 } = 18
E) 2x2y2=182 x ^ { 2 } - y ^ { 2 } = 18
Use Space or
up arrow
down arrow
to flip the card.
Question
Determine the directrices for the ellipse and hyperbola. 64x2+81y2=5,184,64x281y2=5,18464 x ^ { 2 } + 81 y ^ { 2 } = 5,184,64 x ^ { 2 } - 81 y ^ { 2 } = 5,184

A)  ellipse directrices: x=±917; hyperbola directrices: x=±9145\text { ellipse directrices: } x = \pm 9 \sqrt { 17 } \text {; hyperbola directrices: } x = \pm 9 \sqrt { 145 }
B)  ellipse directrices: x=±811717; hyperbola directrices: x=±81145145\text { ellipse directrices: } x = \pm \frac { 81 \sqrt { 17 } } { 17 } ; \text { hyperbola directrices: } x = \pm \frac { 81 \sqrt { 145 } } { 145 }
C)  ellipse directrices: x=±8114517; hyperbola directrices: x=±8117145\text { ellipse directrices: } x = \pm \frac { 81 \sqrt { 145 } } { 17 } ; \text { hyperbola directrices: } x = \pm \frac { 81 \sqrt { 17 } } { 145 }
D)  ellipse directrices: x=917; hyperbola directrices: x=9145\text { ellipse directrices: } x = - 9 \sqrt { 17 } \text {; hyperbola directrices: } x = 9 \sqrt { 145 }
E)  ellipse directrices: x=91717; hyperbola directrices: x=81145145\text { ellipse directrices: } x = \frac { 9 \sqrt { 17 } } { 17 } ; \text { hyperbola directrices: } x = - \frac { 81 \sqrt { 145 } } { 145 }
Question
Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. x2y22x+4y19=0x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0

A)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0 </strong> A)   center:  ( - 1 , - 2 )  ; vertices:  ( - 5 , - 2 ) , ( 3 , - 2 )  ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)   Center:  ( - 1 , - 2 )  ; Vertices:  ( - 1 , - 6 ) , ( - 1,2 )  ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )  ; length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . <div style=padding-top: 35px>  center: (1,2)( - 1 , - 2 ) ; vertices: (5,2),(3,2)( - 5 , - 2 ) , ( 3 , - 2 ) ;
Foci: (1±42,2)( - 1 \pm 4 \sqrt { 2 } , - 2 ) ;
Length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x3,y=x1y = - x - 3 , y = x - 1 .
B)
 <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0 </strong> A)   center:  ( - 1 , - 2 )  ; vertices:  ( - 5 , - 2 ) , ( 3 , - 2 )  ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)   Center:  ( - 1 , - 2 )  ; Vertices:  ( - 1 , - 6 ) , ( - 1,2 )  ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )  ; length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . <div style=padding-top: 35px>  Center: (1,2)( - 1 , - 2 ) ;
Vertices: (1,6),(1,2)( - 1 , - 6 ) , ( - 1,2 ) ;
Foci: (1,2±42)( - 1 , - 2 \pm 4 \sqrt { 2 } ) ;
length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x3,y=x1y = - x - 3 , y = x - 1 .
C)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0 </strong> A)   center:  ( - 1 , - 2 )  ; vertices:  ( - 5 , - 2 ) , ( 3 , - 2 )  ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)   Center:  ( - 1 , - 2 )  ; Vertices:  ( - 1 , - 6 ) , ( - 1,2 )  ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )  ; length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . <div style=padding-top: 35px>  center: (1,2)( 1,2 ) ; vertices: (1,2),(1,6)( 1 , - 2 ) , ( 1,6 ) ;
Foci: (1,2±42)( 1,2 \pm 4 \sqrt { 2 } ) ;
Length of transverse axis: 4;
Length of conjugate axis: 4;
Eccentricity: 22 ;
Asymptotes: y=x+3,y=x+1y = - x + 3 , y = x + 1 .
D)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0 </strong> A)   center:  ( - 1 , - 2 )  ; vertices:  ( - 5 , - 2 ) , ( 3 , - 2 )  ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)   Center:  ( - 1 , - 2 )  ; Vertices:  ( - 1 , - 6 ) , ( - 1,2 )  ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )  ; length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . <div style=padding-top: 35px>  center: (1,2)( 1,2 ) ; vertices: (1,2),(1,6)( 1 , - 2 ) , ( 1,6 ) ;
Foci: (1,2±42)( 1,2 \pm 4 \sqrt { 2 } ) ;
Length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x+3,y=x+1y = - x + 3 , y = x + 1 .
E)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0 </strong> A)   center:  ( - 1 , - 2 )  ; vertices:  ( - 5 , - 2 ) , ( 3 , - 2 )  ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)   Center:  ( - 1 , - 2 )  ; Vertices:  ( - 1 , - 6 ) , ( - 1,2 )  ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )  ; length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . <div style=padding-top: 35px>  center: (1,2)( 1,2 ) ; vertices: (3,2),(5,2)( - 3,2 ) , ( 5,2 ) ;
Foci: (1±42,2)( 1 \pm 4 \sqrt { 2 } , 2 ) ;
Length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x+3,y=x+1y = - x + 3 , y = x + 1 .
Question
Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity. (x2)222+(y+5)232=1\frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1

A) center: (- 2, 5);
Length of major axis: 6;
Length of minor axis: 4;
Foci: (2,5±5)( - 2,5 \pm \sqrt { 5 } ) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1 </strong> A) center: (- 2, 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    <div style=padding-top: 35px>
B) center: (1, - 2.5);
Length of major axis: 3;
Length of minor axis: 2;
Foci: (1±52,2.5)\left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1 </strong> A) center: (- 2, 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    <div style=padding-top: 35px>
C) center: (2, - 5);
Length of major axis: 6;
Length of minor axis: 4;
Foci: (2,5±5)( 2 , - 5 \pm \sqrt { 5 } ) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 } θ\theta
D) center: (1, - 2.5);
Length of major axis: 3;
Length of minor axis: 2;
Foci: (2,1.25±52)\left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1 </strong> A) center: (- 2, 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    <div style=padding-top: 35px>
E) center: (2, - 5);
Length of major axis: 6;
Length of minor axis: 4;
Foci: (2±5,5)( 2 \pm \sqrt { 5 } , - 5 ) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1 </strong> A) center: (- 2, 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    <div style=padding-top: 35px>
Question
Graph the parabola. Specify the focus, directrix, vertex and focal width. x2+5y+25=0x ^ { 2 } + 5 y + 25 = 0

A)  <strong>Graph the parabola. Specify the focus, directrix, vertex and focal width.  x ^ { 2 } + 5 y + 25 = 0 </strong> A)   Focal width: 1 B)   Focal width: 5 C)   Focal width: 5 D)   Focal width: 5 E)   Focal width: 1 <div style=padding-top: 35px>  Focal width: 1
B)  <strong>Graph the parabola. Specify the focus, directrix, vertex and focal width.  x ^ { 2 } + 5 y + 25 = 0 </strong> A)   Focal width: 1 B)   Focal width: 5 C)   Focal width: 5 D)   Focal width: 5 E)   Focal width: 1 <div style=padding-top: 35px>  Focal width: 5
C)  <strong>Graph the parabola. Specify the focus, directrix, vertex and focal width.  x ^ { 2 } + 5 y + 25 = 0 </strong> A)   Focal width: 1 B)   Focal width: 5 C)   Focal width: 5 D)   Focal width: 5 E)   Focal width: 1 <div style=padding-top: 35px>  Focal width: 5
D)  <strong>Graph the parabola. Specify the focus, directrix, vertex and focal width.  x ^ { 2 } + 5 y + 25 = 0 </strong> A)   Focal width: 1 B)   Focal width: 5 C)   Focal width: 5 D)   Focal width: 5 E)   Focal width: 1 <div style=padding-top: 35px>  Focal width: 5
E)  <strong>Graph the parabola. Specify the focus, directrix, vertex and focal width.  x ^ { 2 } + 5 y + 25 = 0 </strong> A)   Focal width: 1 B)   Focal width: 5 C)   Focal width: 5 D)   Focal width: 5 E)   Focal width: 1 <div style=padding-top: 35px>  Focal width: 1
Question
Find the equation of the tangent to the parabola at the given point. x2=8y,(8,8)x ^ { 2 } = 8 y , ( 8,8 )

A) y = 2x - 16
B) y = 3x - 9
C) y = 2x - 9
D) y = 3x - 8
E) y = 2x - 8
Question
Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. x225y2=25x ^ { 2 } - 25 y ^ { 2 } = 25

A) <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25 </strong> A)   vertices:  ( \pm 5,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)   vertices:  ( 0 , \pm 6 )  ; Foci:  ( 0 , \pm \sqrt { 37 } )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)    vertices:  ( 0 , \pm 5 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  . <div style=padding-top: 35px>  vertices: (±5,0)( \pm 5,0 ) ;
Foci: (±26,0)( \pm \sqrt { 26 } , 0 ) ;
Length of transverse axis: 10;
Length of conjugate axis: 2;
Eccentricity: 265\frac { \sqrt { 26 } } { 5 }
Asymptotes: y=±15xy = \pm \frac { 1 } { 5 } x .
B)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25 </strong> A)   vertices:  ( \pm 5,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)   vertices:  ( 0 , \pm 6 )  ; Foci:  ( 0 , \pm \sqrt { 37 } )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)    vertices:  ( 0 , \pm 5 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  . <div style=padding-top: 35px>  vertices: (0,±6)( 0 , \pm 6 ) ;
Foci: (0,±37)( 0 , \pm \sqrt { 37 } ) ;
Length of transverse axis: 2;
Length of conjugate axis: 12;
Eccentricity: 37\sqrt { 37 } ;
Asymptotes: y=±16xy = \pm \frac { 1 } { 6 } x .
C)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25 </strong> A)   vertices:  ( \pm 5,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)   vertices:  ( 0 , \pm 6 )  ; Foci:  ( 0 , \pm \sqrt { 37 } )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)    vertices:  ( 0 , \pm 5 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  . <div style=padding-top: 35px>  vertices: (±1,0)( \pm 1,0 ) ;
Foci: (±26,0)( \pm \sqrt { 26 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 10;
Eccentricity: 26\sqrt { 26 } ;
Asymptotes: y=±5xy = \pm 5 x .
D)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25 </strong> A)   vertices:  ( \pm 5,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)   vertices:  ( 0 , \pm 6 )  ; Foci:  ( 0 , \pm \sqrt { 37 } )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)    vertices:  ( 0 , \pm 5 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  . <div style=padding-top: 35px>  vertices: (0,±5)( 0 , \pm 5 ) ;
Foci: (0,±26)( 0 , \pm \sqrt { 26 } ) ;
Length of transverse axis: 10;
Length of conjugate axis: 2;
Eccentricity: 265\frac { \sqrt { 26 } } { 5 }
Asymptotes: y=±5xy = \pm 5 x .
E)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25 </strong> A)   vertices:  ( \pm 5,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)   vertices:  ( 0 , \pm 6 )  ; Foci:  ( 0 , \pm \sqrt { 37 } )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)    vertices:  ( 0 , \pm 5 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  . <div style=padding-top: 35px>  vertices: (0,±1)( 0 , \pm 1 ) ;
Foci: (0,±26)( 0 , \pm \sqrt { 26 } ) ;
Length of transverse axis: 2;
Length of conjugate axis: 10;
Eccentricity: 26\sqrt { 26 } ;
Asymptotes: y=±15xy = \pm \frac { 1 } { 5 } x .
Question
Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. 3y27x2=13 y ^ { 2 } - 7 x ^ { 2 } = 1

A)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)    vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)    vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . <div style=padding-top: 35px>  vertices: (±77,0)\left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right) ;
Foci: (±21021,0)\left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±213xy = \pm \frac { \sqrt { 21 } } { 3 } x .
B)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)    vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)    vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . <div style=padding-top: 35px>  vertices: (±36,0)\left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right) ;
Foci: (±233,0)\left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right) ;
Length of transverse axis: 33\frac { \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 22 ;
Eccentricity: 22 ;
Asymptotes: y=±33xy = \pm \frac { \sqrt { 3 } } { 3 } x .
C)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)    vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)    vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . <div style=padding-top: 35px>
vertices: (0,±33)\left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right) ;
Foci: (0,±21021)\left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±217xy = \pm \frac { \sqrt { 21 } } { 7 } x .
D)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)    vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)    vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . <div style=padding-top: 35px>  vertices: (±77,0)\left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right) ;
Foci: (±21021,0)\left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right) ;
Length of transverse axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Length of conjugate axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±217xy = \pm \frac { \sqrt { 21 } } { 7 } x .
E)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)    vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)    vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . <div style=padding-top: 35px>  vertices: (0,±33)\left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right) ;
Foci: (0,±21021)\left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right) ;
length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±213xy = \pm \frac { \sqrt { 21 } } { 3 } x .
Question
Select the answer that represents the hyperbola as well as its eccentricity, center and values of aa , bb and cc . r=52+6cosθr = \frac { 5 } { 2 + 6 \cos \theta }

A)  <strong>Select the answer that represents the hyperbola as well as its eccentricity, center and values of  a  ,  b  and  c  .  r = \frac { 5 } { 2 + 6 \cos \theta } </strong> A)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  B)   Eccentricity:  3  Center:  \left( - \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  C)   Eccentricity:  3  Center:  \left( \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  D)   Eccentricity:  3  Center:  \left( - \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  E)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  <div style=padding-top: 35px>  Eccentricity: 33 Center: (1516,0)\left( \frac { 15 } { 16 } , 0 \right) a=516,b=528,c=1516a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }
B)  <strong>Select the answer that represents the hyperbola as well as its eccentricity, center and values of  a  ,  b  and  c  .  r = \frac { 5 } { 2 + 6 \cos \theta } </strong> A)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  B)   Eccentricity:  3  Center:  \left( - \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  C)   Eccentricity:  3  Center:  \left( \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  D)   Eccentricity:  3  Center:  \left( - \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  E)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  <div style=padding-top: 35px>  Eccentricity: 33 Center: (1516,0)\left( - \frac { 15 } { 16 } , 0 \right) a=516,b=528,c=1516a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }
C)  <strong>Select the answer that represents the hyperbola as well as its eccentricity, center and values of  a  ,  b  and  c  .  r = \frac { 5 } { 2 + 6 \cos \theta } </strong> A)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  B)   Eccentricity:  3  Center:  \left( - \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  C)   Eccentricity:  3  Center:  \left( \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  D)   Eccentricity:  3  Center:  \left( - \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  E)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  <div style=padding-top: 35px>  Eccentricity: 33 Center: (12,0)\left( \frac { 1 } { 2 } , 0 \right) a=16,b=23,c=12a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }
D)  <strong>Select the answer that represents the hyperbola as well as its eccentricity, center and values of  a  ,  b  and  c  .  r = \frac { 5 } { 2 + 6 \cos \theta } </strong> A)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  B)   Eccentricity:  3  Center:  \left( - \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  C)   Eccentricity:  3  Center:  \left( \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  D)   Eccentricity:  3  Center:  \left( - \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  E)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  <div style=padding-top: 35px>  Eccentricity: 33 Center: (12,0)\left( - \frac { 1 } { 2 } , 0 \right) a=16,b=23,c=12a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }
E)  <strong>Select the answer that represents the hyperbola as well as its eccentricity, center and values of  a  ,  b  and  c  .  r = \frac { 5 } { 2 + 6 \cos \theta } </strong> A)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  B)   Eccentricity:  3  Center:  \left( - \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  C)   Eccentricity:  3  Center:  \left( \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  D)   Eccentricity:  3  Center:  \left( - \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  E)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  <div style=padding-top: 35px>  Eccentricity: 33 Center: (1516,0)\left( \frac { 15 } { 16 } , 0 \right) a=16,b=23,c=12a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }
Question
You are given an ellipse and a point P on the ellipse. Find F1PF _ { 1 } P and F2PF _ { 2 } P , the lengths of the focal radii. x2872+y2292=1;P(63,20)\frac { x ^ { 2 } } { 87 ^ { 2 } } + \frac { y ^ { 2 } } { 29 ^ { 2 } } = 1 ; P ( 63,20 )

A) F1P=87+422,F2P=87422F _ { 1 } P = 87 + 42 \sqrt { 2 } , F _ { 2 } P = 87 - 42 \sqrt { 2 }
B) F1P=841+422,F2P=29+422F _ { 1 } P = 841 + 42 \sqrt { 2 } , F _ { 2 } P = 29 + 42 \sqrt { 2 }
C) F1P=29+432,F2P=841432F _ { 1 } P = 29 + 43 \sqrt { 2 } , F _ { 2 } P = 841 - 43 \sqrt { 2 }
D) F1P=87422,F2P=87+423F _ { 1 } P = - 87 - 42 \sqrt { 2 } , F _ { 2 } P = 87 + 42 \sqrt { 3 }
E) F1P=29+432,F2P=841432F _ { 1 } P = - 29 + 43 \sqrt { 2 } , F _ { 2 } P = - 841 - 43 \sqrt { 2 }
Question
Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. 9x218x16y2+96y279=09 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0

A)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  9 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  9 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  9 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  9 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  9 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0 </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Suppose the line x7y+55=0x - 7 y + 55 = 0 intersects the circle x210x+y210y=25x ^ { 2 } - 10 x + y ^ { 2 } - 10 y = - 25 at points PP and ee . Find the length of the chord PQ\overline { P Q } .

A) 5\sqrt { 5 }
B) 525 \sqrt { 2 }
C) 252 \sqrt { 5 }
D) 36236 \sqrt { 2 }
E) 626 \sqrt { 2 }
Question
The point (1,2)( 1 , - 2 ) is the midpoint of a chord of the circle x24x+y2+2y=8x ^ { 2 } - 4 x + y ^ { 2 } + 2 y = 8 . Find the length of the chord.

A) 4114 \sqrt { 11 }
B) 22\sqrt { 22 }
C) 2222
D) 11211 \sqrt { 2 }
E) 2112 \sqrt { 11 }
Question
Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity. 9x2+16y2=1449 x ^ { 2 } + 16 y ^ { 2 } = 144

A) length of major axis: 8;
Length of minor axis: 6;
Foci: (0,±7)( 0 , \pm \sqrt { 7 } ) ;
Eccentricity: 74\frac { \sqrt { 7 } } { 4 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity.  9 x ^ { 2 } + 16 y ^ { 2 } = 144 </strong> A) length of major axis: 8; Length of minor axis: 6; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    B) length of major axis: 4; Length of minor axis: 3; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    C) length of major axis: 9.6; Length of minor axis: 7.2; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    D) length of major axis: 8; Length of minor axis: 6; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    E) length of major axis: 4; Length of minor axis: 3; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    <div style=padding-top: 35px>
B) length of major axis: 4;
Length of minor axis: 3;
Foci: (0,±7)( 0 , \pm \sqrt { 7 } ) ;
Eccentricity: 74\frac { \sqrt { 7 } } { 4 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity.  9 x ^ { 2 } + 16 y ^ { 2 } = 144 </strong> A) length of major axis: 8; Length of minor axis: 6; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    B) length of major axis: 4; Length of minor axis: 3; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    C) length of major axis: 9.6; Length of minor axis: 7.2; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    D) length of major axis: 8; Length of minor axis: 6; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    E) length of major axis: 4; Length of minor axis: 3; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    <div style=padding-top: 35px>
C) length of major axis: 9.6;
Length of minor axis: 7.2;
Foci: (0,±7)( 0 , \pm \sqrt { 7 } ) ;
Eccentricity: 74\frac { \sqrt { 7 } } { 4 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity.  9 x ^ { 2 } + 16 y ^ { 2 } = 144 </strong> A) length of major axis: 8; Length of minor axis: 6; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    B) length of major axis: 4; Length of minor axis: 3; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    C) length of major axis: 9.6; Length of minor axis: 7.2; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    D) length of major axis: 8; Length of minor axis: 6; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    E) length of major axis: 4; Length of minor axis: 3; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    <div style=padding-top: 35px>
D) length of major axis: 8;
Length of minor axis: 6;
Foci: (±7,0)( \pm \sqrt { 7 } , 0 ) ;
Eccentricity: 74\frac { \sqrt { 7 } } { 4 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity.  9 x ^ { 2 } + 16 y ^ { 2 } = 144 </strong> A) length of major axis: 8; Length of minor axis: 6; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    B) length of major axis: 4; Length of minor axis: 3; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    C) length of major axis: 9.6; Length of minor axis: 7.2; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    D) length of major axis: 8; Length of minor axis: 6; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    E) length of major axis: 4; Length of minor axis: 3; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    <div style=padding-top: 35px>
E) length of major axis: 4;
Length of minor axis: 3;
Foci: (±7,0)( \pm \sqrt { 7 } , 0 ) ;
Eccentricity: 74\frac { \sqrt { 7 } } { 4 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity.  9 x ^ { 2 } + 16 y ^ { 2 } = 144 </strong> A) length of major axis: 8; Length of minor axis: 6; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    B) length of major axis: 4; Length of minor axis: 3; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    C) length of major axis: 9.6; Length of minor axis: 7.2; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    D) length of major axis: 8; Length of minor axis: 6; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    E) length of major axis: 4; Length of minor axis: 3; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    <div style=padding-top: 35px>
Question
Find the equation of the tangent to the parabola at the given point. x2=y,(3,9)x ^ { 2 } = - y , ( - 3 , - 9 )

A) y = 5x + 8
B) y = 6x + 8
C) y = 6x + 9
D) y = 6x + 18
E) y = 5x + 9
Question
Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. 3y211x2=13 y ^ { 2 } - 11 x ^ { 2 } = 1

A)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 11 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . B)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . E)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . <div style=padding-top: 35px>  vertices: (±1111,0)\left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right) ;
Foci: (±46233,0)\left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right) ;
Length of transverse axis: 21111\frac { 2 \sqrt { 11 } } { 11 } ;
Length of conjugate axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Eccentricity: 15411\frac { \sqrt { 154 } } { 11 } ;
Asymptotes: y=±3311xy = \pm \frac { \sqrt { 33 } } { 11 } x .
B) <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 11 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . B)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . E)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . <div style=padding-top: 35px>  vertices: (±1111,0)\left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right) ;
Foci: (±46233,0)\left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 21111\frac { 2 \sqrt { 11 } } { 11 } ;
Eccentricity: 15411\frac { \sqrt { 154 } } { 11 } ;
Asymptotes: y=±333xy = \pm \frac { \sqrt { 33 } } { 3 } x .
C)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 11 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . B)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . E)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . <div style=padding-top: 35px>  vertices: (0,±33)\left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right) ;
Foci: (0,±46233)\left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 21111\frac { 2 \sqrt { 11 } } { 11 } ;
Eccentricity: 15411\frac { \sqrt { 154 } } { 11 } ;
Asymptotes: y=±333xy = \pm \frac { \sqrt { 33 } } { 3 } x .
D)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 11 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . B)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . E)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . <div style=padding-top: 35px>  vertices: (±36,0)\left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right) ;
Foci: (±233,0)\left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right) ;
Length of transverse axis: 33\frac { \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 22 ;
Eccentricity: 22 ;
Asymptotes: y=±33xy = \pm \frac { \sqrt { 3 } } { 3 } x .
E)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 11 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . B)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . E)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . <div style=padding-top: 35px>  vertices: (0,±33)\left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right) ;
Foci: (0,±46233)\left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 21111\frac { 2 \sqrt { 11 } } { 11 } ;
Eccentricity: 15411\frac { \sqrt { 154 } } { 11 } ;
Asymptotes: y=±3311xy = \pm \frac { \sqrt { 33 } } { 11 } x .
Question
Find the center and the radius of the circle that passes through the points (4,12),(10,2) and (2,6)( - 4,12 ) , ( 10 , - 2 ) \text { and } ( 2 , - 6 )

A)  The center is at (3,2) and the radius is 2.\text { The center is at } ( - 3,2 ) \text { and the radius is } 2 .
B) The center is at (0,2)( 0,2 ) and the radius is 0.0 .
C) The center is at (3,3)( 3,3 ) and the radius is 1.1 .
D) The center is at (0,0)( 0,0 ) and the radius is 7.
E) The center is at (2,4)( 2,4 ) and the radius is 10.10 .
Question
Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. y24x2=4y ^ { 2 } - 4 x ^ { 2 } = 4

A)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4 </strong> A)   vertices:  ( 0 , \pm 2 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)    vertices: ( \pm 2,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)    vertices: ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 37 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . <div style=padding-top: 35px>  vertices: (0,±2)( 0 , \pm 2 ) ;
Foci: (0,±5)( 0 , \pm \sqrt { 5 } ) ;
Length of transverse axis: 4;
Length of conjugate axis: 2;
Eccentricity: 52\frac { \sqrt { 5 } } { 2 }
Asymptotes: y=±2xy = \pm 2 x .
B)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4 </strong> A)   vertices:  ( 0 , \pm 2 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)    vertices: ( \pm 2,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)    vertices: ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 37 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . <div style=padding-top: 35px>  vertices: (0,±1)( 0 , \pm 1 ) ;
Foci: (0,±5)( 0 , \pm \sqrt { 5 } ) ;
Length of transverse axis: 2;
Length of conjugate axis: 4;
Eccentricity: 5\sqrt { 5 } ;
Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x .
C)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4 </strong> A)   vertices:  ( 0 , \pm 2 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)    vertices: ( \pm 2,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)    vertices: ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 37 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . <div style=padding-top: 35px>  vertices: (±2,0)( \pm 2,0 ) ;
Foci: (±5,0)( \pm \sqrt { 5 } , 0 ) ;
Length of transverse axis: 4;
Length of conjugate axis: 2;
Eccentricity: 52\frac { \sqrt { 5 } } { 2 }
Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x .
D)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4 </strong> A)   vertices:  ( 0 , \pm 2 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)    vertices: ( \pm 2,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)    vertices: ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 37 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . <div style=padding-top: 35px>  vertices: (±1,0)( \pm 1,0 ) ;
Foci: (±37,0)( \pm \sqrt { 37 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 12;
Eccentricity: 37\sqrt { 37 } ;
Asymptotes: y=±37xy = \pm 37 x .
E)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4 </strong> A)   vertices:  ( 0 , \pm 2 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)    vertices: ( \pm 2,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)    vertices: ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 37 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . <div style=padding-top: 35px>  vertices: (±1,0)( \pm 1,0 ) ;
Foci: (±5,0)( \pm \sqrt { 5 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 4;
Eccentricity: 5\sqrt { 5 } Asymptotes: y=±2xy = \pm 2 x .
Question
Use the given information to find the equation of the ellipse. The foci are (±2,0)( \pm 2,0 ) and the directrices are x=±3x = \pm 3 .

A) 5x2+3y2=145 x ^ { 2 } + 3 y ^ { 2 } = 14
B) 5x2+5y2=65 x ^ { 2 } + 5 y ^ { 2 } = 6
C) x2+5y2=6x ^ { 2 } + 5 y ^ { 2 } = 6
D) x2+3y2=6x ^ { 2 } + 3 y ^ { 2 } = 6
E) x2+5y2=14x ^ { 2 } + 5 y ^ { 2 } = 14
Question
Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity. 4x2+25y2250y+525=04 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0

A) center: (0, 5);
Degenerate ellipse  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  4 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0 </strong> A) center: (0, 5); Degenerate ellipse   B) center: (1,  \frac { 3 } { 2 }  ); Degenerate ellipse   C) center: (5,0); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 5 , \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    D) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 0,5 \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    E) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( \pm \sqrt { 21 } , 5 )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    <div style=padding-top: 35px>
B) center: (1, 32\frac { 3 } { 2 } );
Degenerate ellipse  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  4 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0 </strong> A) center: (0, 5); Degenerate ellipse   B) center: (1,  \frac { 3 } { 2 }  ); Degenerate ellipse   C) center: (5,0); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 5 , \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    D) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 0,5 \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    E) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( \pm \sqrt { 21 } , 5 )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    <div style=padding-top: 35px>
C) center: (5,0);
Length of major axis: 10;
Length of minor axis: 4;
Foci: (5,±21)( 5 , \pm \sqrt { 21 } ) ;
Eccentricity: 215\frac { \sqrt { 21 } } { 5 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  4 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0 </strong> A) center: (0, 5); Degenerate ellipse   B) center: (1,  \frac { 3 } { 2 }  ); Degenerate ellipse   C) center: (5,0); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 5 , \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    D) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 0,5 \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    E) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( \pm \sqrt { 21 } , 5 )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    <div style=padding-top: 35px>
D) center: (0, 5);
Length of major axis: 10;
Length of minor axis: 4;
Foci: (0,5±21)( 0,5 \pm \sqrt { 21 } ) ;
Eccentricity: 215\frac { \sqrt { 21 } } { 5 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  4 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0 </strong> A) center: (0, 5); Degenerate ellipse   B) center: (1,  \frac { 3 } { 2 }  ); Degenerate ellipse   C) center: (5,0); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 5 , \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    D) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 0,5 \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    E) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( \pm \sqrt { 21 } , 5 )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    <div style=padding-top: 35px>
E) center: (0, 5);
Length of major axis: 10;
Length of minor axis: 4;
Foci: (±21,5)( \pm \sqrt { 21 } , 5 ) ;
Eccentricity: 215\frac { \sqrt { 21 } } { 5 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  4 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0 </strong> A) center: (0, 5); Degenerate ellipse   B) center: (1,  \frac { 3 } { 2 }  ); Degenerate ellipse   C) center: (5,0); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 5 , \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    D) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 0,5 \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    E) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( \pm \sqrt { 21 } , 5 )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    <div style=padding-top: 35px>
Question
An angle of rotation is specified, followed by the coordinates of a point in the xyx ^ { \prime } - y ^ { \prime } system. Find the coordinates of the point with respect to the xyx - y system. θ=120\theta = 120 ^ { \circ } (x,y)=(3,8)\left( x ^ { \prime } , y ^ { \prime } \right) = ( \sqrt { 3 } , 8 )

A) (52,932)\left( \frac { 5 } { 2 } , \frac { 9 \sqrt { 3 } } { 2 } \right)
B) (932,52)\left( - \frac { 9 \sqrt { 3 } } { 2 } , - \frac { 5 } { 2 } \right)
C) (52,932)\left( - \frac { 5 } { 2 } , - \frac { 9 \sqrt { 3 } } { 2 } \right)
D) (932,52)\left( \frac { 9 \sqrt { 3 } } { 2 } , - \frac { 5 } { 2 } \right)
E) (932,52)\left( \frac { 9 \sqrt { 3 } } { 2 } , \frac { 5 } { 2 } \right)
Question
Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes. r=1355sinθr = \frac { 13 } { 5 - 5 \sin \theta }

A)  <strong>Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes.  r = \frac { 13 } { 5 - 5 \sin \theta } </strong> A)   Vertex:  \left( 0 , \frac { 13 } { 10 } \right)  Directrix:  y = \frac { 13 } { 5 }  B)   Vertex:  \left( - \frac { 13 } { 10 } , 0 \right)  Directrix:  x = - \frac { 13 } { 5 }  C)   Center:  ( 0,0 )  Eccentricity:  \frac { 5 } { 13 }  Major axis length:  \frac { 26 } { 5 }  Minor axis length:  \frac { 10 } { 13 }  D)   Vertex:  \left( \frac { 13 } { 10 } , 0 \right)  Directrix:  x = \frac { 13 } { 5 }  E)   Vertex:  \left( 0 , - \frac { 13 } { 10 } \right)  Directrix:  y = - \frac { 13 } { 5 }  <div style=padding-top: 35px>  Vertex: (0,1310)\left( 0 , \frac { 13 } { 10 } \right) Directrix: y=135y = \frac { 13 } { 5 }
B)  <strong>Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes.  r = \frac { 13 } { 5 - 5 \sin \theta } </strong> A)   Vertex:  \left( 0 , \frac { 13 } { 10 } \right)  Directrix:  y = \frac { 13 } { 5 }  B)   Vertex:  \left( - \frac { 13 } { 10 } , 0 \right)  Directrix:  x = - \frac { 13 } { 5 }  C)   Center:  ( 0,0 )  Eccentricity:  \frac { 5 } { 13 }  Major axis length:  \frac { 26 } { 5 }  Minor axis length:  \frac { 10 } { 13 }  D)   Vertex:  \left( \frac { 13 } { 10 } , 0 \right)  Directrix:  x = \frac { 13 } { 5 }  E)   Vertex:  \left( 0 , - \frac { 13 } { 10 } \right)  Directrix:  y = - \frac { 13 } { 5 }  <div style=padding-top: 35px>  Vertex: (1310,0)\left( - \frac { 13 } { 10 } , 0 \right) Directrix: x=135x = - \frac { 13 } { 5 }
C)  <strong>Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes.  r = \frac { 13 } { 5 - 5 \sin \theta } </strong> A)   Vertex:  \left( 0 , \frac { 13 } { 10 } \right)  Directrix:  y = \frac { 13 } { 5 }  B)   Vertex:  \left( - \frac { 13 } { 10 } , 0 \right)  Directrix:  x = - \frac { 13 } { 5 }  C)   Center:  ( 0,0 )  Eccentricity:  \frac { 5 } { 13 }  Major axis length:  \frac { 26 } { 5 }  Minor axis length:  \frac { 10 } { 13 }  D)   Vertex:  \left( \frac { 13 } { 10 } , 0 \right)  Directrix:  x = \frac { 13 } { 5 }  E)   Vertex:  \left( 0 , - \frac { 13 } { 10 } \right)  Directrix:  y = - \frac { 13 } { 5 }  <div style=padding-top: 35px>  Center: (0,0)( 0,0 ) Eccentricity: 513\frac { 5 } { 13 } Major axis length: 265\frac { 26 } { 5 }
Minor axis length: 1013\frac { 10 } { 13 }
D)  <strong>Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes.  r = \frac { 13 } { 5 - 5 \sin \theta } </strong> A)   Vertex:  \left( 0 , \frac { 13 } { 10 } \right)  Directrix:  y = \frac { 13 } { 5 }  B)   Vertex:  \left( - \frac { 13 } { 10 } , 0 \right)  Directrix:  x = - \frac { 13 } { 5 }  C)   Center:  ( 0,0 )  Eccentricity:  \frac { 5 } { 13 }  Major axis length:  \frac { 26 } { 5 }  Minor axis length:  \frac { 10 } { 13 }  D)   Vertex:  \left( \frac { 13 } { 10 } , 0 \right)  Directrix:  x = \frac { 13 } { 5 }  E)   Vertex:  \left( 0 , - \frac { 13 } { 10 } \right)  Directrix:  y = - \frac { 13 } { 5 }  <div style=padding-top: 35px>  Vertex: (1310,0)\left( \frac { 13 } { 10 } , 0 \right) Directrix: x=135x = \frac { 13 } { 5 }
E)  <strong>Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes.  r = \frac { 13 } { 5 - 5 \sin \theta } </strong> A)   Vertex:  \left( 0 , \frac { 13 } { 10 } \right)  Directrix:  y = \frac { 13 } { 5 }  B)   Vertex:  \left( - \frac { 13 } { 10 } , 0 \right)  Directrix:  x = - \frac { 13 } { 5 }  C)   Center:  ( 0,0 )  Eccentricity:  \frac { 5 } { 13 }  Major axis length:  \frac { 26 } { 5 }  Minor axis length:  \frac { 10 } { 13 }  D)   Vertex:  \left( \frac { 13 } { 10 } , 0 \right)  Directrix:  x = \frac { 13 } { 5 }  E)   Vertex:  \left( 0 , - \frac { 13 } { 10 } \right)  Directrix:  y = - \frac { 13 } { 5 }  <div style=padding-top: 35px>  Vertex: (0,1310)\left( 0 , - \frac { 13 } { 10 } \right) Directrix: y=135y = - \frac { 13 } { 5 }
Question
Find sinθ\sin \theta and cosθ\cos \theta , where θ\theta is the (acute) angle of rotation that eliminates the xyx ^ { \prime } y ^ { \prime } -term. Note: You are not asked to graph the equation. 175xy600y21=0175 x y - 600 y ^ { 2 } - 1 = 0

A) sinθ=45\sin \theta = \frac { 4 } { 5 } cosθ=35\cos \theta = \frac { 3 } { 5 }
B) sinθ=725\sin \theta = \frac { 7 \sqrt { 2 } } { 5 } cosθ=25\cos \theta = \frac { \sqrt { 2 } } { 5 }
C) sinθ=35\sin \theta = \frac { 3 } { 5 } cosθ=45\cos \theta = \frac { 4 } { 5 }
D) sinθ=210\sin \theta = \frac { \sqrt { 2 } } { 10 } cosθ=7210\cos \theta = \frac { 7 \sqrt { 2 } } { 10 }
E) sinθ=22\sin \theta = \frac { \sqrt { 2 } } { 2 } cosθ=22\cos \theta = \frac { \sqrt { 2 } } { 2 }
Question
Find sinθ\sin \theta and cosθ\cos \theta , where θ\theta is the (acute) angle of rotation that eliminates the xyx ^ { \prime } y ^ { \prime } -term. Note: You are not asked to graph the equation. 124x2+7xy+100y2=0124 x ^ { 2 } + 7 x y + 100 y ^ { 2 } = 0

A) sinθ=7226\sin \theta = \frac { 7 \sqrt { 2 } } { 26 } cosθ=17226\cos \theta = \frac { 17 \sqrt { 2 } } { 26 }
B) sinθ=210\sin \theta = \frac { \sqrt { 2 } } { 10 } cosθ=17226\cos \theta = \frac { 17 \sqrt { 2 } } { 26 }
C) sinθ=210\sin \theta = \frac { \sqrt { 2 } } { 10 } cosθ=7210\cos \theta = \frac { 7 \sqrt { 2 } } { 10 }
D) sinθ=17226\sin \theta = \frac { 17 \sqrt { 2 } } { 26 } cosθ=7226\cos \theta = \frac { 7 \sqrt { 2 } } { 26 }
E) sinθ=7210\sin \theta = \frac { 7 \sqrt { 2 } } { 10 } cosθ=210\cos \theta = \frac { \sqrt { 2 } } { 10 }
Question
Determine the graph that represents the equation. 5x2+6xy+5y2102x62y+8=05 x ^ { 2 } + 6 x y + 5 y ^ { 2 } - 10 \sqrt { 2 } x - 6 \sqrt { 2 } y + 8 = 0

A)  <strong>Determine the graph that represents the equation.  5 x ^ { 2 } + 6 x y + 5 y ^ { 2 } - 10 \sqrt { 2 } x - 6 \sqrt { 2 } y + 8 = 0 </strong> A)   B)   C)   D)   E) no graph <div style=padding-top: 35px>
B)  <strong>Determine the graph that represents the equation.  5 x ^ { 2 } + 6 x y + 5 y ^ { 2 } - 10 \sqrt { 2 } x - 6 \sqrt { 2 } y + 8 = 0 </strong> A)   B)   C)   D)   E) no graph <div style=padding-top: 35px>
C)  <strong>Determine the graph that represents the equation.  5 x ^ { 2 } + 6 x y + 5 y ^ { 2 } - 10 \sqrt { 2 } x - 6 \sqrt { 2 } y + 8 = 0 </strong> A)   B)   C)   D)   E) no graph <div style=padding-top: 35px>
D)  <strong>Determine the graph that represents the equation.  5 x ^ { 2 } + 6 x y + 5 y ^ { 2 } - 10 \sqrt { 2 } x - 6 \sqrt { 2 } y + 8 = 0 </strong> A)   B)   C)   D)   E) no graph <div style=padding-top: 35px>
E) no graph
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: The Conic Sections
1
Use the given information to find the equation of the hyperbola. The foci are (±6,0)( \pm 6,0 ) and the directrices are x=±3x = \pm 3

A) 9x25y2=189 x ^ { 2 } - 5 y ^ { 2 } = 18
B) 9x2y2=619 x ^ { 2 } - y ^ { 2 } = 61
C) x25y2=61x ^ { 2 } - 5 y ^ { 2 } = 61
D) x2y2=18x ^ { 2 } - y ^ { 2 } = 18
E) 2x2y2=182 x ^ { 2 } - y ^ { 2 } = 18
x2y2=18x ^ { 2 } - y ^ { 2 } = 18
2
Determine the directrices for the ellipse and hyperbola. 64x2+81y2=5,184,64x281y2=5,18464 x ^ { 2 } + 81 y ^ { 2 } = 5,184,64 x ^ { 2 } - 81 y ^ { 2 } = 5,184

A)  ellipse directrices: x=±917; hyperbola directrices: x=±9145\text { ellipse directrices: } x = \pm 9 \sqrt { 17 } \text {; hyperbola directrices: } x = \pm 9 \sqrt { 145 }
B)  ellipse directrices: x=±811717; hyperbola directrices: x=±81145145\text { ellipse directrices: } x = \pm \frac { 81 \sqrt { 17 } } { 17 } ; \text { hyperbola directrices: } x = \pm \frac { 81 \sqrt { 145 } } { 145 }
C)  ellipse directrices: x=±8114517; hyperbola directrices: x=±8117145\text { ellipse directrices: } x = \pm \frac { 81 \sqrt { 145 } } { 17 } ; \text { hyperbola directrices: } x = \pm \frac { 81 \sqrt { 17 } } { 145 }
D)  ellipse directrices: x=917; hyperbola directrices: x=9145\text { ellipse directrices: } x = - 9 \sqrt { 17 } \text {; hyperbola directrices: } x = 9 \sqrt { 145 }
E)  ellipse directrices: x=91717; hyperbola directrices: x=81145145\text { ellipse directrices: } x = \frac { 9 \sqrt { 17 } } { 17 } ; \text { hyperbola directrices: } x = - \frac { 81 \sqrt { 145 } } { 145 }
 ellipse directrices: x=±811717; hyperbola directrices: x=±81145145\text { ellipse directrices: } x = \pm \frac { 81 \sqrt { 17 } } { 17 } ; \text { hyperbola directrices: } x = \pm \frac { 81 \sqrt { 145 } } { 145 }
3
Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. x2y22x+4y19=0x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0

A)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0 </strong> A)   center:  ( - 1 , - 2 )  ; vertices:  ( - 5 , - 2 ) , ( 3 , - 2 )  ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)   Center:  ( - 1 , - 2 )  ; Vertices:  ( - 1 , - 6 ) , ( - 1,2 )  ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )  ; length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  .  center: (1,2)( - 1 , - 2 ) ; vertices: (5,2),(3,2)( - 5 , - 2 ) , ( 3 , - 2 ) ;
Foci: (1±42,2)( - 1 \pm 4 \sqrt { 2 } , - 2 ) ;
Length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x3,y=x1y = - x - 3 , y = x - 1 .
B)
 <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0 </strong> A)   center:  ( - 1 , - 2 )  ; vertices:  ( - 5 , - 2 ) , ( 3 , - 2 )  ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)   Center:  ( - 1 , - 2 )  ; Vertices:  ( - 1 , - 6 ) , ( - 1,2 )  ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )  ; length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  .  Center: (1,2)( - 1 , - 2 ) ;
Vertices: (1,6),(1,2)( - 1 , - 6 ) , ( - 1,2 ) ;
Foci: (1,2±42)( - 1 , - 2 \pm 4 \sqrt { 2 } ) ;
length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x3,y=x1y = - x - 3 , y = x - 1 .
C)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0 </strong> A)   center:  ( - 1 , - 2 )  ; vertices:  ( - 5 , - 2 ) , ( 3 , - 2 )  ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)   Center:  ( - 1 , - 2 )  ; Vertices:  ( - 1 , - 6 ) , ( - 1,2 )  ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )  ; length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  .  center: (1,2)( 1,2 ) ; vertices: (1,2),(1,6)( 1 , - 2 ) , ( 1,6 ) ;
Foci: (1,2±42)( 1,2 \pm 4 \sqrt { 2 } ) ;
Length of transverse axis: 4;
Length of conjugate axis: 4;
Eccentricity: 22 ;
Asymptotes: y=x+3,y=x+1y = - x + 3 , y = x + 1 .
D)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0 </strong> A)   center:  ( - 1 , - 2 )  ; vertices:  ( - 5 , - 2 ) , ( 3 , - 2 )  ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)   Center:  ( - 1 , - 2 )  ; Vertices:  ( - 1 , - 6 ) , ( - 1,2 )  ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )  ; length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  .  center: (1,2)( 1,2 ) ; vertices: (1,2),(1,6)( 1 , - 2 ) , ( 1,6 ) ;
Foci: (1,2±42)( 1,2 \pm 4 \sqrt { 2 } ) ;
Length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x+3,y=x+1y = - x + 3 , y = x + 1 .
E)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0 </strong> A)   center:  ( - 1 , - 2 )  ; vertices:  ( - 5 , - 2 ) , ( 3 , - 2 )  ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)   Center:  ( - 1 , - 2 )  ; Vertices:  ( - 1 , - 6 ) , ( - 1,2 )  ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )  ; length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)   center:  ( 1,2 )  ; vertices:  ( 1 , - 2 ) , ( 1,6 )  ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  .  center: (1,2)( 1,2 ) ; vertices: (3,2),(5,2)( - 3,2 ) , ( 5,2 ) ;
Foci: (1±42,2)( 1 \pm 4 \sqrt { 2 } , 2 ) ;
Length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x+3,y=x+1y = - x + 3 , y = x + 1 .
   center:  ( 1,2 )  ; vertices:  ( - 3,2 ) , ( 5,2 )  ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )  ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  .  center: (1,2)( 1,2 ) ; vertices: (3,2),(5,2)( - 3,2 ) , ( 5,2 ) ;
Foci: (1±42,2)( 1 \pm 4 \sqrt { 2 } , 2 ) ;
Length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x+3,y=x+1y = - x + 3 , y = x + 1 .
4
Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity. (x2)222+(y+5)232=1\frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1

A) center: (- 2, 5);
Length of major axis: 6;
Length of minor axis: 4;
Foci: (2,5±5)( - 2,5 \pm \sqrt { 5 } ) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1 </strong> A) center: (- 2, 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }
B) center: (1, - 2.5);
Length of major axis: 3;
Length of minor axis: 2;
Foci: (1±52,2.5)\left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1 </strong> A) center: (- 2, 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }
C) center: (2, - 5);
Length of major axis: 6;
Length of minor axis: 4;
Foci: (2,5±5)( 2 , - 5 \pm \sqrt { 5 } ) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 } θ\theta
D) center: (1, - 2.5);
Length of major axis: 3;
Length of minor axis: 2;
Foci: (2,1.25±52)\left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1 </strong> A) center: (- 2, 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }
E) center: (2, - 5);
Length of major axis: 6;
Length of minor axis: 4;
Foci: (2±5,5)( 2 \pm \sqrt { 5 } , - 5 ) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1 </strong> A) center: (- 2, 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D) center: (1, - 2.5); Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E) center: (2, - 5); Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )  ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
5
Graph the parabola. Specify the focus, directrix, vertex and focal width. x2+5y+25=0x ^ { 2 } + 5 y + 25 = 0

A)  <strong>Graph the parabola. Specify the focus, directrix, vertex and focal width.  x ^ { 2 } + 5 y + 25 = 0 </strong> A)   Focal width: 1 B)   Focal width: 5 C)   Focal width: 5 D)   Focal width: 5 E)   Focal width: 1  Focal width: 1
B)  <strong>Graph the parabola. Specify the focus, directrix, vertex and focal width.  x ^ { 2 } + 5 y + 25 = 0 </strong> A)   Focal width: 1 B)   Focal width: 5 C)   Focal width: 5 D)   Focal width: 5 E)   Focal width: 1  Focal width: 5
C)  <strong>Graph the parabola. Specify the focus, directrix, vertex and focal width.  x ^ { 2 } + 5 y + 25 = 0 </strong> A)   Focal width: 1 B)   Focal width: 5 C)   Focal width: 5 D)   Focal width: 5 E)   Focal width: 1  Focal width: 5
D)  <strong>Graph the parabola. Specify the focus, directrix, vertex and focal width.  x ^ { 2 } + 5 y + 25 = 0 </strong> A)   Focal width: 1 B)   Focal width: 5 C)   Focal width: 5 D)   Focal width: 5 E)   Focal width: 1  Focal width: 5
E)  <strong>Graph the parabola. Specify the focus, directrix, vertex and focal width.  x ^ { 2 } + 5 y + 25 = 0 </strong> A)   Focal width: 1 B)   Focal width: 5 C)   Focal width: 5 D)   Focal width: 5 E)   Focal width: 1  Focal width: 1
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
6
Find the equation of the tangent to the parabola at the given point. x2=8y,(8,8)x ^ { 2 } = 8 y , ( 8,8 )

A) y = 2x - 16
B) y = 3x - 9
C) y = 2x - 9
D) y = 3x - 8
E) y = 2x - 8
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
7
Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. x225y2=25x ^ { 2 } - 25 y ^ { 2 } = 25

A) <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25 </strong> A)   vertices:  ( \pm 5,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)   vertices:  ( 0 , \pm 6 )  ; Foci:  ( 0 , \pm \sqrt { 37 } )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)    vertices:  ( 0 , \pm 5 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  .  vertices: (±5,0)( \pm 5,0 ) ;
Foci: (±26,0)( \pm \sqrt { 26 } , 0 ) ;
Length of transverse axis: 10;
Length of conjugate axis: 2;
Eccentricity: 265\frac { \sqrt { 26 } } { 5 }
Asymptotes: y=±15xy = \pm \frac { 1 } { 5 } x .
B)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25 </strong> A)   vertices:  ( \pm 5,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)   vertices:  ( 0 , \pm 6 )  ; Foci:  ( 0 , \pm \sqrt { 37 } )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)    vertices:  ( 0 , \pm 5 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  .  vertices: (0,±6)( 0 , \pm 6 ) ;
Foci: (0,±37)( 0 , \pm \sqrt { 37 } ) ;
Length of transverse axis: 2;
Length of conjugate axis: 12;
Eccentricity: 37\sqrt { 37 } ;
Asymptotes: y=±16xy = \pm \frac { 1 } { 6 } x .
C)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25 </strong> A)   vertices:  ( \pm 5,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)   vertices:  ( 0 , \pm 6 )  ; Foci:  ( 0 , \pm \sqrt { 37 } )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)    vertices:  ( 0 , \pm 5 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  .  vertices: (±1,0)( \pm 1,0 ) ;
Foci: (±26,0)( \pm \sqrt { 26 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 10;
Eccentricity: 26\sqrt { 26 } ;
Asymptotes: y=±5xy = \pm 5 x .
D)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25 </strong> A)   vertices:  ( \pm 5,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)   vertices:  ( 0 , \pm 6 )  ; Foci:  ( 0 , \pm \sqrt { 37 } )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)    vertices:  ( 0 , \pm 5 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  .  vertices: (0,±5)( 0 , \pm 5 ) ;
Foci: (0,±26)( 0 , \pm \sqrt { 26 } ) ;
Length of transverse axis: 10;
Length of conjugate axis: 2;
Eccentricity: 265\frac { \sqrt { 26 } } { 5 }
Asymptotes: y=±5xy = \pm 5 x .
E)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25 </strong> A)   vertices:  ( \pm 5,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)   vertices:  ( 0 , \pm 6 )  ; Foci:  ( 0 , \pm \sqrt { 37 } )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 26 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)    vertices:  ( 0 , \pm 5 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 26 } )  ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  .  vertices: (0,±1)( 0 , \pm 1 ) ;
Foci: (0,±26)( 0 , \pm \sqrt { 26 } ) ;
Length of transverse axis: 2;
Length of conjugate axis: 10;
Eccentricity: 26\sqrt { 26 } ;
Asymptotes: y=±15xy = \pm \frac { 1 } { 5 } x .
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
8
Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. 3y27x2=13 y ^ { 2 } - 7 x ^ { 2 } = 1

A)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)    vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)    vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  .  vertices: (±77,0)\left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right) ;
Foci: (±21021,0)\left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±213xy = \pm \frac { \sqrt { 21 } } { 3 } x .
B)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)    vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)    vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  .  vertices: (±36,0)\left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right) ;
Foci: (±233,0)\left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right) ;
Length of transverse axis: 33\frac { \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 22 ;
Eccentricity: 22 ;
Asymptotes: y=±33xy = \pm \frac { \sqrt { 3 } } { 3 } x .
C)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)    vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)    vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  .
vertices: (0,±33)\left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right) ;
Foci: (0,±21021)\left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±217xy = \pm \frac { \sqrt { 21 } } { 7 } x .
D)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)    vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)    vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  .  vertices: (±77,0)\left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right) ;
Foci: (±21021,0)\left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right) ;
Length of transverse axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Length of conjugate axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±217xy = \pm \frac { \sqrt { 21 } } { 7 } x .
E)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)    vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)    vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)  ; length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  .  vertices: (0,±33)\left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right) ;
Foci: (0,±21021)\left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right) ;
length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±213xy = \pm \frac { \sqrt { 21 } } { 3 } x .
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
9
Select the answer that represents the hyperbola as well as its eccentricity, center and values of aa , bb and cc . r=52+6cosθr = \frac { 5 } { 2 + 6 \cos \theta }

A)  <strong>Select the answer that represents the hyperbola as well as its eccentricity, center and values of  a  ,  b  and  c  .  r = \frac { 5 } { 2 + 6 \cos \theta } </strong> A)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  B)   Eccentricity:  3  Center:  \left( - \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  C)   Eccentricity:  3  Center:  \left( \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  D)   Eccentricity:  3  Center:  \left( - \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  E)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }   Eccentricity: 33 Center: (1516,0)\left( \frac { 15 } { 16 } , 0 \right) a=516,b=528,c=1516a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }
B)  <strong>Select the answer that represents the hyperbola as well as its eccentricity, center and values of  a  ,  b  and  c  .  r = \frac { 5 } { 2 + 6 \cos \theta } </strong> A)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  B)   Eccentricity:  3  Center:  \left( - \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  C)   Eccentricity:  3  Center:  \left( \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  D)   Eccentricity:  3  Center:  \left( - \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  E)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }   Eccentricity: 33 Center: (1516,0)\left( - \frac { 15 } { 16 } , 0 \right) a=516,b=528,c=1516a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }
C)  <strong>Select the answer that represents the hyperbola as well as its eccentricity, center and values of  a  ,  b  and  c  .  r = \frac { 5 } { 2 + 6 \cos \theta } </strong> A)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  B)   Eccentricity:  3  Center:  \left( - \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  C)   Eccentricity:  3  Center:  \left( \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  D)   Eccentricity:  3  Center:  \left( - \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  E)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }   Eccentricity: 33 Center: (12,0)\left( \frac { 1 } { 2 } , 0 \right) a=16,b=23,c=12a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }
D)  <strong>Select the answer that represents the hyperbola as well as its eccentricity, center and values of  a  ,  b  and  c  .  r = \frac { 5 } { 2 + 6 \cos \theta } </strong> A)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  B)   Eccentricity:  3  Center:  \left( - \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  C)   Eccentricity:  3  Center:  \left( \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  D)   Eccentricity:  3  Center:  \left( - \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  E)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }   Eccentricity: 33 Center: (12,0)\left( - \frac { 1 } { 2 } , 0 \right) a=16,b=23,c=12a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }
E)  <strong>Select the answer that represents the hyperbola as well as its eccentricity, center and values of  a  ,  b  and  c  .  r = \frac { 5 } { 2 + 6 \cos \theta } </strong> A)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  B)   Eccentricity:  3  Center:  \left( - \frac { 15 } { 16 } , 0 \right)   a = \frac { 5 } { 16 } , b = \frac { 5 \sqrt { 2 } } { 8 } , c = \frac { 15 } { 16 }  C)   Eccentricity:  3  Center:  \left( \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  D)   Eccentricity:  3  Center:  \left( - \frac { 1 } { 2 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }  E)   Eccentricity:  3  Center:  \left( \frac { 15 } { 16 } , 0 \right)   a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }   Eccentricity: 33 Center: (1516,0)\left( \frac { 15 } { 16 } , 0 \right) a=16,b=23,c=12a = \frac { 1 } { 6 } , b = \frac { \sqrt { 2 } } { 3 } , c = \frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
10
You are given an ellipse and a point P on the ellipse. Find F1PF _ { 1 } P and F2PF _ { 2 } P , the lengths of the focal radii. x2872+y2292=1;P(63,20)\frac { x ^ { 2 } } { 87 ^ { 2 } } + \frac { y ^ { 2 } } { 29 ^ { 2 } } = 1 ; P ( 63,20 )

A) F1P=87+422,F2P=87422F _ { 1 } P = 87 + 42 \sqrt { 2 } , F _ { 2 } P = 87 - 42 \sqrt { 2 }
B) F1P=841+422,F2P=29+422F _ { 1 } P = 841 + 42 \sqrt { 2 } , F _ { 2 } P = 29 + 42 \sqrt { 2 }
C) F1P=29+432,F2P=841432F _ { 1 } P = 29 + 43 \sqrt { 2 } , F _ { 2 } P = 841 - 43 \sqrt { 2 }
D) F1P=87422,F2P=87+423F _ { 1 } P = - 87 - 42 \sqrt { 2 } , F _ { 2 } P = 87 + 42 \sqrt { 3 }
E) F1P=29+432,F2P=841432F _ { 1 } P = - 29 + 43 \sqrt { 2 } , F _ { 2 } P = - 841 - 43 \sqrt { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
11
Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. 9x218x16y2+96y279=09 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0

A)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  9 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0 </strong> A)   B)   C)   D)   E)
B)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  9 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0 </strong> A)   B)   C)   D)   E)
C)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  9 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0 </strong> A)   B)   C)   D)   E)
D)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  9 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0 </strong> A)   B)   C)   D)   E)
E)  <strong>Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  9 x ^ { 2 } - 18 x - 16 y ^ { 2 } + 96 y - 279 = 0 </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
12
Suppose the line x7y+55=0x - 7 y + 55 = 0 intersects the circle x210x+y210y=25x ^ { 2 } - 10 x + y ^ { 2 } - 10 y = - 25 at points PP and ee . Find the length of the chord PQ\overline { P Q } .

A) 5\sqrt { 5 }
B) 525 \sqrt { 2 }
C) 252 \sqrt { 5 }
D) 36236 \sqrt { 2 }
E) 626 \sqrt { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
13
The point (1,2)( 1 , - 2 ) is the midpoint of a chord of the circle x24x+y2+2y=8x ^ { 2 } - 4 x + y ^ { 2 } + 2 y = 8 . Find the length of the chord.

A) 4114 \sqrt { 11 }
B) 22\sqrt { 22 }
C) 2222
D) 11211 \sqrt { 2 }
E) 2112 \sqrt { 11 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
14
Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity. 9x2+16y2=1449 x ^ { 2 } + 16 y ^ { 2 } = 144

A) length of major axis: 8;
Length of minor axis: 6;
Foci: (0,±7)( 0 , \pm \sqrt { 7 } ) ;
Eccentricity: 74\frac { \sqrt { 7 } } { 4 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity.  9 x ^ { 2 } + 16 y ^ { 2 } = 144 </strong> A) length of major axis: 8; Length of minor axis: 6; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    B) length of major axis: 4; Length of minor axis: 3; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    C) length of major axis: 9.6; Length of minor axis: 7.2; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    D) length of major axis: 8; Length of minor axis: 6; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    E) length of major axis: 4; Length of minor axis: 3; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }
B) length of major axis: 4;
Length of minor axis: 3;
Foci: (0,±7)( 0 , \pm \sqrt { 7 } ) ;
Eccentricity: 74\frac { \sqrt { 7 } } { 4 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity.  9 x ^ { 2 } + 16 y ^ { 2 } = 144 </strong> A) length of major axis: 8; Length of minor axis: 6; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    B) length of major axis: 4; Length of minor axis: 3; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    C) length of major axis: 9.6; Length of minor axis: 7.2; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    D) length of major axis: 8; Length of minor axis: 6; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    E) length of major axis: 4; Length of minor axis: 3; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }
C) length of major axis: 9.6;
Length of minor axis: 7.2;
Foci: (0,±7)( 0 , \pm \sqrt { 7 } ) ;
Eccentricity: 74\frac { \sqrt { 7 } } { 4 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity.  9 x ^ { 2 } + 16 y ^ { 2 } = 144 </strong> A) length of major axis: 8; Length of minor axis: 6; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    B) length of major axis: 4; Length of minor axis: 3; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    C) length of major axis: 9.6; Length of minor axis: 7.2; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    D) length of major axis: 8; Length of minor axis: 6; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    E) length of major axis: 4; Length of minor axis: 3; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }
D) length of major axis: 8;
Length of minor axis: 6;
Foci: (±7,0)( \pm \sqrt { 7 } , 0 ) ;
Eccentricity: 74\frac { \sqrt { 7 } } { 4 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity.  9 x ^ { 2 } + 16 y ^ { 2 } = 144 </strong> A) length of major axis: 8; Length of minor axis: 6; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    B) length of major axis: 4; Length of minor axis: 3; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    C) length of major axis: 9.6; Length of minor axis: 7.2; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    D) length of major axis: 8; Length of minor axis: 6; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    E) length of major axis: 4; Length of minor axis: 3; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }
E) length of major axis: 4;
Length of minor axis: 3;
Foci: (±7,0)( \pm \sqrt { 7 } , 0 ) ;
Eccentricity: 74\frac { \sqrt { 7 } } { 4 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci and the eccentricity.  9 x ^ { 2 } + 16 y ^ { 2 } = 144 </strong> A) length of major axis: 8; Length of minor axis: 6; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    B) length of major axis: 4; Length of minor axis: 3; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    C) length of major axis: 9.6; Length of minor axis: 7.2; Foci:  ( 0 , \pm \sqrt { 7 } )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    D) length of major axis: 8; Length of minor axis: 6; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }    E) length of major axis: 4; Length of minor axis: 3; Foci:  ( \pm \sqrt { 7 } , 0 )  ; Eccentricity:  \frac { \sqrt { 7 } } { 4 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
15
Find the equation of the tangent to the parabola at the given point. x2=y,(3,9)x ^ { 2 } = - y , ( - 3 , - 9 )

A) y = 5x + 8
B) y = 6x + 8
C) y = 6x + 9
D) y = 6x + 18
E) y = 5x + 9
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
16
Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. 3y211x2=13 y ^ { 2 } - 11 x ^ { 2 } = 1

A)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 11 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . B)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . E)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  .  vertices: (±1111,0)\left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right) ;
Foci: (±46233,0)\left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right) ;
Length of transverse axis: 21111\frac { 2 \sqrt { 11 } } { 11 } ;
Length of conjugate axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Eccentricity: 15411\frac { \sqrt { 154 } } { 11 } ;
Asymptotes: y=±3311xy = \pm \frac { \sqrt { 33 } } { 11 } x .
B) <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 11 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . B)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . E)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  .  vertices: (±1111,0)\left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right) ;
Foci: (±46233,0)\left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 21111\frac { 2 \sqrt { 11 } } { 11 } ;
Eccentricity: 15411\frac { \sqrt { 154 } } { 11 } ;
Asymptotes: y=±333xy = \pm \frac { \sqrt { 33 } } { 3 } x .
C)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 11 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . B)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . E)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  .  vertices: (0,±33)\left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right) ;
Foci: (0,±46233)\left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 21111\frac { 2 \sqrt { 11 } } { 11 } ;
Eccentricity: 15411\frac { \sqrt { 154 } } { 11 } ;
Asymptotes: y=±333xy = \pm \frac { \sqrt { 33 } } { 3 } x .
D)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 11 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . B)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . E)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  .  vertices: (±36,0)\left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right) ;
Foci: (±233,0)\left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right) ;
Length of transverse axis: 33\frac { \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 22 ;
Eccentricity: 22 ;
Asymptotes: y=±33xy = \pm \frac { \sqrt { 3 } } { 3 } x .
E)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 11 x ^ { 2 } = 1 </strong> A)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  . B)   vertices:  \left( \pm \frac { \sqrt { 11 } } { 11 } , 0 \right)  ; Foci:  \left( \pm \frac { \sqrt { 462 } } { 33 } , 0 \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . C)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 3 } x  . D)   vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)  ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)  ; Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . E)   vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)  ; Foci:  \left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right)  ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 11 } } { 11 }  ; Eccentricity:  \frac { \sqrt { 154 } } { 11 }  ; Asymptotes:  y = \pm \frac { \sqrt { 33 } } { 11 } x  .  vertices: (0,±33)\left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right) ;
Foci: (0,±46233)\left( 0 , \pm \frac { \sqrt { 462 } } { 33 } \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 21111\frac { 2 \sqrt { 11 } } { 11 } ;
Eccentricity: 15411\frac { \sqrt { 154 } } { 11 } ;
Asymptotes: y=±3311xy = \pm \frac { \sqrt { 33 } } { 11 } x .
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
17
Find the center and the radius of the circle that passes through the points (4,12),(10,2) and (2,6)( - 4,12 ) , ( 10 , - 2 ) \text { and } ( 2 , - 6 )

A)  The center is at (3,2) and the radius is 2.\text { The center is at } ( - 3,2 ) \text { and the radius is } 2 .
B) The center is at (0,2)( 0,2 ) and the radius is 0.0 .
C) The center is at (3,3)( 3,3 ) and the radius is 1.1 .
D) The center is at (0,0)( 0,0 ) and the radius is 7.
E) The center is at (2,4)( 2,4 ) and the radius is 10.10 .
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
18
Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. y24x2=4y ^ { 2 } - 4 x ^ { 2 } = 4

A)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4 </strong> A)   vertices:  ( 0 , \pm 2 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)    vertices: ( \pm 2,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)    vertices: ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 37 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  .  vertices: (0,±2)( 0 , \pm 2 ) ;
Foci: (0,±5)( 0 , \pm \sqrt { 5 } ) ;
Length of transverse axis: 4;
Length of conjugate axis: 2;
Eccentricity: 52\frac { \sqrt { 5 } } { 2 }
Asymptotes: y=±2xy = \pm 2 x .
B)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4 </strong> A)   vertices:  ( 0 , \pm 2 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)    vertices: ( \pm 2,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)    vertices: ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 37 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  .  vertices: (0,±1)( 0 , \pm 1 ) ;
Foci: (0,±5)( 0 , \pm \sqrt { 5 } ) ;
Length of transverse axis: 2;
Length of conjugate axis: 4;
Eccentricity: 5\sqrt { 5 } ;
Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x .
C)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4 </strong> A)   vertices:  ( 0 , \pm 2 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)    vertices: ( \pm 2,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)    vertices: ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 37 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  .  vertices: (±2,0)( \pm 2,0 ) ;
Foci: (±5,0)( \pm \sqrt { 5 } , 0 ) ;
Length of transverse axis: 4;
Length of conjugate axis: 2;
Eccentricity: 52\frac { \sqrt { 5 } } { 2 }
Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x .
D)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4 </strong> A)   vertices:  ( 0 , \pm 2 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)    vertices: ( \pm 2,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)    vertices: ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 37 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  .  vertices: (±1,0)( \pm 1,0 ) ;
Foci: (±37,0)( \pm \sqrt { 37 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 12;
Eccentricity: 37\sqrt { 37 } ;
Asymptotes: y=±37xy = \pm 37 x .
E)  <strong>Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4 </strong> A)   vertices:  ( 0 , \pm 2 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)   vertices:  ( 0 , \pm 1 )  ; Foci:  ( 0 , \pm \sqrt { 5 } )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)    vertices: ( \pm 2,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)    vertices: ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 37 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)   vertices:  ( \pm 1,0 )  ; Foci:  ( \pm \sqrt { 5 } , 0 )  ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  .  vertices: (±1,0)( \pm 1,0 ) ;
Foci: (±5,0)( \pm \sqrt { 5 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 4;
Eccentricity: 5\sqrt { 5 } Asymptotes: y=±2xy = \pm 2 x .
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
19
Use the given information to find the equation of the ellipse. The foci are (±2,0)( \pm 2,0 ) and the directrices are x=±3x = \pm 3 .

A) 5x2+3y2=145 x ^ { 2 } + 3 y ^ { 2 } = 14
B) 5x2+5y2=65 x ^ { 2 } + 5 y ^ { 2 } = 6
C) x2+5y2=6x ^ { 2 } + 5 y ^ { 2 } = 6
D) x2+3y2=6x ^ { 2 } + 3 y ^ { 2 } = 6
E) x2+5y2=14x ^ { 2 } + 5 y ^ { 2 } = 14
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
20
Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity. 4x2+25y2250y+525=04 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0

A) center: (0, 5);
Degenerate ellipse  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  4 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0 </strong> A) center: (0, 5); Degenerate ellipse   B) center: (1,  \frac { 3 } { 2 }  ); Degenerate ellipse   C) center: (5,0); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 5 , \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    D) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 0,5 \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    E) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( \pm \sqrt { 21 } , 5 )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }
B) center: (1, 32\frac { 3 } { 2 } );
Degenerate ellipse  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  4 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0 </strong> A) center: (0, 5); Degenerate ellipse   B) center: (1,  \frac { 3 } { 2 }  ); Degenerate ellipse   C) center: (5,0); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 5 , \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    D) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 0,5 \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    E) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( \pm \sqrt { 21 } , 5 )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }
C) center: (5,0);
Length of major axis: 10;
Length of minor axis: 4;
Foci: (5,±21)( 5 , \pm \sqrt { 21 } ) ;
Eccentricity: 215\frac { \sqrt { 21 } } { 5 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  4 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0 </strong> A) center: (0, 5); Degenerate ellipse   B) center: (1,  \frac { 3 } { 2 }  ); Degenerate ellipse   C) center: (5,0); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 5 , \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    D) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 0,5 \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    E) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( \pm \sqrt { 21 } , 5 )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }
D) center: (0, 5);
Length of major axis: 10;
Length of minor axis: 4;
Foci: (0,5±21)( 0,5 \pm \sqrt { 21 } ) ;
Eccentricity: 215\frac { \sqrt { 21 } } { 5 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  4 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0 </strong> A) center: (0, 5); Degenerate ellipse   B) center: (1,  \frac { 3 } { 2 }  ); Degenerate ellipse   C) center: (5,0); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 5 , \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    D) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 0,5 \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    E) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( \pm \sqrt { 21 } , 5 )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }
E) center: (0, 5);
Length of major axis: 10;
Length of minor axis: 4;
Foci: (±21,5)( \pm \sqrt { 21 } , 5 ) ;
Eccentricity: 215\frac { \sqrt { 21 } } { 5 }  <strong>Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  4 x ^ { 2 } + 25 y ^ { 2 } - 250 y + 525 = 0 </strong> A) center: (0, 5); Degenerate ellipse   B) center: (1,  \frac { 3 } { 2 }  ); Degenerate ellipse   C) center: (5,0); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 5 , \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    D) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( 0,5 \pm \sqrt { 21 } )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }    E) center: (0, 5); Length of major axis: 10; Length of minor axis: 4; Foci:  ( \pm \sqrt { 21 } , 5 )  ; Eccentricity:  \frac { \sqrt { 21 } } { 5 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
21
An angle of rotation is specified, followed by the coordinates of a point in the xyx ^ { \prime } - y ^ { \prime } system. Find the coordinates of the point with respect to the xyx - y system. θ=120\theta = 120 ^ { \circ } (x,y)=(3,8)\left( x ^ { \prime } , y ^ { \prime } \right) = ( \sqrt { 3 } , 8 )

A) (52,932)\left( \frac { 5 } { 2 } , \frac { 9 \sqrt { 3 } } { 2 } \right)
B) (932,52)\left( - \frac { 9 \sqrt { 3 } } { 2 } , - \frac { 5 } { 2 } \right)
C) (52,932)\left( - \frac { 5 } { 2 } , - \frac { 9 \sqrt { 3 } } { 2 } \right)
D) (932,52)\left( \frac { 9 \sqrt { 3 } } { 2 } , - \frac { 5 } { 2 } \right)
E) (932,52)\left( \frac { 9 \sqrt { 3 } } { 2 } , \frac { 5 } { 2 } \right)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
22
Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes. r=1355sinθr = \frac { 13 } { 5 - 5 \sin \theta }

A)  <strong>Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes.  r = \frac { 13 } { 5 - 5 \sin \theta } </strong> A)   Vertex:  \left( 0 , \frac { 13 } { 10 } \right)  Directrix:  y = \frac { 13 } { 5 }  B)   Vertex:  \left( - \frac { 13 } { 10 } , 0 \right)  Directrix:  x = - \frac { 13 } { 5 }  C)   Center:  ( 0,0 )  Eccentricity:  \frac { 5 } { 13 }  Major axis length:  \frac { 26 } { 5 }  Minor axis length:  \frac { 10 } { 13 }  D)   Vertex:  \left( \frac { 13 } { 10 } , 0 \right)  Directrix:  x = \frac { 13 } { 5 }  E)   Vertex:  \left( 0 , - \frac { 13 } { 10 } \right)  Directrix:  y = - \frac { 13 } { 5 }   Vertex: (0,1310)\left( 0 , \frac { 13 } { 10 } \right) Directrix: y=135y = \frac { 13 } { 5 }
B)  <strong>Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes.  r = \frac { 13 } { 5 - 5 \sin \theta } </strong> A)   Vertex:  \left( 0 , \frac { 13 } { 10 } \right)  Directrix:  y = \frac { 13 } { 5 }  B)   Vertex:  \left( - \frac { 13 } { 10 } , 0 \right)  Directrix:  x = - \frac { 13 } { 5 }  C)   Center:  ( 0,0 )  Eccentricity:  \frac { 5 } { 13 }  Major axis length:  \frac { 26 } { 5 }  Minor axis length:  \frac { 10 } { 13 }  D)   Vertex:  \left( \frac { 13 } { 10 } , 0 \right)  Directrix:  x = \frac { 13 } { 5 }  E)   Vertex:  \left( 0 , - \frac { 13 } { 10 } \right)  Directrix:  y = - \frac { 13 } { 5 }   Vertex: (1310,0)\left( - \frac { 13 } { 10 } , 0 \right) Directrix: x=135x = - \frac { 13 } { 5 }
C)  <strong>Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes.  r = \frac { 13 } { 5 - 5 \sin \theta } </strong> A)   Vertex:  \left( 0 , \frac { 13 } { 10 } \right)  Directrix:  y = \frac { 13 } { 5 }  B)   Vertex:  \left( - \frac { 13 } { 10 } , 0 \right)  Directrix:  x = - \frac { 13 } { 5 }  C)   Center:  ( 0,0 )  Eccentricity:  \frac { 5 } { 13 }  Major axis length:  \frac { 26 } { 5 }  Minor axis length:  \frac { 10 } { 13 }  D)   Vertex:  \left( \frac { 13 } { 10 } , 0 \right)  Directrix:  x = \frac { 13 } { 5 }  E)   Vertex:  \left( 0 , - \frac { 13 } { 10 } \right)  Directrix:  y = - \frac { 13 } { 5 }   Center: (0,0)( 0,0 ) Eccentricity: 513\frac { 5 } { 13 } Major axis length: 265\frac { 26 } { 5 }
Minor axis length: 1013\frac { 10 } { 13 }
D)  <strong>Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes.  r = \frac { 13 } { 5 - 5 \sin \theta } </strong> A)   Vertex:  \left( 0 , \frac { 13 } { 10 } \right)  Directrix:  y = \frac { 13 } { 5 }  B)   Vertex:  \left( - \frac { 13 } { 10 } , 0 \right)  Directrix:  x = - \frac { 13 } { 5 }  C)   Center:  ( 0,0 )  Eccentricity:  \frac { 5 } { 13 }  Major axis length:  \frac { 26 } { 5 }  Minor axis length:  \frac { 10 } { 13 }  D)   Vertex:  \left( \frac { 13 } { 10 } , 0 \right)  Directrix:  x = \frac { 13 } { 5 }  E)   Vertex:  \left( 0 , - \frac { 13 } { 10 } \right)  Directrix:  y = - \frac { 13 } { 5 }   Vertex: (1310,0)\left( \frac { 13 } { 10 } , 0 \right) Directrix: x=135x = \frac { 13 } { 5 }
E)  <strong>Select the graph that represents the given conic section. If the conic is a parabola, specify (using rectangular coordinates) the vertex and directrix. If the conic is an ellipse, specify the center, the eccentricity, and the lengths of the major and minor axes. If the conic is a hyperbola, specify the center, the eccentricity, and the lengths of the transverse and conjugate axes.  r = \frac { 13 } { 5 - 5 \sin \theta } </strong> A)   Vertex:  \left( 0 , \frac { 13 } { 10 } \right)  Directrix:  y = \frac { 13 } { 5 }  B)   Vertex:  \left( - \frac { 13 } { 10 } , 0 \right)  Directrix:  x = - \frac { 13 } { 5 }  C)   Center:  ( 0,0 )  Eccentricity:  \frac { 5 } { 13 }  Major axis length:  \frac { 26 } { 5 }  Minor axis length:  \frac { 10 } { 13 }  D)   Vertex:  \left( \frac { 13 } { 10 } , 0 \right)  Directrix:  x = \frac { 13 } { 5 }  E)   Vertex:  \left( 0 , - \frac { 13 } { 10 } \right)  Directrix:  y = - \frac { 13 } { 5 }   Vertex: (0,1310)\left( 0 , - \frac { 13 } { 10 } \right) Directrix: y=135y = - \frac { 13 } { 5 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
23
Find sinθ\sin \theta and cosθ\cos \theta , where θ\theta is the (acute) angle of rotation that eliminates the xyx ^ { \prime } y ^ { \prime } -term. Note: You are not asked to graph the equation. 175xy600y21=0175 x y - 600 y ^ { 2 } - 1 = 0

A) sinθ=45\sin \theta = \frac { 4 } { 5 } cosθ=35\cos \theta = \frac { 3 } { 5 }
B) sinθ=725\sin \theta = \frac { 7 \sqrt { 2 } } { 5 } cosθ=25\cos \theta = \frac { \sqrt { 2 } } { 5 }
C) sinθ=35\sin \theta = \frac { 3 } { 5 } cosθ=45\cos \theta = \frac { 4 } { 5 }
D) sinθ=210\sin \theta = \frac { \sqrt { 2 } } { 10 } cosθ=7210\cos \theta = \frac { 7 \sqrt { 2 } } { 10 }
E) sinθ=22\sin \theta = \frac { \sqrt { 2 } } { 2 } cosθ=22\cos \theta = \frac { \sqrt { 2 } } { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
24
Find sinθ\sin \theta and cosθ\cos \theta , where θ\theta is the (acute) angle of rotation that eliminates the xyx ^ { \prime } y ^ { \prime } -term. Note: You are not asked to graph the equation. 124x2+7xy+100y2=0124 x ^ { 2 } + 7 x y + 100 y ^ { 2 } = 0

A) sinθ=7226\sin \theta = \frac { 7 \sqrt { 2 } } { 26 } cosθ=17226\cos \theta = \frac { 17 \sqrt { 2 } } { 26 }
B) sinθ=210\sin \theta = \frac { \sqrt { 2 } } { 10 } cosθ=17226\cos \theta = \frac { 17 \sqrt { 2 } } { 26 }
C) sinθ=210\sin \theta = \frac { \sqrt { 2 } } { 10 } cosθ=7210\cos \theta = \frac { 7 \sqrt { 2 } } { 10 }
D) sinθ=17226\sin \theta = \frac { 17 \sqrt { 2 } } { 26 } cosθ=7226\cos \theta = \frac { 7 \sqrt { 2 } } { 26 }
E) sinθ=7210\sin \theta = \frac { 7 \sqrt { 2 } } { 10 } cosθ=210\cos \theta = \frac { \sqrt { 2 } } { 10 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
25
Determine the graph that represents the equation. 5x2+6xy+5y2102x62y+8=05 x ^ { 2 } + 6 x y + 5 y ^ { 2 } - 10 \sqrt { 2 } x - 6 \sqrt { 2 } y + 8 = 0

A)  <strong>Determine the graph that represents the equation.  5 x ^ { 2 } + 6 x y + 5 y ^ { 2 } - 10 \sqrt { 2 } x - 6 \sqrt { 2 } y + 8 = 0 </strong> A)   B)   C)   D)   E) no graph
B)  <strong>Determine the graph that represents the equation.  5 x ^ { 2 } + 6 x y + 5 y ^ { 2 } - 10 \sqrt { 2 } x - 6 \sqrt { 2 } y + 8 = 0 </strong> A)   B)   C)   D)   E) no graph
C)  <strong>Determine the graph that represents the equation.  5 x ^ { 2 } + 6 x y + 5 y ^ { 2 } - 10 \sqrt { 2 } x - 6 \sqrt { 2 } y + 8 = 0 </strong> A)   B)   C)   D)   E) no graph
D)  <strong>Determine the graph that represents the equation.  5 x ^ { 2 } + 6 x y + 5 y ^ { 2 } - 10 \sqrt { 2 } x - 6 \sqrt { 2 } y + 8 = 0 </strong> A)   B)   C)   D)   E) no graph
E) no graph
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 25 flashcards in this deck.