Deck 14: Additional Topics in Algebra

Full screen (f)
exit full mode
Question
Find the right part of the equality. 4+5+6++(n+3)=4 + 5 + 6 + \cdots + ( n + 3 ) =

A) n(8n+7)3\frac { n ( 8 n + 7 ) } { 3 }
B) n(n+7)2\frac { n ( n + 7 ) } { 2 }
C) n(5n+7)3\frac { n ( 5 n + 7 ) } { 3 }
D) n(5n1)n ( 5 n - 1 )
E) n(n+7)n\frac { n ( n + 7 ) } { n }
Use Space or
up arrow
down arrow
to flip the card.
Question
Carry out the expansion. (2a + b) 9

A) 2a 9 + 2,304a 8 b + 4,608a 7 b 2 + 5,376a 6 b 3 + 4,032a 5 b 4 + 2,016a 4 b 5 + 672a 3 b 6 + 144a 2 b 7 + 18ab 8 + b 9
B) 512 a 9 + 2,304a 8 b - 4,608a 7 b 2 + 5,376a 6 b 3 - 4,032a 5 b 4 + 2,016a 4 b 5 - 672a 3 b 6 + 144a 2 b 7 - 18ab 8 + b 9
C) 512a 9 + 2,304a 8 b + 4,610a 7 b 2 + 5,376a 6 b 3 + 4,032a 5 b 4 + 2,016a 4 b 5 + 672a 3 b 6 + 144a 2 b 7 + 18ab 8 + b 9
D) 512a 9 + 2,304a 8 b - 4,608a 7 b 2 + 5,376a 6 b 3 - 4,032a 5 b 4 + 2,016a 4 b 5 - 672a 3 b 6 + 144a 2 b 7 - 18ab 8 + b 9
E) 512a 9 + 2,304a 8 b + 4,608a 7 b 2 + 5,376a 6 b 3 + 4,032a 5 b 4 + 2,016a 4 b 5 + 672a 3 b 6 + 144a 2 b 7 + 18ab 8 + b 9
Question
Find the indicated term. 11,20,29,38,,a1211,20,29,38 , \ldots , a _ { 12 }

A) 101
B) 110
C) 220
D) 55
E) 111
Question
Evaluate the sum. n=20110(2n1)\sum _ { n = 20 } ^ { 110 } ( 2 n - 1 )

A) 11,63911,639
B) 11,68911,689
C) 11,78911,789
D) 11,83911,839
E) 11,73911,739
Question
Evaluate and simplify. (40)\left( \begin{array} { l } 4 \\0\end{array} \right)

A) 0
B) 4
C) 14
D) 9
E) 1
Question
Find the indicated term. 5,2,1,4,,a205,2 , - 1 , - 4 , \ldots , a _ { 20 }

A) 49- 49
B) 51- 51
C) 26- 26
D) 52- 52
E) 56- 56
Question
Carry out the expansion. (2 - 2x) 6

A) 64 - 387x - 957x 2 - 1,280x 3 - 960x 4 - 384x 5 - 64x 6
B) 64 + 384x + 960x 2 - 1,280x 3 + 960x 4 - 384x 5 + 64x 6
C) 64 - 384x - 960x 2 - 1,280x 3 - 960x 4 - 384x 5 - 64x 6
D) 64 - 384x + 960x 2 - 1,280x 3 + 960x 4 - 384x 5 + 64x 6
E) 64 - 387x + 960x 2 - 1,280x 3 + 960x 4 - 384x 5 + 64x 6
Question
Find limx5[g(x)f(x)]\lim _ { x \rightarrow 5 } [ g ( x ) - f ( x ) ] for f(x)=4x3f ( x ) = 4 x ^ { 3 } and g(x)=x2+53x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 5 } } { 3 x ^ { 2 } } .

A) 20303\frac { 20 \sqrt { 30 } } { 3 }
B) limit does not exist
C) 63+500\frac { \sqrt { 6 } } { 3 } + 500
D) 63500\frac { \sqrt { 6 } } { 3 } - 500
E) 3075500\frac { \sqrt { 30 } } { 75 } - 500
Question
Use the graph to find limx34x236x3\lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 }  <strong>Use the graph to find  \lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 }   </strong> A) 24 B)  \infty  C) 0 D) 12 E) limit does not exist <div style=padding-top: 35px>

A) 24
B) \infty
C) 0
D) 12
E) limit does not exist
Question
Find the sum of the first 50 terms in an arithmetic series that has first term - 18 and 50th term 129.

A) 2,9002,900
B) 2,8852,885
C) 2,6552,655
D) 2,7752,775
E) 2,9952,995
Question
For what natural numbers is the following inequality true? (1.15)n>n( 1.15 ) ^ { n } > n

A) n25n \geq 25
B) n2n \geq 2
C) n23n \geq 23
D) n23n \leq 23
E) 37n5437 \leq n \leq 54
Question
For what natural numbers is the following inequality true? n3>(n+10)2n ^ { 3 } > ( n + 10 ) ^ { 2 }

A) n7n \leq 7
B) n8n \geq 8
C) 25n2525 \leq n \leq 25
D) 9n259 \leq n \leq 25
E) n7n \geq 7
Question
The sequence is defined recursively. Compute the first five terms of the sequence. a1=2;an=a2n1+1,n2a _ { 1 } = - 2 ; a _ { n } = \sqrt { a _ { 2 } ^ { n - 1 } + 1 } , n \geq 2

A) 2,5,6,5,2- 2 , \sqrt { 5 } , \sqrt { 6 } , \sqrt { 5 } , \sqrt { 2 }
B) 2,10,6,7,42- 2 , \sqrt { 10 } , \sqrt { 6 } , \sqrt { 7 } , 4 \sqrt { 2 }
C) 2,5,6,7,22- 2 , \sqrt { 5 } , \sqrt { 6 } , \sqrt { 7 } , 2 \sqrt { 2 }
D) 2,5,3,7,28- 2 , \sqrt { 5 } , \sqrt { 3 } , \sqrt { 7 } , 2 \sqrt { 8 }
E) 2,5,3,7,2- 2 , \sqrt { 5 } , \sqrt { 3 } , \sqrt { 7 } , \sqrt { 2 }
Question
Find the coefficient of the term containing a 4 in the expansion of (ax)16( \sqrt { a } - \sqrt { x } ) ^ { 16 } .

A) 12,870
B) 495
C) 12,871
D) 25,740
E) 1,839
Question
Find the right part of the equality. 12+23+34++n(n+1)=1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n ( n + 1 ) = ________

A) n2(n+3)4\frac { n ^ { 2 } ( n + 3 ) } { 4 }
B) n(n+1)(n+2)3\frac { n ( n + 1 ) ( n + 2 ) } { 3 }
C) n(4n2+6n1)3\frac { n \left( 4 n ^ { 2 } + 6 n - 1 \right) } { 3 }
D) n2(n1)(n+3)2\frac { n ^ { 2 } ( n - 1 ) ( n + 3 ) } { 2 }
Question
Find the third term in the expansion of (a - b) 27 .

A) - 17,550a 4 b 23
B) 17,550a 23 b 4
C) - 17,550a 23 b 4
D) 17,551a 23 b 4
E) - 17,551a 23 b 4
Question
The sum of three consecutive terms in an arithmetic sequence is 30, and their product is 750. Find the three terms. (Suggestion: Let x denote the middle term and d the common difference.)

A) 5, 9, 13
B) 4, 9, 14
C) 5, 10, 15
D) 1, 10, 15
E) 6, 10, 14
Question
Express as a fraction. 0.710 . \overline { 71 }

A) 7199\frac { 71 } { 99 }
B) 71100\frac { 71 } { 100 }
C) 71110\frac { 71 } { 110 }
D) 71183\frac { 71 } { 183 }
E) 7197\frac { 71 } { 97 }
Question
Find the common difference d for the following arithmetic sequence. 12, 7, 2, - 3, ...

A) 5
B) - 5
C) 3
D) - 3
E) - 6
Question
Find the right part of the equality. 12+22+32++n2=1 ^ { 2 } + 2 ^ { 2 } + 3 ^ { 2 } + \ldots + n ^ { 2 } = ________

A) n(n+1)(2n+1)6\frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 }
B) n(n+1)(n+3)4\frac { n ( n + 1 ) ( n + 3 ) } { 4 }
C) n(n+1)2\frac { n ( n + 1 ) } { 2 }
D) (n+1)(n+2)3\frac { ( n + 1 ) ( n + 2 ) } { 3 }
E) none of the above
Question
Use the position function s(t)=16t2+120s ( t ) = - 16 t ^ { 2 } + 120 to find the velocity in feet/second at time t=2t = 2 seconds. The velocity at time t=ct = c seconds is given by limtc[s(c)s(t)](ct)\lim _ { t \rightarrow c } \frac { [ s ( c ) - s ( t ) ] } { ( c - t ) }

A) limit does not exist
B) 32 feet/second
C) 64 feet/second
D) 0 feet/second
E) -64 feet/second
Question
Find limy013+y13y\lim _ { y \rightarrow 0 } \frac { \sqrt { 13 + y } - \sqrt { 13 } } { y } .

A) 1313\frac { \sqrt { 13 } } { 13 }
B) limit does not exist
C) 132\frac { \sqrt { 13 } } { 2 }
D) 1326\frac { \sqrt { 13 } } { 26 }
E) 0
Question
Find limx6x+5x2\lim _ { x \rightarrow 6 } \frac { \sqrt { x + 5 } } { x - 2 } by direct substitution.

A) 114\frac { \sqrt { 11 } } { 4 }
B) 112\frac { \sqrt { 11 } } { 2 }
C) 64\frac { \sqrt { 6 } } { 4 }
D) 11\sqrt { 11 }
E) 14\frac { 1 } { 4 }
Question
Use the graph to determine limx0x23xx\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - 3 x } { x } (if it exists).  <strong>Use the graph to determine  \lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - 3 x } { x }  (if it exists).  </strong> A) 0 B) 3 C) -3 D) limit does not exist E) 6 <div style=padding-top: 35px>

A) 0
B) 3
C) -3
D) limit does not exist
E) 6
Question
Find limt5t3125t5\lim _ { t \rightarrow 5 } \frac { t ^ { 3 } - 125 } { t - 5 } .

A) limit does not exist
B) 5
C) 50
D) 75
E) 15
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Additional Topics in Algebra
1
Find the right part of the equality. 4+5+6++(n+3)=4 + 5 + 6 + \cdots + ( n + 3 ) =

A) n(8n+7)3\frac { n ( 8 n + 7 ) } { 3 }
B) n(n+7)2\frac { n ( n + 7 ) } { 2 }
C) n(5n+7)3\frac { n ( 5 n + 7 ) } { 3 }
D) n(5n1)n ( 5 n - 1 )
E) n(n+7)n\frac { n ( n + 7 ) } { n }
n(n+7)2\frac { n ( n + 7 ) } { 2 }
2
Carry out the expansion. (2a + b) 9

A) 2a 9 + 2,304a 8 b + 4,608a 7 b 2 + 5,376a 6 b 3 + 4,032a 5 b 4 + 2,016a 4 b 5 + 672a 3 b 6 + 144a 2 b 7 + 18ab 8 + b 9
B) 512 a 9 + 2,304a 8 b - 4,608a 7 b 2 + 5,376a 6 b 3 - 4,032a 5 b 4 + 2,016a 4 b 5 - 672a 3 b 6 + 144a 2 b 7 - 18ab 8 + b 9
C) 512a 9 + 2,304a 8 b + 4,610a 7 b 2 + 5,376a 6 b 3 + 4,032a 5 b 4 + 2,016a 4 b 5 + 672a 3 b 6 + 144a 2 b 7 + 18ab 8 + b 9
D) 512a 9 + 2,304a 8 b - 4,608a 7 b 2 + 5,376a 6 b 3 - 4,032a 5 b 4 + 2,016a 4 b 5 - 672a 3 b 6 + 144a 2 b 7 - 18ab 8 + b 9
E) 512a 9 + 2,304a 8 b + 4,608a 7 b 2 + 5,376a 6 b 3 + 4,032a 5 b 4 + 2,016a 4 b 5 + 672a 3 b 6 + 144a 2 b 7 + 18ab 8 + b 9
512a 9 + 2,304a 8 b + 4,608a 7 b 2 + 5,376a 6 b 3 + 4,032a 5 b 4 + 2,016a 4 b 5 + 672a 3 b 6 + 144a 2 b 7 + 18ab 8 + b 9
3
Find the indicated term. 11,20,29,38,,a1211,20,29,38 , \ldots , a _ { 12 }

A) 101
B) 110
C) 220
D) 55
E) 111
110
4
Evaluate the sum. n=20110(2n1)\sum _ { n = 20 } ^ { 110 } ( 2 n - 1 )

A) 11,63911,639
B) 11,68911,689
C) 11,78911,789
D) 11,83911,839
E) 11,73911,739
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
5
Evaluate and simplify. (40)\left( \begin{array} { l } 4 \\0\end{array} \right)

A) 0
B) 4
C) 14
D) 9
E) 1
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
6
Find the indicated term. 5,2,1,4,,a205,2 , - 1 , - 4 , \ldots , a _ { 20 }

A) 49- 49
B) 51- 51
C) 26- 26
D) 52- 52
E) 56- 56
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
7
Carry out the expansion. (2 - 2x) 6

A) 64 - 387x - 957x 2 - 1,280x 3 - 960x 4 - 384x 5 - 64x 6
B) 64 + 384x + 960x 2 - 1,280x 3 + 960x 4 - 384x 5 + 64x 6
C) 64 - 384x - 960x 2 - 1,280x 3 - 960x 4 - 384x 5 - 64x 6
D) 64 - 384x + 960x 2 - 1,280x 3 + 960x 4 - 384x 5 + 64x 6
E) 64 - 387x + 960x 2 - 1,280x 3 + 960x 4 - 384x 5 + 64x 6
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
8
Find limx5[g(x)f(x)]\lim _ { x \rightarrow 5 } [ g ( x ) - f ( x ) ] for f(x)=4x3f ( x ) = 4 x ^ { 3 } and g(x)=x2+53x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 5 } } { 3 x ^ { 2 } } .

A) 20303\frac { 20 \sqrt { 30 } } { 3 }
B) limit does not exist
C) 63+500\frac { \sqrt { 6 } } { 3 } + 500
D) 63500\frac { \sqrt { 6 } } { 3 } - 500
E) 3075500\frac { \sqrt { 30 } } { 75 } - 500
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
9
Use the graph to find limx34x236x3\lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 }  <strong>Use the graph to find  \lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 }   </strong> A) 24 B)  \infty  C) 0 D) 12 E) limit does not exist

A) 24
B) \infty
C) 0
D) 12
E) limit does not exist
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
10
Find the sum of the first 50 terms in an arithmetic series that has first term - 18 and 50th term 129.

A) 2,9002,900
B) 2,8852,885
C) 2,6552,655
D) 2,7752,775
E) 2,9952,995
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
11
For what natural numbers is the following inequality true? (1.15)n>n( 1.15 ) ^ { n } > n

A) n25n \geq 25
B) n2n \geq 2
C) n23n \geq 23
D) n23n \leq 23
E) 37n5437 \leq n \leq 54
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
12
For what natural numbers is the following inequality true? n3>(n+10)2n ^ { 3 } > ( n + 10 ) ^ { 2 }

A) n7n \leq 7
B) n8n \geq 8
C) 25n2525 \leq n \leq 25
D) 9n259 \leq n \leq 25
E) n7n \geq 7
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
13
The sequence is defined recursively. Compute the first five terms of the sequence. a1=2;an=a2n1+1,n2a _ { 1 } = - 2 ; a _ { n } = \sqrt { a _ { 2 } ^ { n - 1 } + 1 } , n \geq 2

A) 2,5,6,5,2- 2 , \sqrt { 5 } , \sqrt { 6 } , \sqrt { 5 } , \sqrt { 2 }
B) 2,10,6,7,42- 2 , \sqrt { 10 } , \sqrt { 6 } , \sqrt { 7 } , 4 \sqrt { 2 }
C) 2,5,6,7,22- 2 , \sqrt { 5 } , \sqrt { 6 } , \sqrt { 7 } , 2 \sqrt { 2 }
D) 2,5,3,7,28- 2 , \sqrt { 5 } , \sqrt { 3 } , \sqrt { 7 } , 2 \sqrt { 8 }
E) 2,5,3,7,2- 2 , \sqrt { 5 } , \sqrt { 3 } , \sqrt { 7 } , \sqrt { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
14
Find the coefficient of the term containing a 4 in the expansion of (ax)16( \sqrt { a } - \sqrt { x } ) ^ { 16 } .

A) 12,870
B) 495
C) 12,871
D) 25,740
E) 1,839
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
15
Find the right part of the equality. 12+23+34++n(n+1)=1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n ( n + 1 ) = ________

A) n2(n+3)4\frac { n ^ { 2 } ( n + 3 ) } { 4 }
B) n(n+1)(n+2)3\frac { n ( n + 1 ) ( n + 2 ) } { 3 }
C) n(4n2+6n1)3\frac { n \left( 4 n ^ { 2 } + 6 n - 1 \right) } { 3 }
D) n2(n1)(n+3)2\frac { n ^ { 2 } ( n - 1 ) ( n + 3 ) } { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
16
Find the third term in the expansion of (a - b) 27 .

A) - 17,550a 4 b 23
B) 17,550a 23 b 4
C) - 17,550a 23 b 4
D) 17,551a 23 b 4
E) - 17,551a 23 b 4
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
17
The sum of three consecutive terms in an arithmetic sequence is 30, and their product is 750. Find the three terms. (Suggestion: Let x denote the middle term and d the common difference.)

A) 5, 9, 13
B) 4, 9, 14
C) 5, 10, 15
D) 1, 10, 15
E) 6, 10, 14
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
18
Express as a fraction. 0.710 . \overline { 71 }

A) 7199\frac { 71 } { 99 }
B) 71100\frac { 71 } { 100 }
C) 71110\frac { 71 } { 110 }
D) 71183\frac { 71 } { 183 }
E) 7197\frac { 71 } { 97 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
19
Find the common difference d for the following arithmetic sequence. 12, 7, 2, - 3, ...

A) 5
B) - 5
C) 3
D) - 3
E) - 6
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
20
Find the right part of the equality. 12+22+32++n2=1 ^ { 2 } + 2 ^ { 2 } + 3 ^ { 2 } + \ldots + n ^ { 2 } = ________

A) n(n+1)(2n+1)6\frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 }
B) n(n+1)(n+3)4\frac { n ( n + 1 ) ( n + 3 ) } { 4 }
C) n(n+1)2\frac { n ( n + 1 ) } { 2 }
D) (n+1)(n+2)3\frac { ( n + 1 ) ( n + 2 ) } { 3 }
E) none of the above
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
21
Use the position function s(t)=16t2+120s ( t ) = - 16 t ^ { 2 } + 120 to find the velocity in feet/second at time t=2t = 2 seconds. The velocity at time t=ct = c seconds is given by limtc[s(c)s(t)](ct)\lim _ { t \rightarrow c } \frac { [ s ( c ) - s ( t ) ] } { ( c - t ) }

A) limit does not exist
B) 32 feet/second
C) 64 feet/second
D) 0 feet/second
E) -64 feet/second
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
22
Find limy013+y13y\lim _ { y \rightarrow 0 } \frac { \sqrt { 13 + y } - \sqrt { 13 } } { y } .

A) 1313\frac { \sqrt { 13 } } { 13 }
B) limit does not exist
C) 132\frac { \sqrt { 13 } } { 2 }
D) 1326\frac { \sqrt { 13 } } { 26 }
E) 0
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
23
Find limx6x+5x2\lim _ { x \rightarrow 6 } \frac { \sqrt { x + 5 } } { x - 2 } by direct substitution.

A) 114\frac { \sqrt { 11 } } { 4 }
B) 112\frac { \sqrt { 11 } } { 2 }
C) 64\frac { \sqrt { 6 } } { 4 }
D) 11\sqrt { 11 }
E) 14\frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
24
Use the graph to determine limx0x23xx\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - 3 x } { x } (if it exists).  <strong>Use the graph to determine  \lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - 3 x } { x }  (if it exists).  </strong> A) 0 B) 3 C) -3 D) limit does not exist E) 6

A) 0
B) 3
C) -3
D) limit does not exist
E) 6
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
25
Find limt5t3125t5\lim _ { t \rightarrow 5 } \frac { t ^ { 3 } - 125 } { t - 5 } .

A) limit does not exist
B) 5
C) 50
D) 75
E) 15
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 25 flashcards in this deck.