Deck 6: An Introduction to Trigonometry Via Right Triangles

Full screen (f)
exit full mode
Question
From a point on ground level, you measure the angle of elevation to the top of a mountain to be 3737 ^ { \circ } . Then you walk 150 m150 \mathrm {~m} farther away from the mountain and find that the angle of elevation is now 2020 ^ { \circ } . Find the height of the mountain.

A) 5555 m
B) 8484 m
C) 8181 m
D) 113113 m
E) 106106 m
Use Space or
up arrow
down arrow
to flip the card.
Question
In ACD\triangle A C D , you are given C=90,A=60\angle C = 90 ^ { \circ } , \angle A = 60 ^ { \circ } and AC=9A C = 9 . If BB is a point on CD\overline { C D } and BAC=45\angle B A C = 45 ^ { \circ } , find BDB D .

A) BD=6B D = 6
B) BD=B D = 3(33)3 ( 3 - \sqrt { 3 } )
C) BD=B D = 636 \sqrt { 3 }
D) BD=3B D = 3
E) BD=B D = 9(31)9 ( \sqrt { 3 } - 1 )
Question
The radius of the circle in the figure is 2 units. Express the length DCD C in terms of α\alpha .  <strong>The radius of the circle in the figure is 2 units. Express the length  D C  in terms of  \alpha  .  </strong> A)  2 \cos \alpha  B)  2 \cot \alpha  C)  2 \sin \alpha  D)  2 \tan \alpha  E)  2 \sec \alpha  <div style=padding-top: 35px>

A) 2cosα2 \cos \alpha
B) 2cotα2 \cot \alpha
C) 2sinα2 \sin \alpha
D) 2tanα2 \tan \alpha
E) 2secα2 \sec \alpha
Question
Find the area of the triangle. Use a calculator and round your final answer to two decimal places.  <strong>Find the area of the triangle. Use a calculator and round your final answer to two decimal places.  </strong> A)  2.08 \mathrm {~cm} ^ { 2 }  B)  5.91 \mathrm {~cm} ^ { 2 }  C)  11.82 \mathrm {~cm} ^ { 2 }  D)  1.04 \mathrm {~cm} ^ { 2 }  E)  2.95 \mathrm {~cm} ^ { 2 }  <div style=padding-top: 35px>

A) 2.08 cm22.08 \mathrm {~cm} ^ { 2 }
B) 5.91 cm25.91 \mathrm {~cm} ^ { 2 }
C) 11.82 cm211.82 \mathrm {~cm} ^ { 2 }
D) 1.04 cm21.04 \mathrm {~cm} ^ { 2 }
E) 2.95 cm22.95 \mathrm {~cm} ^ { 2 }
Question
Refer to the figure. If A=60\angle A = 60 ^ { \circ } and AB=40 cmA B = 40 \mathrm {~cm} , find ACA C .  <strong>Refer to the figure. If  \angle A = 60 ^ { \circ }  and  A B = 40 \mathrm {~cm}  , find  A C  .  </strong> A)  A C = 40 \sqrt { 3 }  cm B)  A C = 20  cm C)  A C = 40  cm D)  A C = \sqrt { 3 }  cm E)  A C = 20 \sqrt { 5 }  cm <div style=padding-top: 35px>

A) AC=403A C = 40 \sqrt { 3 } cm
B) AC=20A C = 20 cm
C) AC=40A C = 40 cm
D) AC=3A C = \sqrt { 3 } cm
E) AC=205A C = 20 \sqrt { 5 } cm
Question
Use the definitions to evaluate the six trigonometric functions of θ\theta . In cases in which a radical occurs in a denominator, rationalize the denominator.  <strong>Use the definitions to evaluate the six trigonometric functions of  \theta  . In cases in which a radical occurs in a denominator, rationalize the denominator.  </strong> A)  \sin \theta = \frac { \sqrt { 5 } } { 2 } , \tan \theta = \frac { 5 \sqrt { 5 } } { 2 } , \csc \theta = 5   \cos \theta = \sqrt { 5 } , \cot \theta = \frac { \sqrt { 5 } } { 2 } , \sec \theta = \frac { 1 } { 5 }  B)  \sin \theta = \frac { \sqrt { 11 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 11 } } { 7 } , \csc \theta = 2   \cos \theta = \sqrt { 11 } , \cot \theta = \frac { \sqrt { 11 } } { 2 } , \sec \theta = \frac { 1 } { 7 }  C)  \sin \theta = \frac { 4 \sqrt { 5 } } { 5 } , \tan \theta = 4 , \csc \theta = \frac { \sqrt { 5 } } { 4 }   \cos \theta = \frac { \sqrt { 5 } } { 2 } , \cot \theta = \frac { 1 } { 4 } , \sec \theta = \sqrt { 5 }  D)  \sin \theta = \frac { \sqrt { 5 } } { 5 } , \tan \theta = \frac { 1 } { 2 } , \csc \theta = \sqrt { 5 }   \cos \theta = \frac { 2 \sqrt { 5 } } { 5 } , \cot \theta = 2 , \sec \theta = \frac { \sqrt { 5 } } { 2 }  E)  \sin \theta = \frac { \sqrt { 7 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 7 } } { 5 } , \csc \theta = 2   \cos \theta = \sqrt { 7 } , \cot \theta = \frac { \sqrt { 7 } } { 2 } , \sec \theta = \frac { 1 } { 2 }  <div style=padding-top: 35px>

A) sinθ=52,tanθ=552,cscθ=5\sin \theta = \frac { \sqrt { 5 } } { 2 } , \tan \theta = \frac { 5 \sqrt { 5 } } { 2 } , \csc \theta = 5 cosθ=5,cotθ=52,secθ=15\cos \theta = \sqrt { 5 } , \cot \theta = \frac { \sqrt { 5 } } { 2 } , \sec \theta = \frac { 1 } { 5 }
B) sinθ=115,tanθ=2117,cscθ=2\sin \theta = \frac { \sqrt { 11 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 11 } } { 7 } , \csc \theta = 2 cosθ=11,cotθ=112,secθ=17\cos \theta = \sqrt { 11 } , \cot \theta = \frac { \sqrt { 11 } } { 2 } , \sec \theta = \frac { 1 } { 7 }
C) sinθ=455,tanθ=4,cscθ=54\sin \theta = \frac { 4 \sqrt { 5 } } { 5 } , \tan \theta = 4 , \csc \theta = \frac { \sqrt { 5 } } { 4 } cosθ=52,cotθ=14,secθ=5\cos \theta = \frac { \sqrt { 5 } } { 2 } , \cot \theta = \frac { 1 } { 4 } , \sec \theta = \sqrt { 5 }
D) sinθ=55,tanθ=12,cscθ=5\sin \theta = \frac { \sqrt { 5 } } { 5 } , \tan \theta = \frac { 1 } { 2 } , \csc \theta = \sqrt { 5 } cosθ=255,cotθ=2,secθ=52\cos \theta = \frac { 2 \sqrt { 5 } } { 5 } , \cot \theta = 2 , \sec \theta = \frac { \sqrt { 5 } } { 2 }
E) sinθ=75,tanθ=275,cscθ=2\sin \theta = \frac { \sqrt { 7 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 7 } } { 5 } , \csc \theta = 2 cosθ=7,cotθ=72,secθ=12\cos \theta = \sqrt { 7 } , \cot \theta = \frac { \sqrt { 7 } } { 2 } , \sec \theta = \frac { 1 } { 2 }
Question
Evaluate the expression using the concept of a reference angle. sin(150)\sin \left( - 150 ^ { \circ } \right)

A) 66\frac { \sqrt { 6 } } { 6 }
B) 62\frac { \sqrt { 6 } } { 2 }
C) 12\frac { 1 } { 2 }
D) 12- \frac { 1 } { 2 }
E) 16- \frac { 1 } { 6 }
Question
Suppose that ABC\triangle A B C is a right triangle with C=90\angle C = 90 ^ { \circ } . If AB=3A B = 3 and BC=332B C = \frac { 3 \sqrt { 3 } } { 2 } , find the quantities. cosA,sinB\cos A , \sin B

A) cosA=13,sinB=32\cos A = \frac { 1 } { 3 } , \sin B = \frac { \sqrt { 3 } } { 2 }
B) cosA=12,sinB=12\cos A = \frac { 1 } { 2 } , \sin B = \frac { 1 } { 2 }
C) cosA=32,sinB=32\cos A = \frac { \sqrt { 3 } } { 2 } , \sin B = \frac { \sqrt { 3 } } { 2 }
D) cosA=23,sinB=32\cos A = \frac { 2 } { 3 } , \sin B = \frac { \sqrt { 3 } } { 2 }
E) cosA=32,sinB=13\cos A = \frac { \sqrt { 3 } } { 2 } , \sin B = \frac { 1 } { 3 }
Question
Use the following information to express the remaining five trigonometric values as functions of tt . Assume that tt is positive. Rationalize any denominators that contain radicals. cosθ=3t4,90<θ<180\cos \theta = - \frac { 3 t } { 4 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }

A) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = - \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
B) tanθ=3t169t2169t2,secθ=43t,sinθ=169t24,cotθ=169t23t,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \sec \theta = - \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
C) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 } { 3 t } , \quad \sin \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = - \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
D) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
E) tanθ=169t23t,secθ=4169t2169t2,sinθ=169t24,cotθ=3t169t2169t2,cscθ=43t.\begin{array} { l } \tan \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = - \frac { 4 } { 3 t } .\end{array}
Question
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 900- 900 ^ { \circ }

A) sin(900)=0tan(900)=0csc(900)=1cos(900)=1cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) = - 1 \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(900)=1tan(900)=0csc(900) is unde fined cos(900)=0cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = - 1 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) \text { is unde fined } \\\cos \left( - 900 ^ { \circ } \right) = 0 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
C) sin(900)=1tan(900) is unde fined csc(900)=1cos(900)=0cot(900)=0sec(900) is undefined \begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = - 1 & \tan \left( - 900 ^ { \circ } \right) \text { is unde fined } & \csc \left( - 900 ^ { \circ } \right) = - 1 \\\cos \left( - 900 ^ { \circ } \right) = 0 & \cot \left( - 900 ^ { \circ } \right) = 0 & \sec \left( - 900 ^ { \circ } \right) \text { is undefined }\end{array}
D) sin(900)=0tan(900) is undefined csc(900) is unde fined cos(900)=1cot(900)=0sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) \text { is undefined } & \csc \left( - 900 ^ { \circ } \right) \text { is unde fined } \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) = 0 & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
E) sin(900)=0tan(900)=0csc(900) is undefined cos(900)=1cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
Question
Determine whether the equation is correct by evaluating each side. Do not use a calculator. Note: Notation such as sin2θ\sin ^ { 2 } \theta stands for (sinθ)2( \sin \theta ) ^ { 2 } . 1tan260=sec2601 - \tan ^ { 2 } 60 ^ { \circ } = \sec ^ { 2 } 60 ^ { \circ }
Question
An observer in a lighthouse is 62ft62 \mathrm { ft } above the surface of the water. The observer sees a ship and finds the angle of depression to be 0.10.1 ^ { \circ } . Estimate the distance of the ship from the base of the lighthouse.

A) 35,54535,545 ft
B) 35,48035,480 ft
C) 35,50535,505 ft
D) 35,57035,570 ft
E) 35,52535,525 ft
Question
Determine whether the equation is correct by evaluating each side. Do not use a calculator. tan30=sin601+sin30\tan 30 ^ { \circ } = \frac { \sin 60 ^ { \circ } } { 1 + \sin 30 ^ { \circ } }
Question
Evaluate the expression using the concept of a reference angle. cos(675)\cos \left( - 675 ^ { \circ } \right)

A) 22- \frac { \sqrt { 2 } } { 2 }
B) 22\frac { \sqrt { 2 } } { 2 }
C) 26\frac { \sqrt { 2 } } { 6 }
D) 62- \frac { \sqrt { 6 } } { 2 }
E) 66\frac { \sqrt { 6 } } { 6 }
Question
Use the following information to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. cosθ=47,90<θ<180\cos \theta = - \frac { 4 } { 7 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }

A) sinθ=337,tanθ=334,cscθ=73333,cotθ=43333,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = - \frac { 7 } { 4 }
B) sinθ=337,tanθ=334,cscθ=73333,cotθ=43333,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = \frac { 7 } { 4 }
C) sinθ=337,tanθ=334,cscθ=74,cotθ=43333,secθ=73333\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = - \frac { 7 } { 4 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = \frac { 7 \sqrt { 33 } } { 33 }
D) sinθ=337,tanθ=43333,cscθ=74,cotθ=334,secθ=73333\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = \frac { 4 \sqrt { 33 } } { 33 } , \csc \theta = - \frac { 7 } { 4 } , \cot \theta = \frac { \sqrt { 33 } } { 4 } , \sec \theta = \frac { 7 \sqrt { 33 } } { 33 }
E) sinθ=337,tanθ=43333,cscθ=73333,cotθ=334,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = \frac { 4 \sqrt { 33 } } { 33 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = \frac { \sqrt { 33 } } { 4 } , \sec \theta = - \frac { 7 } { 4 }
Question
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 900900 ^ { \circ }

A) sin(900)=1tan(900)=0csc(900)=1cos(900)=0cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 1 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(900)=1tan(900)=0csc(900)=1cos(900)=0cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = - 1 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
C) sin(900)=0tan(900)=0csc(900)=0cos(900)=1cot(900)=1sec(900)=1\begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 0 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = 0 \\\cos \left( 900 ^ { \circ } \right) = - 1 & \cot \left( 900 ^ { \circ } \right) = - 1 & \sec \left( 900 ^ { \circ } \right) = - 1\end{array}
D) sin(900)=0tan(900)=0csc(900) is undefined cos(900)=1cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 0 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) \text { is undefined } \\\cos \left( 900 ^ { \circ } \right) = - 1 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) = - 1\end{array}
E) sin(900)=1tan(900) is undefined csc(900)=1cos(900)=0cot(900)=0sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = - 1 & \tan \left( 900 ^ { \circ } \right) \text { is undefined } & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) = 0 & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
Question
The accompanying figure shows two ships at points PP and QQ , which are in the same vertical plane as an airplane at point RR . When the height of the airplane is 3,100ft3,100 \mathrm { ft } , the angle of depression to PP is 3535 ^ { \circ } and that to QQ is 3030 ^ { \circ } .Find the distance between the two ships.  <strong>The accompanying figure shows two ships at points  P  and  Q  , which are in the same vertical plane as an airplane at point  R  . When the height of the airplane is  3,100 \mathrm { ft }  , the angle of depression to  P  is  35 ^ { \circ }  and that to  Q  is  30 ^ { \circ }  .Find the distance between the two ships.  </strong> A)  9,800  ft B)  3,960  ft C)  380  ft D)  60,250  ft E)  41,420  ft <div style=padding-top: 35px>

A) 9,8009,800 ft
B) 3,9603,960 ft
C) 380380 ft
D) 60,25060,250 ft
E) 41,42041,420 ft
Question
Use the following formation to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. secB=94,180<B<270\sec B = - \frac { 9 } { 4 } , 180 ^ { \circ } < B < 270 ^ { \circ }

A) sinB=49,tanB=46565,cscB=96565,cotB=654,cosB=659\sin B = - \frac { 4 } { 9 } , \tan B = \frac { 4 \sqrt { 65 } } { 65 } , \csc B = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { \sqrt { 65 } } { 4 } , \cos B = - \frac { \sqrt { 65 } } { 9 }
B) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = - \frac { \sqrt { 65 } } { 9 } , \tan B = \frac { \sqrt { 65 } } { 4 } , \csc B = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { 4 \sqrt { 65 } } { 65 } , \cos B = - \frac { 4 } { 9 }
C) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = \frac { \sqrt { 65 } } { 9 } , \tan B = - \frac { \sqrt { 65 } } { 4 } , \csc B = \frac { 9 \sqrt { 65 } } { 65 } , \cot B = - \frac { 4 \sqrt { 65 } } { 65 } , \cos B = \frac { 4 } { 9 }
D) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = \frac { \sqrt { 65 } } { 9 } , \tan B = \frac { \sqrt { 65 } } { 4 } , \csc B = \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { 4 \sqrt { 65 } } { 65 } , \cos B = \frac { 4 } { 9 }
E) sinB=659,tanB=654,cscθ=96565,cotB=46565,cosB=49\sin B = - \frac { \sqrt { 65 } } { 9 } , \tan B = - \frac { \sqrt { 65 } } { 4 } , \csc \theta = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = - \frac { 4 \sqrt { 65 } } { 65 } , \cos B = - \frac { 4 } { 9 }
Question
Evaluate the expression using the concept of a reference angle. cot(600)\cot \left( - 600 ^ { \circ } \right)

A) 33- \frac { \sqrt { 3 } } { 3 }
B) 33\frac { \sqrt { 3 } } { 3 }
C) 35- \frac { \sqrt { 3 } } { 5 }
D) 15- \frac { 1 } { 5 }
E) 55\frac { \sqrt { 5 } } { 5 }
Question
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 720- 720 ^ { \circ }

A) sin(720)=1tan(720) is undefined csc(720)=1cos(720)=0cot(720)=0sec(720) is undefined \begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 1 & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) = 1 \\\cos \left( - 720 ^ { \circ } \right) = 0 & \cot \left( - 720 ^ { \circ } \right) = 0 & \sec \left( - 720 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(720)=1tan(720) is undefined csc(720)=1cos(720)=0cot(720)=0sec(720) is undefined \begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = - 1 & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) = - 1 \\\cos \left( - 720 ^ { \circ } \right) = 0 & \cot \left( - 720 ^ { \circ } \right) = 0 & \sec \left( - 720 ^ { \circ } \right) \text { is undefined }\end{array}
C) sin(720)=0tan(720)=0csc(720) is undefined cos(720)=1cot(720) is undefined sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 0 & \tan \left( - 720 ^ { \circ } \right) = 0 & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = - 1 & \cot \left( - 720 ^ { \circ } \right) \text { is undefined } & \sec \left( - 720 ^ { \circ } \right) = - 1\end{array}
D) sin(720) is undefined tan(720) is undefined csc(720) is undefined cos(720)=1cot(720)=1sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) \text { is undefined } & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = 1 & \cot \left( - 720 ^ { \circ } \right) = 1 & \sec \left( - 720 ^ { \circ } \right) = 1\end{array}
E) sin(720)=0tan(720)=0csc(720) is undefined cos(720)=1cot(720) is undefined sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 0 & \tan \left( - 720 ^ { \circ } \right) = 0 & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = 1 & \cot \left( - 720 ^ { \circ } \right) \text { is undefined } & \sec \left( - 720 ^ { \circ } \right) = 1\end{array}
Question
Determine the answer that establishes an identity. csc2A+sec2A=?\csc ^ { 2 } A + \sec ^ { 2 } A = ?

A) cscAsecA\csc A \sec A
B) cosA1tanAsinAcotA1\frac { \cos A } { 1 - \tan A } - \frac { \sin A } { \cot A - 1 }
C) cosA1+tanAsinAcotA+1\frac { \cos A } { 1 + \tan A } - \frac { \sin A } { \cot A + 1 }
D) csc2Asec2A\csc ^ { 2 } A \sec ^ { 2 } A
E) cosA1tanA+sinAcotA1\frac { \cos A } { 1 - \tan A } + \frac { \sin A } { \cot A - 1 }
Question
Determine the answer that establishes an identity. sinθcscθ+cosθsecθ=?\frac { \sin \theta } { \csc \theta } + \frac { \cos \theta } { \sec \theta } = ?

A) csc2θ\csc ^ { 2 } \theta
B) cos2θ\cos ^ { 2 } \theta
C) sec2θ\sec ^ { 2 } \theta
D) 11
E) sin2θ\sin ^ { 2 } \theta
Question
Use the following information to express the remaining five trigonometric values as functions of uu . Assume that uu is positive. Rationalize any denominators that contain radicals. cosθ=u10,0<θ<90\cos \theta = \frac { u } { \sqrt { 10 } } , 0 ^ { \circ } < \theta < 90 ^ { \circ }

A) tanθ=1u2u,secθ=10u,sinθ=1010u210,cotθ=u1u21u2,cscθ=1010u21u2.\begin{array} { l } \tan \theta = - \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = - \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = - \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \csc \theta = - \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } .\end{array}
B) tanθ=u1u21u2,secθ=1010u21u2,sinθ=1010u210,cotθ=1u2u,cscθ=10u.\begin{array} { l } \tan \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sec \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \csc \theta = \frac { \sqrt { 10 } } { u } .\end{array}
C) tanθ=10u2u,secθ=10u,sinθ=10010u2,10,cotθ=u10u2,10u2,cscθ=10010u210u2.\begin{array} { l } \tan \theta = \frac { \sqrt { 10 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = \frac { \sqrt { 100 - 10 u ^ { 2 } } , } { 10 } , \\\cot \theta = \frac { u \sqrt { 10 - u ^ { 2 } } , } { 10 - u ^ { 2 } } , \quad \csc \theta = \frac { \sqrt { 100 - 10 u ^ { 2 } } } { 10 - u ^ { 2 } } .\end{array}
D) tanθ=u1u21u2,secθ=10u,sinθ=1010u210,cotθ=1u2u,cscθ=1010u21u2.\begin{array} { l } \tan \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \csc \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } .\end{array}
E) tanθ=1u2u,secθ=1010u21u2,sinθ=1010u210,cotθ=u1u21u2,cscθ=10u.\begin{array} { l } \tan \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \csc \theta = \frac { \sqrt { 10 } } { u } .\end{array}
Question
Use the following information to express the remaining five trigonometric values as functions of uu . Assume that uu is positive. Rationalize any denominators that contain radicals. sinθ=u2,270<θ<360\sin \theta = - u ^ { 2 } , 270 ^ { \circ } < \theta < 360 ^ { \circ }

A) tanθ=u21u41u4,secθ=1u2,cosθ=1u4,cotθ=1u4u2,cscθ=1u41u4.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = - \frac { 1 } { u ^ { 2 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } .\end{array}
B) tanθ=u21u41u4,secθ=1u41u4,cosθ=1+u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 + u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { 1 } { u ^ { 2 } } .\end{array}
C) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { 1 } { u ^ { 2 } } .\end{array}
D) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = - \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = \frac { 1 } { u ^ { 2 } } .\end{array}
E) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l l } \tan \theta = \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , & \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , & \csc \theta = \frac { 1 } { u ^ { 2 } } .\end{array}
Question
Determine the answer that establishes an identity. sinB1+cosB+1+cosBsinB=?\frac { \sin B } { 1 + \cos B } + \frac { 1 + \cos B } { \sin B } = ?

A) 11
B) 2cosB2 \cos B
C) 2secB2 \sec B
D) 2sinB2 \sin B
E) 2cscB2 \csc B
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 6: An Introduction to Trigonometry Via Right Triangles
1
From a point on ground level, you measure the angle of elevation to the top of a mountain to be 3737 ^ { \circ } . Then you walk 150 m150 \mathrm {~m} farther away from the mountain and find that the angle of elevation is now 2020 ^ { \circ } . Find the height of the mountain.

A) 5555 m
B) 8484 m
C) 8181 m
D) 113113 m
E) 106106 m
106106 m
2
In ACD\triangle A C D , you are given C=90,A=60\angle C = 90 ^ { \circ } , \angle A = 60 ^ { \circ } and AC=9A C = 9 . If BB is a point on CD\overline { C D } and BAC=45\angle B A C = 45 ^ { \circ } , find BDB D .

A) BD=6B D = 6
B) BD=B D = 3(33)3 ( 3 - \sqrt { 3 } )
C) BD=B D = 636 \sqrt { 3 }
D) BD=3B D = 3
E) BD=B D = 9(31)9 ( \sqrt { 3 } - 1 )
BD=B D = 9(31)9 ( \sqrt { 3 } - 1 )
3
The radius of the circle in the figure is 2 units. Express the length DCD C in terms of α\alpha .  <strong>The radius of the circle in the figure is 2 units. Express the length  D C  in terms of  \alpha  .  </strong> A)  2 \cos \alpha  B)  2 \cot \alpha  C)  2 \sin \alpha  D)  2 \tan \alpha  E)  2 \sec \alpha

A) 2cosα2 \cos \alpha
B) 2cotα2 \cot \alpha
C) 2sinα2 \sin \alpha
D) 2tanα2 \tan \alpha
E) 2secα2 \sec \alpha
2tanα2 \tan \alpha
4
Find the area of the triangle. Use a calculator and round your final answer to two decimal places.  <strong>Find the area of the triangle. Use a calculator and round your final answer to two decimal places.  </strong> A)  2.08 \mathrm {~cm} ^ { 2 }  B)  5.91 \mathrm {~cm} ^ { 2 }  C)  11.82 \mathrm {~cm} ^ { 2 }  D)  1.04 \mathrm {~cm} ^ { 2 }  E)  2.95 \mathrm {~cm} ^ { 2 }

A) 2.08 cm22.08 \mathrm {~cm} ^ { 2 }
B) 5.91 cm25.91 \mathrm {~cm} ^ { 2 }
C) 11.82 cm211.82 \mathrm {~cm} ^ { 2 }
D) 1.04 cm21.04 \mathrm {~cm} ^ { 2 }
E) 2.95 cm22.95 \mathrm {~cm} ^ { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
5
Refer to the figure. If A=60\angle A = 60 ^ { \circ } and AB=40 cmA B = 40 \mathrm {~cm} , find ACA C .  <strong>Refer to the figure. If  \angle A = 60 ^ { \circ }  and  A B = 40 \mathrm {~cm}  , find  A C  .  </strong> A)  A C = 40 \sqrt { 3 }  cm B)  A C = 20  cm C)  A C = 40  cm D)  A C = \sqrt { 3 }  cm E)  A C = 20 \sqrt { 5 }  cm

A) AC=403A C = 40 \sqrt { 3 } cm
B) AC=20A C = 20 cm
C) AC=40A C = 40 cm
D) AC=3A C = \sqrt { 3 } cm
E) AC=205A C = 20 \sqrt { 5 } cm
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
6
Use the definitions to evaluate the six trigonometric functions of θ\theta . In cases in which a radical occurs in a denominator, rationalize the denominator.  <strong>Use the definitions to evaluate the six trigonometric functions of  \theta  . In cases in which a radical occurs in a denominator, rationalize the denominator.  </strong> A)  \sin \theta = \frac { \sqrt { 5 } } { 2 } , \tan \theta = \frac { 5 \sqrt { 5 } } { 2 } , \csc \theta = 5   \cos \theta = \sqrt { 5 } , \cot \theta = \frac { \sqrt { 5 } } { 2 } , \sec \theta = \frac { 1 } { 5 }  B)  \sin \theta = \frac { \sqrt { 11 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 11 } } { 7 } , \csc \theta = 2   \cos \theta = \sqrt { 11 } , \cot \theta = \frac { \sqrt { 11 } } { 2 } , \sec \theta = \frac { 1 } { 7 }  C)  \sin \theta = \frac { 4 \sqrt { 5 } } { 5 } , \tan \theta = 4 , \csc \theta = \frac { \sqrt { 5 } } { 4 }   \cos \theta = \frac { \sqrt { 5 } } { 2 } , \cot \theta = \frac { 1 } { 4 } , \sec \theta = \sqrt { 5 }  D)  \sin \theta = \frac { \sqrt { 5 } } { 5 } , \tan \theta = \frac { 1 } { 2 } , \csc \theta = \sqrt { 5 }   \cos \theta = \frac { 2 \sqrt { 5 } } { 5 } , \cot \theta = 2 , \sec \theta = \frac { \sqrt { 5 } } { 2 }  E)  \sin \theta = \frac { \sqrt { 7 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 7 } } { 5 } , \csc \theta = 2   \cos \theta = \sqrt { 7 } , \cot \theta = \frac { \sqrt { 7 } } { 2 } , \sec \theta = \frac { 1 } { 2 }

A) sinθ=52,tanθ=552,cscθ=5\sin \theta = \frac { \sqrt { 5 } } { 2 } , \tan \theta = \frac { 5 \sqrt { 5 } } { 2 } , \csc \theta = 5 cosθ=5,cotθ=52,secθ=15\cos \theta = \sqrt { 5 } , \cot \theta = \frac { \sqrt { 5 } } { 2 } , \sec \theta = \frac { 1 } { 5 }
B) sinθ=115,tanθ=2117,cscθ=2\sin \theta = \frac { \sqrt { 11 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 11 } } { 7 } , \csc \theta = 2 cosθ=11,cotθ=112,secθ=17\cos \theta = \sqrt { 11 } , \cot \theta = \frac { \sqrt { 11 } } { 2 } , \sec \theta = \frac { 1 } { 7 }
C) sinθ=455,tanθ=4,cscθ=54\sin \theta = \frac { 4 \sqrt { 5 } } { 5 } , \tan \theta = 4 , \csc \theta = \frac { \sqrt { 5 } } { 4 } cosθ=52,cotθ=14,secθ=5\cos \theta = \frac { \sqrt { 5 } } { 2 } , \cot \theta = \frac { 1 } { 4 } , \sec \theta = \sqrt { 5 }
D) sinθ=55,tanθ=12,cscθ=5\sin \theta = \frac { \sqrt { 5 } } { 5 } , \tan \theta = \frac { 1 } { 2 } , \csc \theta = \sqrt { 5 } cosθ=255,cotθ=2,secθ=52\cos \theta = \frac { 2 \sqrt { 5 } } { 5 } , \cot \theta = 2 , \sec \theta = \frac { \sqrt { 5 } } { 2 }
E) sinθ=75,tanθ=275,cscθ=2\sin \theta = \frac { \sqrt { 7 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 7 } } { 5 } , \csc \theta = 2 cosθ=7,cotθ=72,secθ=12\cos \theta = \sqrt { 7 } , \cot \theta = \frac { \sqrt { 7 } } { 2 } , \sec \theta = \frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate the expression using the concept of a reference angle. sin(150)\sin \left( - 150 ^ { \circ } \right)

A) 66\frac { \sqrt { 6 } } { 6 }
B) 62\frac { \sqrt { 6 } } { 2 }
C) 12\frac { 1 } { 2 }
D) 12- \frac { 1 } { 2 }
E) 16- \frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
8
Suppose that ABC\triangle A B C is a right triangle with C=90\angle C = 90 ^ { \circ } . If AB=3A B = 3 and BC=332B C = \frac { 3 \sqrt { 3 } } { 2 } , find the quantities. cosA,sinB\cos A , \sin B

A) cosA=13,sinB=32\cos A = \frac { 1 } { 3 } , \sin B = \frac { \sqrt { 3 } } { 2 }
B) cosA=12,sinB=12\cos A = \frac { 1 } { 2 } , \sin B = \frac { 1 } { 2 }
C) cosA=32,sinB=32\cos A = \frac { \sqrt { 3 } } { 2 } , \sin B = \frac { \sqrt { 3 } } { 2 }
D) cosA=23,sinB=32\cos A = \frac { 2 } { 3 } , \sin B = \frac { \sqrt { 3 } } { 2 }
E) cosA=32,sinB=13\cos A = \frac { \sqrt { 3 } } { 2 } , \sin B = \frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
9
Use the following information to express the remaining five trigonometric values as functions of tt . Assume that tt is positive. Rationalize any denominators that contain radicals. cosθ=3t4,90<θ<180\cos \theta = - \frac { 3 t } { 4 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }

A) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = - \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
B) tanθ=3t169t2169t2,secθ=43t,sinθ=169t24,cotθ=169t23t,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \sec \theta = - \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
C) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 } { 3 t } , \quad \sin \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = - \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
D) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
E) tanθ=169t23t,secθ=4169t2169t2,sinθ=169t24,cotθ=3t169t2169t2,cscθ=43t.\begin{array} { l } \tan \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = - \frac { 4 } { 3 t } .\end{array}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
10
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 900- 900 ^ { \circ }

A) sin(900)=0tan(900)=0csc(900)=1cos(900)=1cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) = - 1 \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(900)=1tan(900)=0csc(900) is unde fined cos(900)=0cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = - 1 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) \text { is unde fined } \\\cos \left( - 900 ^ { \circ } \right) = 0 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
C) sin(900)=1tan(900) is unde fined csc(900)=1cos(900)=0cot(900)=0sec(900) is undefined \begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = - 1 & \tan \left( - 900 ^ { \circ } \right) \text { is unde fined } & \csc \left( - 900 ^ { \circ } \right) = - 1 \\\cos \left( - 900 ^ { \circ } \right) = 0 & \cot \left( - 900 ^ { \circ } \right) = 0 & \sec \left( - 900 ^ { \circ } \right) \text { is undefined }\end{array}
D) sin(900)=0tan(900) is undefined csc(900) is unde fined cos(900)=1cot(900)=0sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) \text { is undefined } & \csc \left( - 900 ^ { \circ } \right) \text { is unde fined } \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) = 0 & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
E) sin(900)=0tan(900)=0csc(900) is undefined cos(900)=1cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( - 900 ^ { \circ } \right) = 0 & \tan \left( - 900 ^ { \circ } \right) = 0 & \csc \left( - 900 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 900 ^ { \circ } \right) = - 1 & \cot \left( - 900 ^ { \circ } \right) \text { is undefined } & \sec \left( - 900 ^ { \circ } \right) = - 1\end{array}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
11
Determine whether the equation is correct by evaluating each side. Do not use a calculator. Note: Notation such as sin2θ\sin ^ { 2 } \theta stands for (sinθ)2( \sin \theta ) ^ { 2 } . 1tan260=sec2601 - \tan ^ { 2 } 60 ^ { \circ } = \sec ^ { 2 } 60 ^ { \circ }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
12
An observer in a lighthouse is 62ft62 \mathrm { ft } above the surface of the water. The observer sees a ship and finds the angle of depression to be 0.10.1 ^ { \circ } . Estimate the distance of the ship from the base of the lighthouse.

A) 35,54535,545 ft
B) 35,48035,480 ft
C) 35,50535,505 ft
D) 35,57035,570 ft
E) 35,52535,525 ft
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
13
Determine whether the equation is correct by evaluating each side. Do not use a calculator. tan30=sin601+sin30\tan 30 ^ { \circ } = \frac { \sin 60 ^ { \circ } } { 1 + \sin 30 ^ { \circ } }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
14
Evaluate the expression using the concept of a reference angle. cos(675)\cos \left( - 675 ^ { \circ } \right)

A) 22- \frac { \sqrt { 2 } } { 2 }
B) 22\frac { \sqrt { 2 } } { 2 }
C) 26\frac { \sqrt { 2 } } { 6 }
D) 62- \frac { \sqrt { 6 } } { 2 }
E) 66\frac { \sqrt { 6 } } { 6 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
15
Use the following information to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. cosθ=47,90<θ<180\cos \theta = - \frac { 4 } { 7 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }

A) sinθ=337,tanθ=334,cscθ=73333,cotθ=43333,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = - \frac { 7 } { 4 }
B) sinθ=337,tanθ=334,cscθ=73333,cotθ=43333,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = \frac { 7 } { 4 }
C) sinθ=337,tanθ=334,cscθ=74,cotθ=43333,secθ=73333\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = - \frac { 7 } { 4 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = \frac { 7 \sqrt { 33 } } { 33 }
D) sinθ=337,tanθ=43333,cscθ=74,cotθ=334,secθ=73333\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = \frac { 4 \sqrt { 33 } } { 33 } , \csc \theta = - \frac { 7 } { 4 } , \cot \theta = \frac { \sqrt { 33 } } { 4 } , \sec \theta = \frac { 7 \sqrt { 33 } } { 33 }
E) sinθ=337,tanθ=43333,cscθ=73333,cotθ=334,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = \frac { 4 \sqrt { 33 } } { 33 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = \frac { \sqrt { 33 } } { 4 } , \sec \theta = - \frac { 7 } { 4 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
16
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 900900 ^ { \circ }

A) sin(900)=1tan(900)=0csc(900)=1cos(900)=0cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 1 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(900)=1tan(900)=0csc(900)=1cos(900)=0cot(900) is undefined sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = - 1 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
C) sin(900)=0tan(900)=0csc(900)=0cos(900)=1cot(900)=1sec(900)=1\begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 0 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) = 0 \\\cos \left( 900 ^ { \circ } \right) = - 1 & \cot \left( 900 ^ { \circ } \right) = - 1 & \sec \left( 900 ^ { \circ } \right) = - 1\end{array}
D) sin(900)=0tan(900)=0csc(900) is undefined cos(900)=1cot(900) is undefined sec(900)=1\begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = 0 & \tan \left( 900 ^ { \circ } \right) = 0 & \csc \left( 900 ^ { \circ } \right) \text { is undefined } \\\cos \left( 900 ^ { \circ } \right) = - 1 & \cot \left( 900 ^ { \circ } \right) \text { is undefined } & \sec \left( 900 ^ { \circ } \right) = - 1\end{array}
E) sin(900)=1tan(900) is undefined csc(900)=1cos(900)=0cot(900)=0sec(900) is undefined \begin{array} { l l l } \sin \left( 900 ^ { \circ } \right) = - 1 & \tan \left( 900 ^ { \circ } \right) \text { is undefined } & \csc \left( 900 ^ { \circ } \right) = - 1 \\\cos \left( 900 ^ { \circ } \right) = 0 & \cot \left( 900 ^ { \circ } \right) = 0 & \sec \left( 900 ^ { \circ } \right) \text { is undefined }\end{array}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
17
The accompanying figure shows two ships at points PP and QQ , which are in the same vertical plane as an airplane at point RR . When the height of the airplane is 3,100ft3,100 \mathrm { ft } , the angle of depression to PP is 3535 ^ { \circ } and that to QQ is 3030 ^ { \circ } .Find the distance between the two ships.  <strong>The accompanying figure shows two ships at points  P  and  Q  , which are in the same vertical plane as an airplane at point  R  . When the height of the airplane is  3,100 \mathrm { ft }  , the angle of depression to  P  is  35 ^ { \circ }  and that to  Q  is  30 ^ { \circ }  .Find the distance between the two ships.  </strong> A)  9,800  ft B)  3,960  ft C)  380  ft D)  60,250  ft E)  41,420  ft

A) 9,8009,800 ft
B) 3,9603,960 ft
C) 380380 ft
D) 60,25060,250 ft
E) 41,42041,420 ft
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
18
Use the following formation to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. secB=94,180<B<270\sec B = - \frac { 9 } { 4 } , 180 ^ { \circ } < B < 270 ^ { \circ }

A) sinB=49,tanB=46565,cscB=96565,cotB=654,cosB=659\sin B = - \frac { 4 } { 9 } , \tan B = \frac { 4 \sqrt { 65 } } { 65 } , \csc B = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { \sqrt { 65 } } { 4 } , \cos B = - \frac { \sqrt { 65 } } { 9 }
B) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = - \frac { \sqrt { 65 } } { 9 } , \tan B = \frac { \sqrt { 65 } } { 4 } , \csc B = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { 4 \sqrt { 65 } } { 65 } , \cos B = - \frac { 4 } { 9 }
C) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = \frac { \sqrt { 65 } } { 9 } , \tan B = - \frac { \sqrt { 65 } } { 4 } , \csc B = \frac { 9 \sqrt { 65 } } { 65 } , \cot B = - \frac { 4 \sqrt { 65 } } { 65 } , \cos B = \frac { 4 } { 9 }
D) sinB=659,tanB=654,cscB=96565,cotB=46565,cosB=49\sin B = \frac { \sqrt { 65 } } { 9 } , \tan B = \frac { \sqrt { 65 } } { 4 } , \csc B = \frac { 9 \sqrt { 65 } } { 65 } , \cot B = \frac { 4 \sqrt { 65 } } { 65 } , \cos B = \frac { 4 } { 9 }
E) sinB=659,tanB=654,cscθ=96565,cotB=46565,cosB=49\sin B = - \frac { \sqrt { 65 } } { 9 } , \tan B = - \frac { \sqrt { 65 } } { 4 } , \csc \theta = - \frac { 9 \sqrt { 65 } } { 65 } , \cot B = - \frac { 4 \sqrt { 65 } } { 65 } , \cos B = - \frac { 4 } { 9 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
19
Evaluate the expression using the concept of a reference angle. cot(600)\cot \left( - 600 ^ { \circ } \right)

A) 33- \frac { \sqrt { 3 } } { 3 }
B) 33\frac { \sqrt { 3 } } { 3 }
C) 35- \frac { \sqrt { 3 } } { 5 }
D) 15- \frac { 1 } { 5 }
E) 55\frac { \sqrt { 5 } } { 5 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
20
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the angle. 720- 720 ^ { \circ }

A) sin(720)=1tan(720) is undefined csc(720)=1cos(720)=0cot(720)=0sec(720) is undefined \begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 1 & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) = 1 \\\cos \left( - 720 ^ { \circ } \right) = 0 & \cot \left( - 720 ^ { \circ } \right) = 0 & \sec \left( - 720 ^ { \circ } \right) \text { is undefined }\end{array}
B) sin(720)=1tan(720) is undefined csc(720)=1cos(720)=0cot(720)=0sec(720) is undefined \begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = - 1 & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) = - 1 \\\cos \left( - 720 ^ { \circ } \right) = 0 & \cot \left( - 720 ^ { \circ } \right) = 0 & \sec \left( - 720 ^ { \circ } \right) \text { is undefined }\end{array}
C) sin(720)=0tan(720)=0csc(720) is undefined cos(720)=1cot(720) is undefined sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 0 & \tan \left( - 720 ^ { \circ } \right) = 0 & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = - 1 & \cot \left( - 720 ^ { \circ } \right) \text { is undefined } & \sec \left( - 720 ^ { \circ } \right) = - 1\end{array}
D) sin(720) is undefined tan(720) is undefined csc(720) is undefined cos(720)=1cot(720)=1sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) \text { is undefined } & \tan \left( - 720 ^ { \circ } \right) \text { is undefined } & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = 1 & \cot \left( - 720 ^ { \circ } \right) = 1 & \sec \left( - 720 ^ { \circ } \right) = 1\end{array}
E) sin(720)=0tan(720)=0csc(720) is undefined cos(720)=1cot(720) is undefined sec(720)=1\begin{array} { l l l } \sin \left( - 720 ^ { \circ } \right) = 0 & \tan \left( - 720 ^ { \circ } \right) = 0 & \csc \left( - 720 ^ { \circ } \right) \text { is undefined } \\\cos \left( - 720 ^ { \circ } \right) = 1 & \cot \left( - 720 ^ { \circ } \right) \text { is undefined } & \sec \left( - 720 ^ { \circ } \right) = 1\end{array}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
21
Determine the answer that establishes an identity. csc2A+sec2A=?\csc ^ { 2 } A + \sec ^ { 2 } A = ?

A) cscAsecA\csc A \sec A
B) cosA1tanAsinAcotA1\frac { \cos A } { 1 - \tan A } - \frac { \sin A } { \cot A - 1 }
C) cosA1+tanAsinAcotA+1\frac { \cos A } { 1 + \tan A } - \frac { \sin A } { \cot A + 1 }
D) csc2Asec2A\csc ^ { 2 } A \sec ^ { 2 } A
E) cosA1tanA+sinAcotA1\frac { \cos A } { 1 - \tan A } + \frac { \sin A } { \cot A - 1 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
22
Determine the answer that establishes an identity. sinθcscθ+cosθsecθ=?\frac { \sin \theta } { \csc \theta } + \frac { \cos \theta } { \sec \theta } = ?

A) csc2θ\csc ^ { 2 } \theta
B) cos2θ\cos ^ { 2 } \theta
C) sec2θ\sec ^ { 2 } \theta
D) 11
E) sin2θ\sin ^ { 2 } \theta
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
23
Use the following information to express the remaining five trigonometric values as functions of uu . Assume that uu is positive. Rationalize any denominators that contain radicals. cosθ=u10,0<θ<90\cos \theta = \frac { u } { \sqrt { 10 } } , 0 ^ { \circ } < \theta < 90 ^ { \circ }

A) tanθ=1u2u,secθ=10u,sinθ=1010u210,cotθ=u1u21u2,cscθ=1010u21u2.\begin{array} { l } \tan \theta = - \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = - \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = - \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \csc \theta = - \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } .\end{array}
B) tanθ=u1u21u2,secθ=1010u21u2,sinθ=1010u210,cotθ=1u2u,cscθ=10u.\begin{array} { l } \tan \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sec \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \csc \theta = \frac { \sqrt { 10 } } { u } .\end{array}
C) tanθ=10u2u,secθ=10u,sinθ=10010u2,10,cotθ=u10u2,10u2,cscθ=10010u210u2.\begin{array} { l } \tan \theta = \frac { \sqrt { 10 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = \frac { \sqrt { 100 - 10 u ^ { 2 } } , } { 10 } , \\\cot \theta = \frac { u \sqrt { 10 - u ^ { 2 } } , } { 10 - u ^ { 2 } } , \quad \csc \theta = \frac { \sqrt { 100 - 10 u ^ { 2 } } } { 10 - u ^ { 2 } } .\end{array}
D) tanθ=u1u21u2,secθ=10u,sinθ=1010u210,cotθ=1u2u,cscθ=1010u21u2.\begin{array} { l } \tan \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \csc \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } .\end{array}
E) tanθ=1u2u,secθ=1010u21u2,sinθ=1010u210,cotθ=u1u21u2,cscθ=10u.\begin{array} { l } \tan \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \csc \theta = \frac { \sqrt { 10 } } { u } .\end{array}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
24
Use the following information to express the remaining five trigonometric values as functions of uu . Assume that uu is positive. Rationalize any denominators that contain radicals. sinθ=u2,270<θ<360\sin \theta = - u ^ { 2 } , 270 ^ { \circ } < \theta < 360 ^ { \circ }

A) tanθ=u21u41u4,secθ=1u2,cosθ=1u4,cotθ=1u4u2,cscθ=1u41u4.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = - \frac { 1 } { u ^ { 2 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } .\end{array}
B) tanθ=u21u41u4,secθ=1u41u4,cosθ=1+u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 + u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { 1 } { u ^ { 2 } } .\end{array}
C) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = - \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = - \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = - \frac { 1 } { u ^ { 2 } } .\end{array}
D) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l } \tan \theta = \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = - \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , \quad \csc \theta = \frac { 1 } { u ^ { 2 } } .\end{array}
E) tanθ=u21u41u4,secθ=1u41u4,cosθ=1u4,cotθ=1u4u2,cscθ=1u2.\begin{array} { l l } \tan \theta = \frac { u ^ { 2 } \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , & \sec \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { 1 - u ^ { 4 } } , \quad \cos \theta = \sqrt { 1 - u ^ { 4 } } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 4 } } } { u ^ { 2 } } , & \csc \theta = \frac { 1 } { u ^ { 2 } } .\end{array}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
25
Determine the answer that establishes an identity. sinB1+cosB+1+cosBsinB=?\frac { \sin B } { 1 + \cos B } + \frac { 1 + \cos B } { \sin B } = ?

A) 11
B) 2cosB2 \cos B
C) 2secB2 \sec B
D) 2sinB2 \sin B
E) 2cscB2 \csc B
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 25 flashcards in this deck.