Deck 8: Graphs of the Trigonometric Functions

Full screen (f)
exit full mode
Question
Use the Pythagorean identities to simplify the expression. cos2t+sin2tcot2t+1\frac { \cos ^ { 2 } t + \sin ^ { 2 } t } { \cot ^ { 2 } t + 1 }

A) sin2t\sin ^ { 2 } t
B) csc2θ\csc ^ { 2 } \theta
C) cos2θ\cos ^ { 2 } \theta
D) 1
E) sec2θ\sec ^ { 2 } \theta
Use Space or
up arrow
down arrow
to flip the card.
Question
Refer to the graph of y=cosxy = \cos x in the figure. Specify the coordinates of the point I.  <strong>Refer to the graph of  y = \cos x  in the figure. Specify the coordinates of the point I.  </strong> A)  ( - 3 \pi , 1 )  B)  \left( - \frac { 3 \pi } { 2 } , 1 \right)  C)  \left( - \frac { 7 \pi } { 2 } , 1 \right)  D)  ( - 5 \pi , 1 )  E)  ( - 2 \pi , 1 )  <div style=padding-top: 35px>

A) (3π,1)( - 3 \pi , 1 )
B) (3π2,1)\left( - \frac { 3 \pi } { 2 } , 1 \right)
C) (7π2,1)\left( - \frac { 7 \pi } { 2 } , 1 \right)
D) (5π,1)( - 5 \pi , 1 )
E) (2π,1)( - 2 \pi , 1 )
Question
Determine whether the equation for the graph has the form y=AsinBxy = A \sin B x or y=AcosBxy = A \cos B x ( with B>0B > 0 ) and then find the values of AA and B { B } .  <strong>Determine whether the equation for the graph has the form  y = A \sin B x  or  y = A \cos B x  ( with  B > 0  ) and then find the values of  A  and   { B }  .  </strong> A)  y = 5 \sin 6 x  B)  y = 5 \sin \frac { x } { 6 }  C)  y = - \frac { 1 } { 5 } \cos \frac { x } { 6 }  D)  y = 5 \cos \frac { x } { 6 }  E)  y = - 5 \cos 6 x  <div style=padding-top: 35px>

A) y=5sin6xy = 5 \sin 6 x
B) y=5sinx6y = 5 \sin \frac { x } { 6 }
C) y=15cosx6y = - \frac { 1 } { 5 } \cos \frac { x } { 6 }
D) y=5cosx6y = 5 \cos \frac { x } { 6 }
E) y=5cos6xy = - 5 \cos 6 x
Question
State whether the function y=sinxy = - \sin x is increasing or decreasing on the interval. 3π2<x<π- \frac { 3 \pi } { 2 } < x < - \pi

A) increasing
B) decreasing
Question
State whether the function y=sinxy = \sin x is increasing or decreasing on the interval. π2<x<π2- \frac { \pi } { 2 } < x < \frac { \pi } { 2 }

A) decreasing
B) increasing
Question
Refer to the graph of y=sinxy = - \sin x in the figure. Specify the coordinates of the point I.  <strong>Refer to the graph of  y = - \sin x  in the figure. Specify the coordinates of the point I.  </strong> A)  ( 15.71,0 )  B)  ( 6.28,0 )  C)  ( 12.56,0 )  D)  ( 1.57,0 )  E)  ( 4.71,0 )  <div style=padding-top: 35px>

A) (15.71,0)( 15.71,0 )
B) (6.28,0)( 6.28,0 )
C) (12.56,0)( 12.56,0 )
D) (1.57,0)( 1.57,0 )
E) (4.71,0)( 4.71,0 )
Question
A mass on a smooth tabletop is attached to a spring, as shown in the figure. The coordinate system has been chosen so that the equilibrium position of the mass corresponds to s=0s = 0 . Assume that the simple harmonic motion is described by the equation s=5cos(πt3)s = 5 \cos \left( \frac { \pi t } { 3 } \right) , where s is in centimeters and t is in seconds. Determine which table describes the s-coordinate of the mass at each of the following times: t=t = 0 sec, 0.5 sec, 1 sec, and 2 sec. (One of these coordinates will involve a radical sign; for this case, use a calculator and round the final answer to two decimal places.)  <strong>A mass on a smooth tabletop is attached to a spring, as shown in the figure. The coordinate system has been chosen so that the equilibrium position of the mass corresponds to  s = 0  . Assume that the simple harmonic motion is described by the equation  s = 5 \cos \left( \frac { \pi t } { 3 } \right)  , where s is in centimeters and t is in seconds. Determine which table describes the s-coordinate of the mass at each of the following times:  t =  0 sec, 0.5 sec, 1 sec, and 2 sec. (One of these coordinates will involve a radical sign; for this case, use a calculator and round the final answer to two decimal places.)  </strong> A)  \begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\ \hline 0 & 5 \\ \hline 0.5 & 4.33 \\ \hline 1 & 2.5 \\ \hline 2 & 2.5 \\ \hline \end{array}  B)  \begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\ \hline 0 & - 2.5 \\ \hline 0.5 & 4.33 \\ \hline 1 & 2.5 \\ \hline 2 & 5 \\ \hline \end{array}  C)  \begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\ \hline 0 & 5 \\ \hline 0.5 & 4.33 \\ \hline 1 & 2.5 \\ \hline 2 & - 2.5 \\ \hline \end{array}  D)  \begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\ \hline 0 & 2.5 \\ \hline 0.5 & 4.33 \\ \hline 1 & 5 \\ \hline 2 & - 2.5 \\ \hline \end{array}  E)  \begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\ \hline 0 & 5 \\ \hline 0.5 & 2.5 \\ \hline 1 & 4.33 \\ \hline 2 & - 2.5 \\ \hline \end{array}  <div style=padding-top: 35px>

A)  time (sec)  s-coordinate(cm) 050.54.3312.522.5\begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\\hline 0 & 5 \\\hline 0.5 & 4.33 \\\hline 1 & 2.5 \\\hline 2 & 2.5 \\\hline\end{array}
B)  time (sec)  s-coordinate(cm) 02.50.54.3312.525\begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\\hline 0 & - 2.5 \\\hline 0.5 & 4.33 \\\hline 1 & 2.5 \\\hline 2 & 5 \\\hline\end{array}
C)  time (sec)  s-coordinate(cm) 050.54.3312.522.5\begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\\hline 0 & 5 \\\hline 0.5 & 4.33 \\\hline 1 & 2.5 \\\hline 2 & - 2.5 \\\hline\end{array}
D)  time (sec)  s-coordinate(cm) 02.50.54.331522.5\begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\\hline 0 & 2.5 \\\hline 0.5 & 4.33 \\\hline 1 & 5 \\\hline 2 & - 2.5 \\\hline\end{array}
E)  time (sec)  s-coordinate(cm) 050.52.514.3322.5\begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\\hline 0 & 5 \\\hline 0.5 & 2.5 \\\hline 1 & 4.33 \\\hline 2 & - 2.5 \\\hline\end{array}
Question
Consider the function f(x)=sin(xπ4)f ( x ) = \sin \left( x - \frac { \pi } { 4 } \right) . Specify the phase shift.

A) π4\frac { \pi } { 4 }
B) π8\frac { \pi } { 8 }
C) π4- \frac { \pi } { 4 }
D) 3π4\frac { 3 \pi } { 4 }
E) 00
Question
Consider the function y=sinx45y = \sin \frac { x } { 4 } - 5 on the interval [0,8π][ 0,8 \pi ] . Specify the intervals in which the function is increasing.

A) (0,2π)( 0,2 \pi )
B) (0,2π),(6π,8π)( 0,2 \pi ) , ( 6 \pi , 8 \pi )
C) (6π,8π)( 6 \pi , 8 \pi )
D) (2π,6π),(8π,9π)( 2 \pi , 6 \pi ) , ( 8 \pi , 9 \pi )
E) (0,8π)( 0,8 \pi )
Question
Consider the function y=cos3xy = \cos 3 x . Specify the period.

A) π3\frac { \pi } { 3 }
B) 2π3\frac { 2 \pi } { 3 }
C) 6π7\frac { 6 \pi } { 7 }
D) 2π2 \pi
E) 2π3- \frac { 2 \pi } { 3 }
Question
Consider the function y=1cosπx4y = 1 - \cos \frac { \pi x } { 4 } on the interval [0,8][ 0,8 ] . Determine the χ\chi -intercepts by giving the χ\chi -coordinate(s).

A) 0,40,4
B) 0,80,8
C) 4- 4
D) 88
E) there are no χ\chi -intercepts
Question
Given: cotθ+tanθ+1\cot \theta + \tan \theta + 1 . Determine the right side of the identity equation.

A) tanθ1tanθ+cotθ1cotθ\frac { \tan \theta } { 1 - \tan \theta } + \frac { \cot \theta } { 1 - \cot \theta }
B) cotθ1tanθ+tanθ1cotθ\frac { \cot \theta } { 1 - \tan \theta } + \frac { \tan \theta } { 1 - \cot \theta }
C) tanθ1+tanθ+cotθ1+cosθ\frac { \tan \theta } { 1 + \tan \theta } + \frac { \cot \theta } { 1 + \cos \theta }
D) cotθ1+tanθ+tanθ1+cotθ\frac { \cot \theta } { 1 + \tan \theta } + \frac { \tan \theta } { 1 + \cot \theta }
E) cosθ1tanθ+cosθ1cotθ\frac { \cos \theta } { 1 - \tan \theta } + \frac { \cos \theta } { 1 - \cot \theta }
Question
Consider the function y=9cos(8xπ3)y = 9 \cos \left( 8 x - \frac { \pi } { 3 } \right) . Specify the amplitude.

A) 1818
B) 33
C) 98\frac { 9 } { 8 }
D) 99
E) 89\frac { 8 } { 9 }
Question
Consider the function y=4sinxy = 4 \sin x . Specify the amplitude.

A) 1
B) 4
C) 5
D) 8
E) 2
Question
Consider the function y=cos(6xπ)y = \cos ( 6 x - \pi ) . Specify the period.

A) π6\frac { \pi } { 6 }
B) 11
C) 2π2 \pi
D) π3\frac { \pi } { 3 }
E) 4π3\frac { 4 \pi } { 3 }
Question
Compute secα\sec \alpha , cosα\cos \alpha , and sinα\sin \alpha . tanα=125\tan \alpha = \frac { 12 } { 5 } and cosα>0\cos \alpha > 0

A) secα=1213\sec \alpha = - \frac { 12 } { 13 } , cosα=513\cos \alpha = \frac { 5 } { 13 } , sinα=1213\sin \alpha = \frac { 12 } { 13 }
B) secα=1312\sec \alpha = \frac { 13 } { 12 } , cosα=513\cos \alpha = \frac { 5 } { 13 } , sinα=1213\sin \alpha = \frac { 12 } { 13 }
C) secα=135\sec \alpha = - \frac { 13 } { 5 } , cosα=1213\cos \alpha = - \frac { 12 } { 13 } , sinα=513\sin \alpha = \frac { 5 } { 13 }
D) secα=513\sec \alpha = \frac { 5 } { 13 } , cosα=135\cos \alpha = \frac { 13 } { 5 } , sinα=1213\sin \alpha = - \frac { 12 } { 13 }
E) secα=135\sec \alpha = \frac { 13 } { 5 } , cosα=513\cos \alpha = \frac { 5 } { 13 } , sinα=1213\sin \alpha = \frac { 12 } { 13 }
Question
Use the Pythagorean identities to simplify the expression. sec2θtan2θ1+tan2θ\frac { \sec ^ { 2 } \theta - \tan ^ { 2 } \theta } { 1 + \tan ^ { 2 } \theta }

A) sec2θ\sec ^ { 2 } \theta
B) csc2θ\csc ^ { 2 } \theta
C) cos2θ\cos ^ { 2 } \theta
D) sin2θ\sin ^ { 2 } \theta
E) 1
Question
Consider the function y=6+sin5xy = 6 + \sin 5 x . Specify the period.

A) 25π- \frac { 2 } { 5 } \pi
B) 16π\frac { 1 } { 6 } \pi
C) 15π\frac { 1 } { 5 } \pi
D) 15\frac { 1 } { 5 }
E) 25π\frac { 2 } { 5 } \pi
Question
Specify the period and amplitude for the function. <strong>Specify the period and amplitude for the function.  </strong> A) period: 8; amplitude: 8 B) period: 4; amplitude: 16 C) period: 2; amplitude: 16 D) period: 4; amplitude: 8 E) period: 2; amplitude: 8 <div style=padding-top: 35px>

A) period: 8; amplitude: 8
B) period: 4; amplitude: 16
C) period: 2; amplitude: 16
D) period: 4; amplitude: 8
E) period: 2; amplitude: 8
Question
Consider the function y=8sinπx8y = 8 \sin \frac { \pi x } { 8 } on the interval [0,16][ 0,16 ] . Determine the χ\chi -intercepts by giving the χ\chi -coordinate(s).

A) 0,8,240,8,24
B) 0,8,160,8,16
C) 8,168,16
D) 0,160,16
E) 0,8π,16π0,8 \pi , 16 \pi
Question
Graph the function for one period, and show (or specify) intercepts and asymptotes. y=cot(x+π3)y = \cot \left( x + \frac { \pi } { 3 } \right)

A)x-intercept: none; y-intercept:
233\frac { 2 \sqrt { 3 } } { 3 } ; asymptotes: x=π3x = - \frac { \pi } { 3 } and x=2π3x = \frac { 2 \pi } { 3 }
 <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = \cot \left( x + \frac { \pi } { 3 } \right) </strong> A)x-intercept: none; y-intercept:  \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    B) x-intercept: none; y-intercept:  - \frac { 2 \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    C) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    D) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    E) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  - \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    <div style=padding-top: 35px>
B) x-intercept: none; y-intercept:
233- \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes: x=π3x = - \frac { \pi } { 3 } and x=2π3x = \frac { 2 \pi } { 3 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = \cot \left( x + \frac { \pi } { 3 } \right) </strong> A)x-intercept: none; y-intercept:  \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    B) x-intercept: none; y-intercept:  - \frac { 2 \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    C) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    D) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    E) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  - \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    <div style=padding-top: 35px>
C) x-intercept: π6\frac { \pi } { 6 } ; y-intercept: 33\frac { \sqrt { 3 } } { 3 } ; asymptotes: x=π3x = - \frac { \pi } { 3 } and x=2π3x = \frac { 2 \pi } { 3 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = \cot \left( x + \frac { \pi } { 3 } \right) </strong> A)x-intercept: none; y-intercept:  \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    B) x-intercept: none; y-intercept:  - \frac { 2 \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    C) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    D) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    E) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  - \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    <div style=padding-top: 35px>
D) x-intercept: π6\frac { \pi } { 6 } ; y-intercept: 33\frac { \sqrt { 3 } } { 3 } ; asymptotes: x=π3x = - \frac { \pi } { 3 } and x=2π3x = \frac { 2 \pi } { 3 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = \cot \left( x + \frac { \pi } { 3 } \right) </strong> A)x-intercept: none; y-intercept:  \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    B) x-intercept: none; y-intercept:  - \frac { 2 \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    C) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    D) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    E) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  - \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    <div style=padding-top: 35px>
E) x-intercept: π6\frac { \pi } { 6 } ; y-intercept: 33- \frac { \sqrt { 3 } } { 3 } ; asymptotes: x=π3x = - \frac { \pi } { 3 } and x=2π3x = \frac { 2 \pi } { 3 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = \cot \left( x + \frac { \pi } { 3 } \right) </strong> A)x-intercept: none; y-intercept:  \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    B) x-intercept: none; y-intercept:  - \frac { 2 \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    C) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    D) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    E) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  - \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    <div style=padding-top: 35px>
Question
Graph the function for one period, and show (or specify) intercepts and asymptotes. y=14csc(4πx)y = - \frac { 1 } { 4 } \csc ( 4 \pi x )

A) x-intercept: none; y-intercept: none; asymptotes: x=14x = - \frac { 1 } { 4 } , x=0x = 0 and x=14x = \frac { 1 } { 4 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \frac { 1 } { 4 } \csc ( 4 \pi x ) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    B) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    C) x-intercept: none; y-intercept: none; asymptotes:  x = 0  and  x = \frac { 1 } { 4 }    Chapter 8 Answer Section MULTIPLE CHOICE D) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    E) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    <div style=padding-top: 35px>
B) x-intercept: none; y-intercept: none; asymptotes: x=14x = - \frac { 1 } { 4 } , x=0x = 0 and x=14x = \frac { 1 } { 4 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \frac { 1 } { 4 } \csc ( 4 \pi x ) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    B) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    C) x-intercept: none; y-intercept: none; asymptotes:  x = 0  and  x = \frac { 1 } { 4 }    Chapter 8 Answer Section MULTIPLE CHOICE D) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    E) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    <div style=padding-top: 35px>
C) x-intercept: none; y-intercept: none; asymptotes: x=0x = 0 and x=14x = \frac { 1 } { 4 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \frac { 1 } { 4 } \csc ( 4 \pi x ) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    B) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    C) x-intercept: none; y-intercept: none; asymptotes:  x = 0  and  x = \frac { 1 } { 4 }    Chapter 8 Answer Section MULTIPLE CHOICE D) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    E) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    <div style=padding-top: 35px>
Chapter 8
Answer Section
MULTIPLE CHOICE
D) x-intercept: none; y-intercept: none; asymptotes: x=14x = - \frac { 1 } { 4 } , x=0x = 0 and x=14x = \frac { 1 } { 4 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \frac { 1 } { 4 } \csc ( 4 \pi x ) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    B) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    C) x-intercept: none; y-intercept: none; asymptotes:  x = 0  and  x = \frac { 1 } { 4 }    Chapter 8 Answer Section MULTIPLE CHOICE D) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    E) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    <div style=padding-top: 35px>
E) x-intercept: none; y-intercept: none; asymptotes: x=14x = - \frac { 1 } { 4 } , x=0x = 0 and x=14x = \frac { 1 } { 4 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \frac { 1 } { 4 } \csc ( 4 \pi x ) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    B) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    C) x-intercept: none; y-intercept: none; asymptotes:  x = 0  and  x = \frac { 1 } { 4 }    Chapter 8 Answer Section MULTIPLE CHOICE D) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    E) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    <div style=padding-top: 35px>
Question
Graph the function for one period, and show (or specify) intercepts and asymptotes. y=csc(x4)y = - \csc \left( \frac { x } { 4 } \right)

A) x-intercept: none; y-intercept: none; asymptotes: x=4πx = - 4 \pi , x=0x = 0 and x=4πx = 4 \pi  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \csc \left( \frac { x } { 4 } \right) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    B) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  and  x = 0    C) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    D) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    E) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    <div style=padding-top: 35px>
B) x-intercept: none; y-intercept: none; asymptotes: x=4πx = - 4 \pi and x=0x = 0  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \csc \left( \frac { x } { 4 } \right) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    B) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  and  x = 0    C) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    D) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    E) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    <div style=padding-top: 35px>
C) x-intercept: none; y-intercept: none; asymptotes: x=4πx = - 4 \pi , x=0x = 0 and x=4πx = 4 \pi  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \csc \left( \frac { x } { 4 } \right) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    B) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  and  x = 0    C) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    D) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    E) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    <div style=padding-top: 35px>
D) x-intercept: none; y-intercept: none; asymptotes: x=4πx = - 4 \pi , x=0x = 0 and x=4πx = 4 \pi  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \csc \left( \frac { x } { 4 } \right) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    B) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  and  x = 0    C) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    D) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    E) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    <div style=padding-top: 35px>
E) x-intercept: none; y-intercept: none; asymptotes: x=4πx = - 4 \pi , x=0x = 0 and x=4πx = 4 \pi  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \csc \left( \frac { x } { 4 } \right) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    B) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  and  x = 0    C) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    D) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    E) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    <div style=padding-top: 35px>
Question
Graph the function for one period, and show (or specify) the intercepts and the asymptotes. y=tan(xπ6)y = - \tan \left( x - \frac { \pi } { 6 } \right)

A)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = - \tan \left( x - \frac { \pi } { 6 } \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = - \tan \left( x - \frac { \pi } { 6 } \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = - \tan \left( x - \frac { \pi } { 6 } \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = - \tan \left( x - \frac { \pi } { 6 } \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = - \tan \left( x - \frac { \pi } { 6 } \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Graph the function for one period, and show (or specify) the intercepts and the asymptotes. y=tan(x+π2)y = \tan \left( x + \frac { \pi } { 2 } \right)

A)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = \tan \left( x + \frac { \pi } { 2 } \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = \tan \left( x + \frac { \pi } { 2 } \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = \tan \left( x + \frac { \pi } { 2 } \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = \tan \left( x + \frac { \pi } { 2 } \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = \tan \left( x + \frac { \pi } { 2 } \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 8: Graphs of the Trigonometric Functions
1
Use the Pythagorean identities to simplify the expression. cos2t+sin2tcot2t+1\frac { \cos ^ { 2 } t + \sin ^ { 2 } t } { \cot ^ { 2 } t + 1 }

A) sin2t\sin ^ { 2 } t
B) csc2θ\csc ^ { 2 } \theta
C) cos2θ\cos ^ { 2 } \theta
D) 1
E) sec2θ\sec ^ { 2 } \theta
sin2t\sin ^ { 2 } t
2
Refer to the graph of y=cosxy = \cos x in the figure. Specify the coordinates of the point I.  <strong>Refer to the graph of  y = \cos x  in the figure. Specify the coordinates of the point I.  </strong> A)  ( - 3 \pi , 1 )  B)  \left( - \frac { 3 \pi } { 2 } , 1 \right)  C)  \left( - \frac { 7 \pi } { 2 } , 1 \right)  D)  ( - 5 \pi , 1 )  E)  ( - 2 \pi , 1 )

A) (3π,1)( - 3 \pi , 1 )
B) (3π2,1)\left( - \frac { 3 \pi } { 2 } , 1 \right)
C) (7π2,1)\left( - \frac { 7 \pi } { 2 } , 1 \right)
D) (5π,1)( - 5 \pi , 1 )
E) (2π,1)( - 2 \pi , 1 )
(2π,1)( - 2 \pi , 1 )
3
Determine whether the equation for the graph has the form y=AsinBxy = A \sin B x or y=AcosBxy = A \cos B x ( with B>0B > 0 ) and then find the values of AA and B { B } .  <strong>Determine whether the equation for the graph has the form  y = A \sin B x  or  y = A \cos B x  ( with  B > 0  ) and then find the values of  A  and   { B }  .  </strong> A)  y = 5 \sin 6 x  B)  y = 5 \sin \frac { x } { 6 }  C)  y = - \frac { 1 } { 5 } \cos \frac { x } { 6 }  D)  y = 5 \cos \frac { x } { 6 }  E)  y = - 5 \cos 6 x

A) y=5sin6xy = 5 \sin 6 x
B) y=5sinx6y = 5 \sin \frac { x } { 6 }
C) y=15cosx6y = - \frac { 1 } { 5 } \cos \frac { x } { 6 }
D) y=5cosx6y = 5 \cos \frac { x } { 6 }
E) y=5cos6xy = - 5 \cos 6 x
y=5sinx6y = 5 \sin \frac { x } { 6 }
4
State whether the function y=sinxy = - \sin x is increasing or decreasing on the interval. 3π2<x<π- \frac { 3 \pi } { 2 } < x < - \pi

A) increasing
B) decreasing
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
5
State whether the function y=sinxy = \sin x is increasing or decreasing on the interval. π2<x<π2- \frac { \pi } { 2 } < x < \frac { \pi } { 2 }

A) decreasing
B) increasing
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
6
Refer to the graph of y=sinxy = - \sin x in the figure. Specify the coordinates of the point I.  <strong>Refer to the graph of  y = - \sin x  in the figure. Specify the coordinates of the point I.  </strong> A)  ( 15.71,0 )  B)  ( 6.28,0 )  C)  ( 12.56,0 )  D)  ( 1.57,0 )  E)  ( 4.71,0 )

A) (15.71,0)( 15.71,0 )
B) (6.28,0)( 6.28,0 )
C) (12.56,0)( 12.56,0 )
D) (1.57,0)( 1.57,0 )
E) (4.71,0)( 4.71,0 )
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
7
A mass on a smooth tabletop is attached to a spring, as shown in the figure. The coordinate system has been chosen so that the equilibrium position of the mass corresponds to s=0s = 0 . Assume that the simple harmonic motion is described by the equation s=5cos(πt3)s = 5 \cos \left( \frac { \pi t } { 3 } \right) , where s is in centimeters and t is in seconds. Determine which table describes the s-coordinate of the mass at each of the following times: t=t = 0 sec, 0.5 sec, 1 sec, and 2 sec. (One of these coordinates will involve a radical sign; for this case, use a calculator and round the final answer to two decimal places.)  <strong>A mass on a smooth tabletop is attached to a spring, as shown in the figure. The coordinate system has been chosen so that the equilibrium position of the mass corresponds to  s = 0  . Assume that the simple harmonic motion is described by the equation  s = 5 \cos \left( \frac { \pi t } { 3 } \right)  , where s is in centimeters and t is in seconds. Determine which table describes the s-coordinate of the mass at each of the following times:  t =  0 sec, 0.5 sec, 1 sec, and 2 sec. (One of these coordinates will involve a radical sign; for this case, use a calculator and round the final answer to two decimal places.)  </strong> A)  \begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\ \hline 0 & 5 \\ \hline 0.5 & 4.33 \\ \hline 1 & 2.5 \\ \hline 2 & 2.5 \\ \hline \end{array}  B)  \begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\ \hline 0 & - 2.5 \\ \hline 0.5 & 4.33 \\ \hline 1 & 2.5 \\ \hline 2 & 5 \\ \hline \end{array}  C)  \begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\ \hline 0 & 5 \\ \hline 0.5 & 4.33 \\ \hline 1 & 2.5 \\ \hline 2 & - 2.5 \\ \hline \end{array}  D)  \begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\ \hline 0 & 2.5 \\ \hline 0.5 & 4.33 \\ \hline 1 & 5 \\ \hline 2 & - 2.5 \\ \hline \end{array}  E)  \begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\ \hline 0 & 5 \\ \hline 0.5 & 2.5 \\ \hline 1 & 4.33 \\ \hline 2 & - 2.5 \\ \hline \end{array}

A)  time (sec)  s-coordinate(cm) 050.54.3312.522.5\begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\\hline 0 & 5 \\\hline 0.5 & 4.33 \\\hline 1 & 2.5 \\\hline 2 & 2.5 \\\hline\end{array}
B)  time (sec)  s-coordinate(cm) 02.50.54.3312.525\begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\\hline 0 & - 2.5 \\\hline 0.5 & 4.33 \\\hline 1 & 2.5 \\\hline 2 & 5 \\\hline\end{array}
C)  time (sec)  s-coordinate(cm) 050.54.3312.522.5\begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\\hline 0 & 5 \\\hline 0.5 & 4.33 \\\hline 1 & 2.5 \\\hline 2 & - 2.5 \\\hline\end{array}
D)  time (sec)  s-coordinate(cm) 02.50.54.331522.5\begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\\hline 0 & 2.5 \\\hline 0.5 & 4.33 \\\hline 1 & 5 \\\hline 2 & - 2.5 \\\hline\end{array}
E)  time (sec)  s-coordinate(cm) 050.52.514.3322.5\begin{array} { | c | c | } \hline \text { time (sec) } & \text { s-coordinate(cm) } \\\hline 0 & 5 \\\hline 0.5 & 2.5 \\\hline 1 & 4.33 \\\hline 2 & - 2.5 \\\hline\end{array}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
8
Consider the function f(x)=sin(xπ4)f ( x ) = \sin \left( x - \frac { \pi } { 4 } \right) . Specify the phase shift.

A) π4\frac { \pi } { 4 }
B) π8\frac { \pi } { 8 }
C) π4- \frac { \pi } { 4 }
D) 3π4\frac { 3 \pi } { 4 }
E) 00
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
9
Consider the function y=sinx45y = \sin \frac { x } { 4 } - 5 on the interval [0,8π][ 0,8 \pi ] . Specify the intervals in which the function is increasing.

A) (0,2π)( 0,2 \pi )
B) (0,2π),(6π,8π)( 0,2 \pi ) , ( 6 \pi , 8 \pi )
C) (6π,8π)( 6 \pi , 8 \pi )
D) (2π,6π),(8π,9π)( 2 \pi , 6 \pi ) , ( 8 \pi , 9 \pi )
E) (0,8π)( 0,8 \pi )
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
10
Consider the function y=cos3xy = \cos 3 x . Specify the period.

A) π3\frac { \pi } { 3 }
B) 2π3\frac { 2 \pi } { 3 }
C) 6π7\frac { 6 \pi } { 7 }
D) 2π2 \pi
E) 2π3- \frac { 2 \pi } { 3 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
11
Consider the function y=1cosπx4y = 1 - \cos \frac { \pi x } { 4 } on the interval [0,8][ 0,8 ] . Determine the χ\chi -intercepts by giving the χ\chi -coordinate(s).

A) 0,40,4
B) 0,80,8
C) 4- 4
D) 88
E) there are no χ\chi -intercepts
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
12
Given: cotθ+tanθ+1\cot \theta + \tan \theta + 1 . Determine the right side of the identity equation.

A) tanθ1tanθ+cotθ1cotθ\frac { \tan \theta } { 1 - \tan \theta } + \frac { \cot \theta } { 1 - \cot \theta }
B) cotθ1tanθ+tanθ1cotθ\frac { \cot \theta } { 1 - \tan \theta } + \frac { \tan \theta } { 1 - \cot \theta }
C) tanθ1+tanθ+cotθ1+cosθ\frac { \tan \theta } { 1 + \tan \theta } + \frac { \cot \theta } { 1 + \cos \theta }
D) cotθ1+tanθ+tanθ1+cotθ\frac { \cot \theta } { 1 + \tan \theta } + \frac { \tan \theta } { 1 + \cot \theta }
E) cosθ1tanθ+cosθ1cotθ\frac { \cos \theta } { 1 - \tan \theta } + \frac { \cos \theta } { 1 - \cot \theta }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
13
Consider the function y=9cos(8xπ3)y = 9 \cos \left( 8 x - \frac { \pi } { 3 } \right) . Specify the amplitude.

A) 1818
B) 33
C) 98\frac { 9 } { 8 }
D) 99
E) 89\frac { 8 } { 9 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
14
Consider the function y=4sinxy = 4 \sin x . Specify the amplitude.

A) 1
B) 4
C) 5
D) 8
E) 2
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
15
Consider the function y=cos(6xπ)y = \cos ( 6 x - \pi ) . Specify the period.

A) π6\frac { \pi } { 6 }
B) 11
C) 2π2 \pi
D) π3\frac { \pi } { 3 }
E) 4π3\frac { 4 \pi } { 3 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
16
Compute secα\sec \alpha , cosα\cos \alpha , and sinα\sin \alpha . tanα=125\tan \alpha = \frac { 12 } { 5 } and cosα>0\cos \alpha > 0

A) secα=1213\sec \alpha = - \frac { 12 } { 13 } , cosα=513\cos \alpha = \frac { 5 } { 13 } , sinα=1213\sin \alpha = \frac { 12 } { 13 }
B) secα=1312\sec \alpha = \frac { 13 } { 12 } , cosα=513\cos \alpha = \frac { 5 } { 13 } , sinα=1213\sin \alpha = \frac { 12 } { 13 }
C) secα=135\sec \alpha = - \frac { 13 } { 5 } , cosα=1213\cos \alpha = - \frac { 12 } { 13 } , sinα=513\sin \alpha = \frac { 5 } { 13 }
D) secα=513\sec \alpha = \frac { 5 } { 13 } , cosα=135\cos \alpha = \frac { 13 } { 5 } , sinα=1213\sin \alpha = - \frac { 12 } { 13 }
E) secα=135\sec \alpha = \frac { 13 } { 5 } , cosα=513\cos \alpha = \frac { 5 } { 13 } , sinα=1213\sin \alpha = \frac { 12 } { 13 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
17
Use the Pythagorean identities to simplify the expression. sec2θtan2θ1+tan2θ\frac { \sec ^ { 2 } \theta - \tan ^ { 2 } \theta } { 1 + \tan ^ { 2 } \theta }

A) sec2θ\sec ^ { 2 } \theta
B) csc2θ\csc ^ { 2 } \theta
C) cos2θ\cos ^ { 2 } \theta
D) sin2θ\sin ^ { 2 } \theta
E) 1
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
18
Consider the function y=6+sin5xy = 6 + \sin 5 x . Specify the period.

A) 25π- \frac { 2 } { 5 } \pi
B) 16π\frac { 1 } { 6 } \pi
C) 15π\frac { 1 } { 5 } \pi
D) 15\frac { 1 } { 5 }
E) 25π\frac { 2 } { 5 } \pi
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
19
Specify the period and amplitude for the function. <strong>Specify the period and amplitude for the function.  </strong> A) period: 8; amplitude: 8 B) period: 4; amplitude: 16 C) period: 2; amplitude: 16 D) period: 4; amplitude: 8 E) period: 2; amplitude: 8

A) period: 8; amplitude: 8
B) period: 4; amplitude: 16
C) period: 2; amplitude: 16
D) period: 4; amplitude: 8
E) period: 2; amplitude: 8
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
20
Consider the function y=8sinπx8y = 8 \sin \frac { \pi x } { 8 } on the interval [0,16][ 0,16 ] . Determine the χ\chi -intercepts by giving the χ\chi -coordinate(s).

A) 0,8,240,8,24
B) 0,8,160,8,16
C) 8,168,16
D) 0,160,16
E) 0,8π,16π0,8 \pi , 16 \pi
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
21
Graph the function for one period, and show (or specify) intercepts and asymptotes. y=cot(x+π3)y = \cot \left( x + \frac { \pi } { 3 } \right)

A)x-intercept: none; y-intercept:
233\frac { 2 \sqrt { 3 } } { 3 } ; asymptotes: x=π3x = - \frac { \pi } { 3 } and x=2π3x = \frac { 2 \pi } { 3 }
 <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = \cot \left( x + \frac { \pi } { 3 } \right) </strong> A)x-intercept: none; y-intercept:  \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    B) x-intercept: none; y-intercept:  - \frac { 2 \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    C) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    D) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    E) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  - \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }
B) x-intercept: none; y-intercept:
233- \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes: x=π3x = - \frac { \pi } { 3 } and x=2π3x = \frac { 2 \pi } { 3 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = \cot \left( x + \frac { \pi } { 3 } \right) </strong> A)x-intercept: none; y-intercept:  \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    B) x-intercept: none; y-intercept:  - \frac { 2 \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    C) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    D) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    E) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  - \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }
C) x-intercept: π6\frac { \pi } { 6 } ; y-intercept: 33\frac { \sqrt { 3 } } { 3 } ; asymptotes: x=π3x = - \frac { \pi } { 3 } and x=2π3x = \frac { 2 \pi } { 3 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = \cot \left( x + \frac { \pi } { 3 } \right) </strong> A)x-intercept: none; y-intercept:  \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    B) x-intercept: none; y-intercept:  - \frac { 2 \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    C) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    D) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    E) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  - \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }
D) x-intercept: π6\frac { \pi } { 6 } ; y-intercept: 33\frac { \sqrt { 3 } } { 3 } ; asymptotes: x=π3x = - \frac { \pi } { 3 } and x=2π3x = \frac { 2 \pi } { 3 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = \cot \left( x + \frac { \pi } { 3 } \right) </strong> A)x-intercept: none; y-intercept:  \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    B) x-intercept: none; y-intercept:  - \frac { 2 \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    C) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    D) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    E) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  - \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }
E) x-intercept: π6\frac { \pi } { 6 } ; y-intercept: 33- \frac { \sqrt { 3 } } { 3 } ; asymptotes: x=π3x = - \frac { \pi } { 3 } and x=2π3x = \frac { 2 \pi } { 3 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = \cot \left( x + \frac { \pi } { 3 } \right) </strong> A)x-intercept: none; y-intercept:  \frac { 2 \sqrt { 3 } } { 3 } ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    B) x-intercept: none; y-intercept:  - \frac { 2 \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    C) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    D) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }    E) x-intercept:  \frac { \pi } { 6 }  ; y-intercept:  - \frac { \sqrt { 3 } } { 3 }  ; asymptotes:  x = - \frac { \pi } { 3 }  and  x = \frac { 2 \pi } { 3 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
22
Graph the function for one period, and show (or specify) intercepts and asymptotes. y=14csc(4πx)y = - \frac { 1 } { 4 } \csc ( 4 \pi x )

A) x-intercept: none; y-intercept: none; asymptotes: x=14x = - \frac { 1 } { 4 } , x=0x = 0 and x=14x = \frac { 1 } { 4 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \frac { 1 } { 4 } \csc ( 4 \pi x ) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    B) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    C) x-intercept: none; y-intercept: none; asymptotes:  x = 0  and  x = \frac { 1 } { 4 }    Chapter 8 Answer Section MULTIPLE CHOICE D) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    E) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }
B) x-intercept: none; y-intercept: none; asymptotes: x=14x = - \frac { 1 } { 4 } , x=0x = 0 and x=14x = \frac { 1 } { 4 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \frac { 1 } { 4 } \csc ( 4 \pi x ) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    B) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    C) x-intercept: none; y-intercept: none; asymptotes:  x = 0  and  x = \frac { 1 } { 4 }    Chapter 8 Answer Section MULTIPLE CHOICE D) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    E) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }
C) x-intercept: none; y-intercept: none; asymptotes: x=0x = 0 and x=14x = \frac { 1 } { 4 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \frac { 1 } { 4 } \csc ( 4 \pi x ) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    B) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    C) x-intercept: none; y-intercept: none; asymptotes:  x = 0  and  x = \frac { 1 } { 4 }    Chapter 8 Answer Section MULTIPLE CHOICE D) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    E) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }
Chapter 8
Answer Section
MULTIPLE CHOICE
D) x-intercept: none; y-intercept: none; asymptotes: x=14x = - \frac { 1 } { 4 } , x=0x = 0 and x=14x = \frac { 1 } { 4 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \frac { 1 } { 4 } \csc ( 4 \pi x ) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    B) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    C) x-intercept: none; y-intercept: none; asymptotes:  x = 0  and  x = \frac { 1 } { 4 }    Chapter 8 Answer Section MULTIPLE CHOICE D) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    E) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }
E) x-intercept: none; y-intercept: none; asymptotes: x=14x = - \frac { 1 } { 4 } , x=0x = 0 and x=14x = \frac { 1 } { 4 }  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \frac { 1 } { 4 } \csc ( 4 \pi x ) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    B) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    C) x-intercept: none; y-intercept: none; asymptotes:  x = 0  and  x = \frac { 1 } { 4 }    Chapter 8 Answer Section MULTIPLE CHOICE D) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }    E) x-intercept: none; y-intercept: none; asymptotes:  x = - \frac { 1 } { 4 }  ,  x = 0  and  x = \frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
23
Graph the function for one period, and show (or specify) intercepts and asymptotes. y=csc(x4)y = - \csc \left( \frac { x } { 4 } \right)

A) x-intercept: none; y-intercept: none; asymptotes: x=4πx = - 4 \pi , x=0x = 0 and x=4πx = 4 \pi  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \csc \left( \frac { x } { 4 } \right) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    B) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  and  x = 0    C) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    D) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    E) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi
B) x-intercept: none; y-intercept: none; asymptotes: x=4πx = - 4 \pi and x=0x = 0  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \csc \left( \frac { x } { 4 } \right) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    B) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  and  x = 0    C) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    D) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    E) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi
C) x-intercept: none; y-intercept: none; asymptotes: x=4πx = - 4 \pi , x=0x = 0 and x=4πx = 4 \pi  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \csc \left( \frac { x } { 4 } \right) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    B) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  and  x = 0    C) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    D) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    E) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi
D) x-intercept: none; y-intercept: none; asymptotes: x=4πx = - 4 \pi , x=0x = 0 and x=4πx = 4 \pi  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \csc \left( \frac { x } { 4 } \right) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    B) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  and  x = 0    C) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    D) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    E) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi
E) x-intercept: none; y-intercept: none; asymptotes: x=4πx = - 4 \pi , x=0x = 0 and x=4πx = 4 \pi  <strong>Graph the function for one period, and show (or specify) intercepts and asymptotes.  y = - \csc \left( \frac { x } { 4 } \right) </strong> A) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    B) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  and  x = 0    C) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    D) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi    E) x-intercept: none; y-intercept: none; asymptotes:  x = - 4 \pi  ,  x = 0  and  x = 4 \pi
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
24
Graph the function for one period, and show (or specify) the intercepts and the asymptotes. y=tan(xπ6)y = - \tan \left( x - \frac { \pi } { 6 } \right)

A)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = - \tan \left( x - \frac { \pi } { 6 } \right) </strong> A)   B)   C)   D)   E)
B)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = - \tan \left( x - \frac { \pi } { 6 } \right) </strong> A)   B)   C)   D)   E)
C)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = - \tan \left( x - \frac { \pi } { 6 } \right) </strong> A)   B)   C)   D)   E)
D)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = - \tan \left( x - \frac { \pi } { 6 } \right) </strong> A)   B)   C)   D)   E)
E)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = - \tan \left( x - \frac { \pi } { 6 } \right) </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
25
Graph the function for one period, and show (or specify) the intercepts and the asymptotes. y=tan(x+π2)y = \tan \left( x + \frac { \pi } { 2 } \right)

A)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = \tan \left( x + \frac { \pi } { 2 } \right) </strong> A)   B)   C)   D)   E)
B)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = \tan \left( x + \frac { \pi } { 2 } \right) </strong> A)   B)   C)   D)   E)
C)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = \tan \left( x + \frac { \pi } { 2 } \right) </strong> A)   B)   C)   D)   E)
D)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = \tan \left( x + \frac { \pi } { 2 } \right) </strong> A)   B)   C)   D)   E)
E)  <strong>Graph the function for one period, and show (or specify) the intercepts and the asymptotes.  y = \tan \left( x + \frac { \pi } { 2 } \right) </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 25 flashcards in this deck.