Deck 4: Force and Newtons Laws of Motion

Full screen (f)
exit full mode
Question
Three objects experience interactions. Object A\mathrm{A} has mass, object B\mathrm{B} has electrical charge, and object C\mathrm{C} has both mass and electrical charge. Which of the following statements is true?

A) Object A and object B experience an electrical interaction.
B) Object A\mathrm{A} and object C\mathrm{C} experience a gravitational interaction.
C) Object A\mathrm{A} and object B\mathrm{B} experience a gravitational interaction.
D) Object A\mathrm{A} and object C\mathrm{C} experience an electrical interaction.
Use Space or
up arrow
down arrow
to flip the card.
Question
If an object of mass 20 kg20 \mathrm{~kg} on Earth is sent to the Moon, it will have a mass of

A) 0.0 kg0.0 \mathrm{~kg} .
B) 20 kg20 \mathrm{~kg} .
C) 4.0 kg4.0 \mathrm{~kg} .
D) 10 kg10 \mathrm{~kg} .
Question
A freight train consists of an engine and several identical cars on a straight, level track. Which of the following statements is true?

A) If the train is moving at constant speed, the engine must be pulling with a force greater than the train's weight.
B) If the train is moving at constant speed, the engine's pull on the first car must exceed that car's backward pull on the engine.
C) If the train is moving at constant speed, the engine's pull must be equal to the force of friction.
D) If the train is coasting, its inertia makes it slow down and eventually stop.
Question
In the figure an airport luggage carrying train with a tractor TT is pulling three luggage carts M1,M2M_{1}, M_{2} , and M3M_{3} , with constant velocity of 4.5 m/s4.5 \mathrm{~m} / \mathrm{s} . Unfortunately, the wheels on the carts have locked up and are sliding rather than rolling. If T=300.0 kg,M1=200.0 kg,M2=100.0 kgT=300.0 \mathrm{~kg}, M_{1}=200.0 \mathrm{~kg}, M_{2}=100.0 \mathrm{~kg} , and M3=100.0 kgM_{3}=100.0 \mathrm{~kg} , and the coefficient of kinetic friction for each is 0.4000 , what is the force in the connection between the tractor T\mathrm{T} and cart M1\mathrm{M}_{1} ? Use g=9.8 m/s\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} .
 <strong>In the figure an airport luggage carrying train with a tractor  T  is pulling three luggage carts  M_{1}, M_{2} , and  M_{3} , with constant velocity of  4.5 \mathrm{~m} / \mathrm{s} . Unfortunately, the wheels on the carts have locked up and are sliding rather than rolling. If  T=300.0 \mathrm{~kg}, M_{1}=200.0 \mathrm{~kg}, M_{2}=100.0 \mathrm{~kg} , and  M_{3}=100.0 \mathrm{~kg} , and the coefficient of kinetic friction for each is 0.4000 , what is the force in the connection between the tractor  \mathrm{T}  and cart  \mathrm{M}_{1}  ? Use  \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} .  </strong> A)  1862 \mathrm{~N}  B)  1568 \mathrm{~N}  C)  2941 \mathrm{~N}  D)  2744 \mathrm{~N}  E)  2439 \mathrm{~N}  <div style=padding-top: 35px>

A) 1862 N1862 \mathrm{~N}
B) 1568 N1568 \mathrm{~N}
C) 2941 N2941 \mathrm{~N}
D) 2744 N2744 \mathrm{~N}
E) 2439 N2439 \mathrm{~N}
Question
In the figure, an airport luggage carrying train with a tractor TT is pulling three luggage carts, M1,M2M_{1}, M_{2} , and M3M_{3} , with constant velocity of 4.5 m/s4.5 \mathrm{~m} / \mathrm{s} . If T=300 kg,M1=200 kg,M2=100 kgT=300 \mathrm{~kg}, M_{1}=200 \mathrm{~kg}, M_{2}=100 \mathrm{~kg} , and M3=100 kgM_{3}=100 \mathrm{~kg} (there is no friction), then the force in the connection between the tractor T\mathrm{T} and cart M1\mathrm{M}_{1} is
 <strong>In the figure, an airport luggage carrying train with a tractor  T  is pulling three luggage carts,  M_{1}, M_{2} , and  M_{3} , with constant velocity of  4.5 \mathrm{~m} / \mathrm{s} . If  T=300 \mathrm{~kg}, M_{1}=200 \mathrm{~kg}, M_{2}=100 \mathrm{~kg} , and  M_{3}=100 \mathrm{~kg}  (there is no friction), then the force in the connection between the tractor  \mathrm{T}  and cart  \mathrm{M}_{1}  is  </strong> A)  280 \mathrm{~N} . B)  560 \mathrm{~N} . C)  980 \mathrm{~N} . D)  0.00 \mathrm{~N} . E)  140 \mathrm{~N} . <div style=padding-top: 35px>

A) 280 N280 \mathrm{~N} .
B) 560 N560 \mathrm{~N} .
C) 980 N980 \mathrm{~N} .
D) 0.00 N0.00 \mathrm{~N} .
E) 140 N140 \mathrm{~N} .
Question
A large massive rock is in contact with the Earth. Draw a force diagram for the rock and the Earth. Which of the following statements is true?

A) The gravitational force on the rock due to the Earth and the gravitational force on the Earth due to the rock are interaction partners.
B) The gravitational force on the Earth due to the rock and the contact force on the Earth due to the rock are interaction partners.
C) The gravitational force on the rock due to the Earth and the contact force on the Earth due to the rock are interaction partners.
D) The contact force on the Earth due to the rock and the gravitational force on the Earth due to the rock are interaction partners.
Question
What is the gravitational field strength on the surface of the Earth? (G=6.67×1011 N m2/kg2\left(\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right. , the mass of the Earth is 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} , and the radius of the Earth is 6.38×106 m6.38 \times 10^{6} \mathrm{~m} .)

A) 10.1 N/kg10.1 \mathrm{~N} / \mathrm{kg} .
B) 6.20 N/kg6.20 \mathrm{~N} / \mathrm{kg} .
C) 20.3 N/kg20.3 \mathrm{~N} / \mathrm{kg} .
D) 9.80 N/kg9.80 \mathrm{~N} / \mathrm{kg} .
E) 3.40 N/kg3.40 \mathrm{~N} / \mathrm{kg} .
Question
What is the gravitational field strength at the location of a satellite that is orbiting the Earth at an altitude of 5,000 km?(G=6.67×1011 N m2/kg25,000 \mathrm{~km} ?\left(\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right. , the mass of the Earth is 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} , and the radius of the Earth is 6.38×106 m6.38 \times 106 \mathrm{~m} .)

A) 8.43 N/kg8.43 \mathrm{~N} / \mathrm{kg} .
B) 9.55 N/kg9.55 \mathrm{~N} / \mathrm{kg} .
C) 5.28 N/kg5.28 \mathrm{~N} / \mathrm{kg}
D) 6.33 N/kg6.33 \mathrm{~N} / \mathrm{kg} .
E) 3.08 N/kg3.08 \mathrm{~N} / \mathrm{kg} .
Question
The gravitational field at the Moon due to the Earth is approximately ( G=6.67×1011 N m2/kg2\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} , the mass of the Earth is 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} , and the distance to the Moon is 3.85×108 m3.85 \times 10^{8} \mathrm{~m} )

A) 7.30×103 N/kg7.30 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Earth.
B) 2.69×103 N/kg2.69 \times 10^{-3} \mathrm{~N} / \mathrm{kg} away from the Earth.
C) 7.30×103 N/kg7.30 \times 10^{-3} \mathrm{~N} / \mathrm{kg} away from the Earth.
D) 5.00×103 N/kg5.00 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Earth.
E) 2.69×103 N/kg2.69 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Earth.
Question
The gravitational field at the Earth due to the Moon is about ( G=6.67×1011 N m2/kg2\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} , the mass of the Moon is 7.35×1022 kg7.35 \times 10^{22} \mathrm{~kg} , and the distance to the Moon is 3.85×108 m3.85 \times 10^{8} \mathrm{~m} )

A) 7.50×105 N/kg7.50 \times 10-5 \mathrm{~N} / \mathrm{kg} away from the Moon.
B) 2.90×105 N/kg2.90 \times 10-5 \mathrm{~N} / \mathrm{kg} away from the Moon.
C) 4.01×105 N/kg4.01 \times 10^{-5} \mathrm{~N} / \mathrm{kg} toward the Moon.
D) 3.31×105 N/kg3.31 \times 10^{-5} \mathrm{~N} / \mathrm{kg} away from the Moon.
E) 3.31×105 N/kg3.31 \times 10^{-5} \mathrm{~N} / \mathrm{kg} toward the Moon.
Question
The Moon (mass 7.35×1022 kg7.35 \times 10^{22} \mathrm{~kg} ) orbits the Earth (mass 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} ) at a distance of 3.85×1083.85 \times 10^{8} meters. Meanwhile, the Earth orbits the Sun (mass 1.99×1030 kg1.99 \times 1030 \mathrm{~kg} ) at a distance of 1.50×10111.50 \times 1011 meters. When the Moon is directly between the Earth and the Sun, what is the gravitational field at the location of the Moon due to the Earth and the Sun combined? (G=6.67×1011 N m2/kg2)\left(\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)

A) 3.21×103 N/kg3.21 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Sun
B) 3.21×103 N/kg3.21 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Earth
C) 5.93×103 N/kg5.93 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Sun
D) 2.69×103 N/kg2.69 \times 10-3 \mathrm{~N} / \mathrm{kg} toward the Earth
E) 5.93×103 N/kg5.93 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Earth
Question
The Moon (mass 7.35×1022 kg7.35 \times 10^{22} \mathrm{~kg} ) is orbiting about the Earth (mass 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} ) at a radius of 3.85×1083.85 \times 10^{8} meters. The magnitude of the force of gravity on the Moon due to the Earth is (G=6.67×1011 N m2/kg2)\left(G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)

A) 4.10×1012 N4.10 \times 1012 \mathrm{~N} .
B) 1.98×1020 N1.98 \times 1020 \mathrm{~N} .
C) 9.20×1030 N9.20 \times 1030 \mathrm{~N} .
D) 6.70×1024 N6.70 \times 1024 \mathrm{~N} .
E) 3.20×1028 N3.20 \times 10^{28} \mathrm{~N} .
Question
An object with a mass of 200.0 kg200.0 \mathrm{~kg} is 500.0 km500.0 \mathrm{~km} above the surface of the Earth. The magnitude of the force of gravity on the 200.0 kg200.0 \mathrm{~kg} mass is (G=6.67×1011 N m2/kg2\left(\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right. , the radius of the Earth is 6.38×106 m6.38 \times 10^{6} \mathrm{~m} , and the mass of the Earth is 5.98×1024 kg5.98 \times 1024 \mathrm{~kg} )

A) 1.05×103 N1.05 \times 10^{3} \mathrm{~N} .
B) 2.02×103 N2.02 \times 10^{3} \mathrm{~N} .
C) 1.42×103 N1.42 \times 10^{3} \mathrm{~N} .
D) 1.69×103 N1.69 \times 10^{3} \mathrm{~N} .
E) 1.28×103 N1.28 \times 10^{3} \mathrm{~N} .
Question
What is the gravitational force between two 5.00 kg5.00 \mathrm{~kg} masses that are 10.0 cm10.0 \mathrm{~cm} apart from center to center? (G =6.67×1011 N m2/kg2=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} )

A) 1.67×108 N1.67 \times 10-8 \mathrm{~N}
B) 1.67×104 N1.67 \times 10^{-4} \mathrm{~N}
C) 1.62×106 N1.62 \times 10^{-6} \mathrm{~N}
D) 1.62×105 N1.62 \times 10^{-5} \mathrm{~N}
E) 1.67×107 N1.67 \times 10^{-7} \mathrm{~N}
Question
What is the gravitational force between two nuclei, each of mass 3.20×1027 kg3.20 \times 10^{-27} \mathrm{~kg} , which are separated by a distance of 1.06×1010 m?(G=6.67×1011 N m2/kg2)1.06 \times 10-10 \mathrm{~m} ?\left(\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)

A) 6.08×1044 N6.08 \times 10^{-44} \mathrm{~N}
B) 6.08×1043 N6.08 \times 10-43 \mathrm{~N}
C) 6.08×1045 N6.08 \times 10^{-45} \mathrm{~N}
D) 6.08×1042 N6.08 \times 10^{-42} \mathrm{~N}
Question
The weight of a 1.00 kg1.00 \mathrm{~kg} object on the surface of the Moon is ( G=6.67×1011 N m2/kg2\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m} 2 / \mathrm{kg}^{2} , the radius of the Moon is 1.74×106 m1.74 \times 10^{6} \mathrm{~m} , and the mass of the Moon is 7.35×1022 kg7.35 \times 10^{22} \mathrm{~kg} )

A) 7.59 N7.59 \mathrm{~N} .
B) 1.62 N1.62 \mathrm{~N} .
C) 0.548 N0.548 \mathrm{~N} .
D) 0.981 N0.981 \mathrm{~N} .
E) 9.80 N9.80 \mathrm{~N} .
Question
The Moon (mass 7.35×1022 kg7.35 \times 1022 \mathrm{~kg} ) orbits the Earth (mass 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} ) at a distance of 3.85×1083.85 \times 10^{8} meters. Meanwhile, the Earth orbits the Sun (mass 1.99×1030 kg1.99 \times 1030 \mathrm{~kg} ) at a distance of 1.50×10111.50 \times 1011 meters. When the Moon is directly between the Earth and the Sun, what is the gravitational force on the Moon due to the Earth and the Sun combined? ( G=6.67×1011 N m2/kg2\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} )

A) 4.36×1020 N4.36 \times 1020 \mathrm{~N} toward the Earth
B) 2.36×1020 N2.36 \times 10^{20} \mathrm{~N} toward the Sun
C) 2.38×1020 N2.38 \times 10^{20} \mathrm{~N} toward the Earth
D) 4.36×1020 N4.36 \times 1020 \mathrm{~N} toward the Sun
E) 1.98×1020 N1.98 \times 10^{20} \mathrm{~N} toward the Earth
Question
A boy with a mass of 55 kg55 \mathrm{~kg} walks into a room and sees a girl 8.0 m8.0 \mathrm{~m} in front of him who has a mass of 40 kg40 \mathrm{~kg} . What is his gravitational attraction to her?

A) 2.0×108 N2.0 \times 10^{8} \mathrm{~N}
B) 2.1×109 N2.1 \times 10^{9} \mathrm{~N}
C) 2.3×109 N2.3 \times 10^{-9} \mathrm{~N}
D) 2.4×108 N2.4 \times 10-8 \mathrm{~N}
E) 2.2×1011 N2.2 \times 10-11 \mathrm{~N}
Question
A mass sits at rest on top of a table. Which two forces that are not action-reaction partners are equal and opposite?

A) the force of gravity on the mass due to the Earth and the contact force on the mass due to the table
B) the contact force on the mass due to the table and the force of gravity on the Earth due to the mass
C) the contact force on the mass due to the table and the contact force on the table due to the mass
D) the force of gravity on the mass due to the Earth and the contact force on the table due to the mass
E) the force of gravity on the mass due to the Earth and the force of gravity on the Earth due to the mass
Question
Within a given system, the internal forces

A) determine the motion of the system.
B) are always balanced by the external forces.
C) all add to zero.
D) are measured with a gravimeter.
E) are only determined by subtracting the external forces from the net force on the system.
Question
A rope is connected to a spring scale on the left and exerts a force T1T_{1} . Another rope is connected to the scale on the right and exerts a force T2T_{2} . The scale shows a reading of Ts=120 NT_{s}=120 \mathrm{~N} . The values of T1T_{1} and T2T_{2} are
 <strong>A rope is connected to a spring scale on the left and exerts a force  T_{1} . Another rope is connected to the scale on the right and exerts a force  T_{2} . The scale shows a reading of  T_{s}=120 \mathrm{~N} . The values of  T_{1}  and  T_{2}  are  </strong> A)  \mathrm{T}_{1}=80 \mathrm{~N} , and  \mathrm{T}_{2}=120 \mathrm{~N} . B)  \mathrm{T}_{1}=80 \mathrm{~N} , and  \mathrm{T}_{2}=80 \mathrm{~N} . C)  \mathrm{T}_{1}=240 \mathrm{~N} , and  \mathrm{T}_{2}=240 \mathrm{~N} . D)  \mathrm{T}_{1}=120 \mathrm{~N} , and  \mathrm{T}_{2}=120 \mathrm{~N} . <div style=padding-top: 35px>

A) T1=80 N\mathrm{T}_{1}=80 \mathrm{~N} , and T2=120 N\mathrm{T}_{2}=120 \mathrm{~N} .
B) T1=80 N\mathrm{T}_{1}=80 \mathrm{~N} , and T2=80 N\mathrm{T}_{2}=80 \mathrm{~N} .
C) T1=240 N\mathrm{T}_{1}=240 \mathrm{~N} , and T2=240 N\mathrm{T}_{2}=240 \mathrm{~N} .
D) T1=120 N\mathrm{T}_{1}=120 \mathrm{~N} , and T2=120 N\mathrm{T}_{2}=120 \mathrm{~N} .
Question
A box rests on a frictionless countertop. A boy pushes horizontally to the right on the box, and a girl pushes on it to the left, yet it remains stationary. Which of the following statements is false?

A) We know the force of the boy on the box is equal in magnitude to the force of the girl on the box, because the box is in equilibrium.
B) We know the weight and normal force are equal in magnitude because the box is in equilibrium.
C) We know the weight and normal force are equal in magnitude because of Newton's third law.
D) We know the force of the boy on the box is equal in magnitude to the force of the box on the boy, because of Newton's third law.
Question
A tractor T\mathrm{T} is pulling a trailer M\mathrm{M} with a constant velocity. If the velocity is 20 m/s20 \mathrm{~m} / \mathrm{s} and M=200 kg\mathrm{M}=200 \mathrm{~kg} and T=\mathrm{T}= 500 kg500 \mathrm{~kg} , then the force on the trailer due to the tractor is (assume there is no friction or air resistance)
 <strong>A tractor  \mathrm{T}  is pulling a trailer  \mathrm{M}  with a constant velocity. If the velocity is  20 \mathrm{~m} / \mathrm{s}  and  \mathrm{M}=200 \mathrm{~kg}  and  \mathrm{T}=   500 \mathrm{~kg} , then the force on the trailer due to the tractor is (assume there is no friction or air resistance)  </strong> A)  600 \mathrm{~N}  forward. B)  450 \mathrm{~N}  backward. C) 0 . D)  35 \mathrm{~N}  forward. E)  200 \mathrm{~N}  backward. <div style=padding-top: 35px>

A) 600 N600 \mathrm{~N} forward.
B) 450 N450 \mathrm{~N} backward.
C) 0 .
D) 35 N35 \mathrm{~N} forward.
E) 200 N200 \mathrm{~N} backward.
Question
A tractor T\mathrm{T} is pulling a trailer M\mathrm{M} with a constant acceleration. If the forward acceleration is 1.5 m/s21.5 \mathrm{~m} / \mathrm{s}^{2} and M=\mathrm{M}= 400 kg400 \mathrm{~kg} and T=500 kg\mathrm{T}=500 \mathrm{~kg} , then the force on the tractor due to the trailer is (ignore air resistance)
 <strong>A tractor  \mathrm{T}  is pulling a trailer  \mathrm{M}  with a constant acceleration. If the forward acceleration is  1.5 \mathrm{~m} / \mathrm{s}^{2}  and  \mathrm{M}=   400 \mathrm{~kg}  and  \mathrm{T}=500 \mathrm{~kg} , then the force on the tractor due to the trailer is (ignore air resistance)  </strong> A)  35 \mathrm{~N}  forward. B)  600 \mathrm{~N}  backward. C)  450 \mathrm{~N}  backward. D) 0 . E)  200 \mathrm{~N}  forward. <div style=padding-top: 35px>

A) 35 N35 \mathrm{~N} forward.
B) 600 N600 \mathrm{~N} backward.
C) 450 N450 \mathrm{~N} backward.
D) 0 .
E) 200 N200 \mathrm{~N} forward.
Question
A tractor TT is pulling a trailer MM with a constant acceleration. If the forward acceleration is 0.50 m/s20.50 \mathrm{~m} / \mathrm{s}^{2} and MM =400 kg=400 \mathrm{~kg} and T=500 kg\mathrm{T}=500 \mathrm{~kg} , then the horizontal force on the tractor due to the ground is (ignore air resistance)
 <strong>A tractor  T  is pulling a trailer  M  with a constant acceleration. If the forward acceleration is  0.50 \mathrm{~m} / \mathrm{s}^{2}  and  M   =400 \mathrm{~kg}  and  \mathrm{T}=500 \mathrm{~kg} , then the horizontal force on the tractor due to the ground is (ignore air resistance)  </strong> A)  450 \mathrm{~N}  backward. B)  250 \mathrm{~N}  forward. C)  200 \mathrm{~N}  forward. D)  250 \mathrm{~N}  backward. E)  450 \mathrm{~N}  forward. <div style=padding-top: 35px>

A) 450 N450 \mathrm{~N} backward.
B) 250 N250 \mathrm{~N} forward.
C) 200 N200 \mathrm{~N} forward.
D) 250 N250 \mathrm{~N} backward.
E) 450 N450 \mathrm{~N} forward.
Question
A tractor TT is pulling two trailers, M1M_{1} and M2M_{2} , with a constant acceleration. TT has a mass of 200 kg,M1200 \mathrm{~kg}, M_{1} has a mass of 100 kg100 \mathrm{~kg} , and M2M_{2} has a mass of 150 kg150 \mathrm{~kg} . If the forward acceleration is 0.60 m/s20.60 \mathrm{~m} / \mathrm{s}^{2} , then the horizontal force on the tractor due to the ground is (ignore air resistance)
 <strong>A tractor  T  is pulling two trailers,  M_{1}  and  M_{2} , with a constant acceleration.  T  has a mass of  200 \mathrm{~kg}, M_{1}  has a mass of  100 \mathrm{~kg} , and  M_{2}  has a mass of  150 \mathrm{~kg} . If the forward acceleration is  0.60 \mathrm{~m} / \mathrm{s}^{2} , then the horizontal force on the tractor due to the ground is (ignore air resistance)  </strong> A)  90 \mathrm{~N}  forward. B)  150 \mathrm{~N}  forward. C)  270 \mathrm{~N}  forward. D)  150 \mathrm{~N}  backward. E)  270 \mathrm{~N}  backward. <div style=padding-top: 35px>

A) 90 N90 \mathrm{~N} forward.
B) 150 N150 \mathrm{~N} forward.
C) 270 N270 \mathrm{~N} forward.
D) 150 N150 \mathrm{~N} backward.
E) 270 N270 \mathrm{~N} backward.
Question
A tractor TT is pulling two trailers, M1M_{1} and M2M_{2} , with a constant acceleration. Thas a mass of 200 kg,M1200 \mathrm{~kg}, M_{1} has a mass of 100 kg100 \mathrm{~kg} , and M2\mathrm{M}_{2} has a mass of 150 kg150 \mathrm{~kg} . If the forward acceleration is 0.60 m/s20.60 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the horizontal force on the tractor due to the attachment to M1\mathrm{M}_{1} is
 <strong>A tractor  T  is pulling two trailers,  M_{1}  and  M_{2} , with a constant acceleration. Thas a mass of  200 \mathrm{~kg}, M_{1}  has a mass of  100 \mathrm{~kg} , and  \mathrm{M}_{2}  has a mass of  150 \mathrm{~kg} . If the forward acceleration is  0.60 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the horizontal force on the tractor due to the attachment to  \mathrm{M}_{1}  is  </strong> A)  270 \mathrm{~N}  backward. B)  150 \mathrm{~N}  forward. C)  150 \mathrm{~N}  backward. D)  270 \mathrm{~N}  forward. E)  90 \mathrm{~N}  forward. <div style=padding-top: 35px>

A) 270 N270 \mathrm{~N} backward.
B) 150 N150 \mathrm{~N} forward.
C) 150 N150 \mathrm{~N} backward.
D) 270 N270 \mathrm{~N} forward.
E) 90 N90 \mathrm{~N} forward.
Question
A tractor TT is pulling two trailers, M1M_{1} and M2M_{2} , with a constant acceleration. Thas a mass of 200 kg,M1200 \mathrm{~kg}, M_{1} has a mass of 100 kg100 \mathrm{~kg} , and M2\mathrm{M}_{2} has a mass of 150 kg150 \mathrm{~kg} . If the forward acceleration is 0.60 m/s20.60 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the horizontal force on M2\mathrm{M}_{2} due to the attachment to M1\mathrm{M}_{1} is
 <strong>A tractor  T  is pulling two trailers,  M_{1}  and  M_{2} , with a constant acceleration. Thas a mass of  200 \mathrm{~kg}, M_{1}  has a mass of  100 \mathrm{~kg} , and  \mathrm{M}_{2}  has a mass of  150 \mathrm{~kg} . If the forward acceleration is  0.60 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the horizontal force on  \mathrm{M}_{2}  due to the attachment to  \mathrm{M}_{1}  is  </strong> A)  270 \mathrm{~N}  forward. B)  270 \mathrm{~N}  backward. C)  90 \mathrm{~N}  forward. D)  150 \mathrm{~N}  forward. E)  150 \mathrm{~N}  backward. <div style=padding-top: 35px>

A) 270 N270 \mathrm{~N} forward.
B) 270 N270 \mathrm{~N} backward.
C) 90 N90 \mathrm{~N} forward.
D) 150 N150 \mathrm{~N} forward.
E) 150 N150 \mathrm{~N} backward.
Question
A tractor of mass M1=2,000 kgM_{1}=2,000 \mathrm{~kg} is pulling a trailer of mass M2=5,000 kgM_{2}=5,000 \mathrm{~kg} . If the tractor-trailer is accelerated at 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the tension in the trailer hitch that connects the trailer to the tractor is
 <strong>A tractor of mass  M_{1}=2,000 \mathrm{~kg}  is pulling a trailer of mass  M_{2}=5,000 \mathrm{~kg} . If the tractor-trailer is accelerated at  2.0 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the tension in the trailer hitch that connects the trailer to the tractor is  </strong> A)  8,000 \mathrm{~N} . B)  6,000 \mathrm{~N} . C)  11,000 \mathrm{~N} . D)  10,000 \mathrm{~N} . E)  9,000 \mathrm{~N} . <div style=padding-top: 35px>

A) 8,000 N8,000 \mathrm{~N} .
B) 6,000 N6,000 \mathrm{~N} .
C) 11,000 N11,000 \mathrm{~N} .
D) 10,000 N10,000 \mathrm{~N} .
E) 9,000 N9,000 \mathrm{~N} .
Question
A tractor of mass M1=2,000 kgM_{1}=2,000 \mathrm{~kg} is pulling a trailer of mass M2=5,000 kgM_{2}=5,000 \mathrm{~kg} . If the tractor-trailer is accelerated at 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the magnitude of the force the tractor applies to the road is
 <strong>A tractor of mass  M_{1}=2,000 \mathrm{~kg}  is pulling a trailer of mass  M_{2}=5,000 \mathrm{~kg} . If the tractor-trailer is accelerated at  2.0 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the magnitude of the force the tractor applies to the road is  </strong> A)  12,000 \mathrm{~N}  B)  14,000 \mathrm{~N}  C)  6,000 \mathrm{~N} . D)  8,000 \mathrm{~N} . E)  10,000 \mathrm{~N}  <div style=padding-top: 35px>

A) 12,000 N12,000 \mathrm{~N}
B) 14,000 N14,000 \mathrm{~N}
C) 6,000 N6,000 \mathrm{~N} .
D) 8,000 N8,000 \mathrm{~N} .
E) 10,000 N10,000 \mathrm{~N}
Question
In the figure, an airport luggage-carrying train with a tractor TT is pulling three luggage carts, M1,M2M_{1}, M_{2} , and M3M_{3} with an acceleration of 1.2 m/s21.2 \mathrm{~m} / \mathrm{s}^{2} . If T=300 kg,M1=200 kg,M2=100 kg\mathrm{T}=300 \mathrm{~kg}, \mathrm{M}_{1}=200 \mathrm{~kg}, \mathrm{M}_{2}=100 \mathrm{~kg} , and M3=100 kg\mathrm{M}_{3}=100 \mathrm{~kg} , and air resistance is negligible, then the tension in the connection between cart M2\mathrm{M}_{2} and cart M1\mathrm{M}_{1} is
 <strong>In the figure, an airport luggage-carrying train with a tractor  T  is pulling three luggage carts,  M_{1}, M_{2} , and  M_{3}  with an acceleration of  1.2 \mathrm{~m} / \mathrm{s}^{2} . If  \mathrm{T}=300 \mathrm{~kg}, \mathrm{M}_{1}=200 \mathrm{~kg}, \mathrm{M}_{2}=100 \mathrm{~kg} , and  \mathrm{M}_{3}=100 \mathrm{~kg} , and air resistance is negligible, then the tension in the connection between cart  \mathrm{M}_{2}  and cart  \mathrm{M}_{1}  is  </strong> A)  480 \mathrm{~N} . B)  840 \mathrm{~N} . C)  240 \mathrm{~N} . D)  0 \mathrm{~N} . E)  120 \mathrm{~N} . <div style=padding-top: 35px>

A) 480 N480 \mathrm{~N} .
B) 840 N840 \mathrm{~N} .
C) 240 N240 \mathrm{~N} .
D) 0 N0 \mathrm{~N} .
E) 120 N120 \mathrm{~N} .
Question
In the figure, an airport luggage-carrying train with a tractor TT is pulling three luggage carts, M1,M2M_{1}, M_{2} , and M3M_{3} with an acceleration of 1.0 m/s21.0 \mathrm{~m} / \mathrm{s}^{2} . If T=300 kg,M1=200 kg,M2=100 kg\mathrm{T}=300 \mathrm{~kg}, \mathrm{M}_{1}=200 \mathrm{~kg}, \mathrm{M}_{2}=100 \mathrm{~kg} , and M3=100 kg\mathrm{M}_{3}=100 \mathrm{~kg} , and air resistance is negligible, then the tension in the connection between cart M2\mathrm{M}_{2} and cart M3\mathrm{M}_{3} is
 <strong>In the figure, an airport luggage-carrying train with a tractor  T  is pulling three luggage carts,  M_{1}, M_{2} , and  M_{3}  with an acceleration of  1.0 \mathrm{~m} / \mathrm{s}^{2} . If  \mathrm{T}=300 \mathrm{~kg}, \mathrm{M}_{1}=200 \mathrm{~kg}, \mathrm{M}_{2}=100 \mathrm{~kg} , and  \mathrm{M}_{3}=100 \mathrm{~kg} , and air resistance is negligible, then the tension in the connection between cart  \mathrm{M}_{2}  and cart  \mathrm{M}_{3}  is  </strong> A)  200 \mathrm{~N}  B)  700 \mathrm{~N} . C)  100 \mathrm{~N} . D)  400 \mathrm{~N} . E)  0 \mathrm{~N} . <div style=padding-top: 35px>

A) 200 N200 \mathrm{~N}
B) 700 N700 \mathrm{~N} .
C) 100 N100 \mathrm{~N} .
D) 400 N400 \mathrm{~N} .
E) 0 N0 \mathrm{~N} .
Question
Two masses are suspended by a cord that passes over a pulley with negligible mass. The cord also has negligible mass. One of the masses, m1\mathrm{m}_{1} , has a mass of 5.0 kg5.0 \mathrm{~kg} and the other mass, m2\mathrm{m}_{2} , has a mass of 3.0 kg3.0 \mathrm{~kg} . The acceleration of m1\mathrm{m}_{1} is
 <strong> Two masses are suspended by a cord that passes over a pulley with negligible mass. The cord also has negligible mass. One of the masses,  \mathrm{m}_{1} , has a mass of  5.0 \mathrm{~kg}  and the other mass,  \mathrm{m}_{2} , has a mass of  3.0 \mathrm{~kg} . The acceleration of  \mathrm{m}_{1}  is  </strong> A)  2.5 \mathrm{~m} / \mathrm{s}^{2}  upward. B)  2.5 \mathrm{~m} / \mathrm{s}^{2}  downward. C)  3.3 \mathrm{~m} / \mathrm{s}^{2}  upward. D)  3.3 \mathrm{~m} / \mathrm{s}^{2}  downward. E)  1.1 \mathrm{~m} / \mathrm{s}^{2}  upward. <div style=padding-top: 35px>

A) 2.5 m/s22.5 \mathrm{~m} / \mathrm{s}^{2} upward.
B) 2.5 m/s22.5 \mathrm{~m} / \mathrm{s}^{2} downward.
C) 3.3 m/s23.3 \mathrm{~m} / \mathrm{s}^{2} upward.
D) 3.3 m/s23.3 \mathrm{~m} / \mathrm{s}^{2} downward.
E) 1.1 m/s21.1 \mathrm{~m} / \mathrm{s}^{2} upward.
Question
Two masses are suspended by a cord that passes over a pulley with negligible mass. The cord also has negligible mass. One of the masses, m1m_{1} , has a mass of 7.0 kg7.0 \mathrm{~kg} and the other mass, m2m_{2} , has a mass of 3.0 kg3.0 \mathrm{~kg} . The pulley turns on a shaft through the center of the pulley, which supports the pulley and all the masses. The vertical force of the shaft on the pulley is
 <strong> Two masses are suspended by a cord that passes over a pulley with negligible mass. The cord also has negligible mass. One of the masses,  m_{1} , has a mass of  7.0 \mathrm{~kg}  and the other mass,  m_{2} , has a mass of  3.0 \mathrm{~kg} . The pulley turns on a shaft through the center of the pulley, which supports the pulley and all the masses. The vertical force of the shaft on the pulley is  </strong> A)  49 \mathrm{~N}  downward. B)  98 \mathrm{~N}  upward. C)  82 \mathrm{~N}  upward. D)  82 \mathrm{~N}  downward. E)  49 \mathrm{~N}  upward. <div style=padding-top: 35px>

A) 49 N49 \mathrm{~N} downward.
B) 98 N98 \mathrm{~N} upward.
C) 82 N82 \mathrm{~N} upward.
D) 82 N82 \mathrm{~N} downward.
E) 49 N49 \mathrm{~N} upward.
Question
An 80.0 kg80.0 \mathrm{~kg} person is riding in an elevator that is accelerating at 2.40 m/s22.40 \mathrm{~m} / \mathrm{s}^{2} downward. The apparent weight of the 80.0 kg80.0 \mathrm{~kg} person measured on a scale in the elevator is

A) 855 N855 \mathrm{~N} .
B) 592 N592 \mathrm{~N} .
C) 784 N784 \mathrm{~N} .
D) 976 N976 \mathrm{~N} .
E) 639 N639 \mathrm{~N} .
Question
A 78 kg78 \mathrm{~kg} object is travelling due north at 15.2 m/s15.2 \mathrm{~m} / \mathrm{s} when it begins to experience a constant net force of 1.72 kN\mathrm{kN} toward the south. What will its velocity be 0.75 s0.75 \mathrm{~s} later?

A) 1.3 m/s1.3 \mathrm{~m} / \mathrm{s} , north.
B) 18.8 m/s18.8 \mathrm{~m} / \mathrm{s} , north.
C) 18.8 m/s18.8 \mathrm{~m} / \mathrm{s} , south
D) 16.5 m/s16.5 \mathrm{~m} / \mathrm{s} , north
E) 1.3 m/s1.3 \mathrm{~m} / \mathrm{s} , south.
F) 16.5 m/s16.5 \mathrm{~m} / \mathrm{s} , south
Question
An object travels 7.5 m/s7.5 \mathrm{~m} / \mathrm{s} toward the west. Under the influence of a constant net force of 5.2kN5.2 \mathrm{kN} , after 4.3 s4.3 \mathrm{~s} , it is travelling 2.5 m/s2.5 \mathrm{~m} / \mathrm{s} toward the east. What is its mass?

A) 2200 kg2200 \mathrm{~kg}
B) 4500 kg4500 \mathrm{~kg}
C) 12000 kg12000 \mathrm{~kg}
D) 6000 kg6000 \mathrm{~kg}
Question
Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a 30.0 degree incline. The inclined surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is 6.00 kg6.00 \mathrm{~kg} and the mass on the incline is 4.00 kg4.00 \mathrm{~kg} . The magnitude of the acceleration of the 4.00 kg4.00 \mathrm{~kg} mass is (the initial velocity of the 4.00 kg4.00 \mathrm{~kg} mass is down the incline)
 <strong> Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a 30.0 degree incline. The inclined surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is  6.00 \mathrm{~kg}  and the mass on the incline is  4.00 \mathrm{~kg} . The magnitude of the acceleration of the  4.00 \mathrm{~kg}  mass is (the initial velocity of the  4.00 \mathrm{~kg}  mass is down the incline)  </strong> A)  1.53 \mathrm{~m} / \mathrm{s}^{2} . B)  7.16 \mathrm{~m} / \mathrm{s}^{2} . C)  5.84 \mathrm{~m} / \mathrm{s}^{2} . D)  0.00 \mathrm{~m} / \mathrm{s}^{2} . E)  2.98 \mathrm{~m} / \mathrm{s}^{2} . <div style=padding-top: 35px>

A) 1.53 m/s21.53 \mathrm{~m} / \mathrm{s}^{2} .
B) 7.16 m/s27.16 \mathrm{~m} / \mathrm{s}^{2} .
C) 5.84 m/s25.84 \mathrm{~m} / \mathrm{s}^{2} .
D) 0.00 m/s20.00 \mathrm{~m} / \mathrm{s}^{2} .
E) 2.98 m/s22.98 \mathrm{~m} / \mathrm{s}^{2} .
Question
Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a 30.0 degree incline. The inclined surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is 4.00 kg4.00 \mathrm{~kg} and the mass on the incline is 6.00 kg6.00 \mathrm{~kg} . The magnitude of the acceleration of the 4.00 kg4.00 \mathrm{~kg} mass is (the initial velocity of the 6.00 kg6.00 \mathrm{~kg} mass is down the incline)
 <strong> Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a 30.0 degree incline. The inclined surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is  4.00 \mathrm{~kg}  and the mass on the incline is  6.00 \mathrm{~kg} . The magnitude of the acceleration of the  4.00 \mathrm{~kg}  mass is (the initial velocity of the  6.00 \mathrm{~kg}  mass is down the incline)  </strong> A)  2.98 \mathrm{~m} / \mathrm{s}^{2} . B)  3.90 \mathrm{~m} / \mathrm{s}^{2} . C)  5.84 \mathrm{~m} / \mathrm{s}^{2} . D)  1.53 \mathrm{~m} / \mathrm{s}^{2} . E)  7.16 \mathrm{~m} / \mathrm{s}^{2} . <div style=padding-top: 35px>

A) 2.98 m/s22.98 \mathrm{~m} / \mathrm{s}^{2} .
B) 3.90 m/s23.90 \mathrm{~m} / \mathrm{s}^{2} .
C) 5.84 m/s25.84 \mathrm{~m} / \mathrm{s}^{2} .
D) 1.53 m/s21.53 \mathrm{~m} / \mathrm{s}^{2} .
E) 7.16 m/s27.16 \mathrm{~m} / \mathrm{s}^{2} .
Question
Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a horizontal surface. The horizontal surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is 3.00 kg3.00 \mathrm{~kg} and the mass on the horizontal surface is 3.00 kg3.00 \mathrm{~kg} . The magnitude of the acceleration of the vertically hanging mass is (the initial velocity of the horizontal mass is to the right)
 <strong> Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a horizontal surface. The horizontal surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is  3.00 \mathrm{~kg}  and the mass on the horizontal surface is  3.00 \mathrm{~kg} . The magnitude of the acceleration of the vertically hanging mass is (the initial velocity of the horizontal mass is to the right)  </strong> A)  2.00 \mathrm{~m} / \mathrm{s}^{2} . B)  4.02 \mathrm{~m} / \mathrm{s}^{2} . C)  7.16 \mathrm{~m} / \mathrm{s}^{2} . D)  5.88 \mathrm{~m} / \mathrm{s}^{2} . E)  3.53 \mathrm{~m} / \mathrm{s}^{2} . <div style=padding-top: 35px>

A) 2.00 m/s22.00 \mathrm{~m} / \mathrm{s}^{2} .
B) 4.02 m/s24.02 \mathrm{~m} / \mathrm{s}^{2} .
C) 7.16 m/s27.16 \mathrm{~m} / \mathrm{s}^{2} .
D) 5.88 m/s25.88 \mathrm{~m} / \mathrm{s}^{2} .
E) 3.53 m/s23.53 \mathrm{~m} / \mathrm{s}^{2} .
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Force and Newtons Laws of Motion
1
Three objects experience interactions. Object A\mathrm{A} has mass, object B\mathrm{B} has electrical charge, and object C\mathrm{C} has both mass and electrical charge. Which of the following statements is true?

A) Object A and object B experience an electrical interaction.
B) Object A\mathrm{A} and object C\mathrm{C} experience a gravitational interaction.
C) Object A\mathrm{A} and object B\mathrm{B} experience a gravitational interaction.
D) Object A\mathrm{A} and object C\mathrm{C} experience an electrical interaction.
Object A\mathrm{A} and object C\mathrm{C} experience a gravitational interaction.
2
If an object of mass 20 kg20 \mathrm{~kg} on Earth is sent to the Moon, it will have a mass of

A) 0.0 kg0.0 \mathrm{~kg} .
B) 20 kg20 \mathrm{~kg} .
C) 4.0 kg4.0 \mathrm{~kg} .
D) 10 kg10 \mathrm{~kg} .
20 kg20 \mathrm{~kg} .
3
A freight train consists of an engine and several identical cars on a straight, level track. Which of the following statements is true?

A) If the train is moving at constant speed, the engine must be pulling with a force greater than the train's weight.
B) If the train is moving at constant speed, the engine's pull on the first car must exceed that car's backward pull on the engine.
C) If the train is moving at constant speed, the engine's pull must be equal to the force of friction.
D) If the train is coasting, its inertia makes it slow down and eventually stop.
If the train is moving at constant speed, the engine's pull must be equal to the force of friction.
4
In the figure an airport luggage carrying train with a tractor TT is pulling three luggage carts M1,M2M_{1}, M_{2} , and M3M_{3} , with constant velocity of 4.5 m/s4.5 \mathrm{~m} / \mathrm{s} . Unfortunately, the wheels on the carts have locked up and are sliding rather than rolling. If T=300.0 kg,M1=200.0 kg,M2=100.0 kgT=300.0 \mathrm{~kg}, M_{1}=200.0 \mathrm{~kg}, M_{2}=100.0 \mathrm{~kg} , and M3=100.0 kgM_{3}=100.0 \mathrm{~kg} , and the coefficient of kinetic friction for each is 0.4000 , what is the force in the connection between the tractor T\mathrm{T} and cart M1\mathrm{M}_{1} ? Use g=9.8 m/s\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} .
 <strong>In the figure an airport luggage carrying train with a tractor  T  is pulling three luggage carts  M_{1}, M_{2} , and  M_{3} , with constant velocity of  4.5 \mathrm{~m} / \mathrm{s} . Unfortunately, the wheels on the carts have locked up and are sliding rather than rolling. If  T=300.0 \mathrm{~kg}, M_{1}=200.0 \mathrm{~kg}, M_{2}=100.0 \mathrm{~kg} , and  M_{3}=100.0 \mathrm{~kg} , and the coefficient of kinetic friction for each is 0.4000 , what is the force in the connection between the tractor  \mathrm{T}  and cart  \mathrm{M}_{1}  ? Use  \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} .  </strong> A)  1862 \mathrm{~N}  B)  1568 \mathrm{~N}  C)  2941 \mathrm{~N}  D)  2744 \mathrm{~N}  E)  2439 \mathrm{~N}

A) 1862 N1862 \mathrm{~N}
B) 1568 N1568 \mathrm{~N}
C) 2941 N2941 \mathrm{~N}
D) 2744 N2744 \mathrm{~N}
E) 2439 N2439 \mathrm{~N}
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
5
In the figure, an airport luggage carrying train with a tractor TT is pulling three luggage carts, M1,M2M_{1}, M_{2} , and M3M_{3} , with constant velocity of 4.5 m/s4.5 \mathrm{~m} / \mathrm{s} . If T=300 kg,M1=200 kg,M2=100 kgT=300 \mathrm{~kg}, M_{1}=200 \mathrm{~kg}, M_{2}=100 \mathrm{~kg} , and M3=100 kgM_{3}=100 \mathrm{~kg} (there is no friction), then the force in the connection between the tractor T\mathrm{T} and cart M1\mathrm{M}_{1} is
 <strong>In the figure, an airport luggage carrying train with a tractor  T  is pulling three luggage carts,  M_{1}, M_{2} , and  M_{3} , with constant velocity of  4.5 \mathrm{~m} / \mathrm{s} . If  T=300 \mathrm{~kg}, M_{1}=200 \mathrm{~kg}, M_{2}=100 \mathrm{~kg} , and  M_{3}=100 \mathrm{~kg}  (there is no friction), then the force in the connection between the tractor  \mathrm{T}  and cart  \mathrm{M}_{1}  is  </strong> A)  280 \mathrm{~N} . B)  560 \mathrm{~N} . C)  980 \mathrm{~N} . D)  0.00 \mathrm{~N} . E)  140 \mathrm{~N} .

A) 280 N280 \mathrm{~N} .
B) 560 N560 \mathrm{~N} .
C) 980 N980 \mathrm{~N} .
D) 0.00 N0.00 \mathrm{~N} .
E) 140 N140 \mathrm{~N} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
6
A large massive rock is in contact with the Earth. Draw a force diagram for the rock and the Earth. Which of the following statements is true?

A) The gravitational force on the rock due to the Earth and the gravitational force on the Earth due to the rock are interaction partners.
B) The gravitational force on the Earth due to the rock and the contact force on the Earth due to the rock are interaction partners.
C) The gravitational force on the rock due to the Earth and the contact force on the Earth due to the rock are interaction partners.
D) The contact force on the Earth due to the rock and the gravitational force on the Earth due to the rock are interaction partners.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
7
What is the gravitational field strength on the surface of the Earth? (G=6.67×1011 N m2/kg2\left(\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right. , the mass of the Earth is 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} , and the radius of the Earth is 6.38×106 m6.38 \times 10^{6} \mathrm{~m} .)

A) 10.1 N/kg10.1 \mathrm{~N} / \mathrm{kg} .
B) 6.20 N/kg6.20 \mathrm{~N} / \mathrm{kg} .
C) 20.3 N/kg20.3 \mathrm{~N} / \mathrm{kg} .
D) 9.80 N/kg9.80 \mathrm{~N} / \mathrm{kg} .
E) 3.40 N/kg3.40 \mathrm{~N} / \mathrm{kg} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
8
What is the gravitational field strength at the location of a satellite that is orbiting the Earth at an altitude of 5,000 km?(G=6.67×1011 N m2/kg25,000 \mathrm{~km} ?\left(\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right. , the mass of the Earth is 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} , and the radius of the Earth is 6.38×106 m6.38 \times 106 \mathrm{~m} .)

A) 8.43 N/kg8.43 \mathrm{~N} / \mathrm{kg} .
B) 9.55 N/kg9.55 \mathrm{~N} / \mathrm{kg} .
C) 5.28 N/kg5.28 \mathrm{~N} / \mathrm{kg}
D) 6.33 N/kg6.33 \mathrm{~N} / \mathrm{kg} .
E) 3.08 N/kg3.08 \mathrm{~N} / \mathrm{kg} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
9
The gravitational field at the Moon due to the Earth is approximately ( G=6.67×1011 N m2/kg2\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} , the mass of the Earth is 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} , and the distance to the Moon is 3.85×108 m3.85 \times 10^{8} \mathrm{~m} )

A) 7.30×103 N/kg7.30 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Earth.
B) 2.69×103 N/kg2.69 \times 10^{-3} \mathrm{~N} / \mathrm{kg} away from the Earth.
C) 7.30×103 N/kg7.30 \times 10^{-3} \mathrm{~N} / \mathrm{kg} away from the Earth.
D) 5.00×103 N/kg5.00 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Earth.
E) 2.69×103 N/kg2.69 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Earth.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
10
The gravitational field at the Earth due to the Moon is about ( G=6.67×1011 N m2/kg2\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} , the mass of the Moon is 7.35×1022 kg7.35 \times 10^{22} \mathrm{~kg} , and the distance to the Moon is 3.85×108 m3.85 \times 10^{8} \mathrm{~m} )

A) 7.50×105 N/kg7.50 \times 10-5 \mathrm{~N} / \mathrm{kg} away from the Moon.
B) 2.90×105 N/kg2.90 \times 10-5 \mathrm{~N} / \mathrm{kg} away from the Moon.
C) 4.01×105 N/kg4.01 \times 10^{-5} \mathrm{~N} / \mathrm{kg} toward the Moon.
D) 3.31×105 N/kg3.31 \times 10^{-5} \mathrm{~N} / \mathrm{kg} away from the Moon.
E) 3.31×105 N/kg3.31 \times 10^{-5} \mathrm{~N} / \mathrm{kg} toward the Moon.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
11
The Moon (mass 7.35×1022 kg7.35 \times 10^{22} \mathrm{~kg} ) orbits the Earth (mass 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} ) at a distance of 3.85×1083.85 \times 10^{8} meters. Meanwhile, the Earth orbits the Sun (mass 1.99×1030 kg1.99 \times 1030 \mathrm{~kg} ) at a distance of 1.50×10111.50 \times 1011 meters. When the Moon is directly between the Earth and the Sun, what is the gravitational field at the location of the Moon due to the Earth and the Sun combined? (G=6.67×1011 N m2/kg2)\left(\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)

A) 3.21×103 N/kg3.21 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Sun
B) 3.21×103 N/kg3.21 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Earth
C) 5.93×103 N/kg5.93 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Sun
D) 2.69×103 N/kg2.69 \times 10-3 \mathrm{~N} / \mathrm{kg} toward the Earth
E) 5.93×103 N/kg5.93 \times 10^{-3} \mathrm{~N} / \mathrm{kg} toward the Earth
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
12
The Moon (mass 7.35×1022 kg7.35 \times 10^{22} \mathrm{~kg} ) is orbiting about the Earth (mass 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} ) at a radius of 3.85×1083.85 \times 10^{8} meters. The magnitude of the force of gravity on the Moon due to the Earth is (G=6.67×1011 N m2/kg2)\left(G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)

A) 4.10×1012 N4.10 \times 1012 \mathrm{~N} .
B) 1.98×1020 N1.98 \times 1020 \mathrm{~N} .
C) 9.20×1030 N9.20 \times 1030 \mathrm{~N} .
D) 6.70×1024 N6.70 \times 1024 \mathrm{~N} .
E) 3.20×1028 N3.20 \times 10^{28} \mathrm{~N} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
13
An object with a mass of 200.0 kg200.0 \mathrm{~kg} is 500.0 km500.0 \mathrm{~km} above the surface of the Earth. The magnitude of the force of gravity on the 200.0 kg200.0 \mathrm{~kg} mass is (G=6.67×1011 N m2/kg2\left(\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right. , the radius of the Earth is 6.38×106 m6.38 \times 10^{6} \mathrm{~m} , and the mass of the Earth is 5.98×1024 kg5.98 \times 1024 \mathrm{~kg} )

A) 1.05×103 N1.05 \times 10^{3} \mathrm{~N} .
B) 2.02×103 N2.02 \times 10^{3} \mathrm{~N} .
C) 1.42×103 N1.42 \times 10^{3} \mathrm{~N} .
D) 1.69×103 N1.69 \times 10^{3} \mathrm{~N} .
E) 1.28×103 N1.28 \times 10^{3} \mathrm{~N} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
14
What is the gravitational force between two 5.00 kg5.00 \mathrm{~kg} masses that are 10.0 cm10.0 \mathrm{~cm} apart from center to center? (G =6.67×1011 N m2/kg2=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} )

A) 1.67×108 N1.67 \times 10-8 \mathrm{~N}
B) 1.67×104 N1.67 \times 10^{-4} \mathrm{~N}
C) 1.62×106 N1.62 \times 10^{-6} \mathrm{~N}
D) 1.62×105 N1.62 \times 10^{-5} \mathrm{~N}
E) 1.67×107 N1.67 \times 10^{-7} \mathrm{~N}
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
15
What is the gravitational force between two nuclei, each of mass 3.20×1027 kg3.20 \times 10^{-27} \mathrm{~kg} , which are separated by a distance of 1.06×1010 m?(G=6.67×1011 N m2/kg2)1.06 \times 10-10 \mathrm{~m} ?\left(\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)

A) 6.08×1044 N6.08 \times 10^{-44} \mathrm{~N}
B) 6.08×1043 N6.08 \times 10-43 \mathrm{~N}
C) 6.08×1045 N6.08 \times 10^{-45} \mathrm{~N}
D) 6.08×1042 N6.08 \times 10^{-42} \mathrm{~N}
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
16
The weight of a 1.00 kg1.00 \mathrm{~kg} object on the surface of the Moon is ( G=6.67×1011 N m2/kg2\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m} 2 / \mathrm{kg}^{2} , the radius of the Moon is 1.74×106 m1.74 \times 10^{6} \mathrm{~m} , and the mass of the Moon is 7.35×1022 kg7.35 \times 10^{22} \mathrm{~kg} )

A) 7.59 N7.59 \mathrm{~N} .
B) 1.62 N1.62 \mathrm{~N} .
C) 0.548 N0.548 \mathrm{~N} .
D) 0.981 N0.981 \mathrm{~N} .
E) 9.80 N9.80 \mathrm{~N} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
17
The Moon (mass 7.35×1022 kg7.35 \times 1022 \mathrm{~kg} ) orbits the Earth (mass 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg} ) at a distance of 3.85×1083.85 \times 10^{8} meters. Meanwhile, the Earth orbits the Sun (mass 1.99×1030 kg1.99 \times 1030 \mathrm{~kg} ) at a distance of 1.50×10111.50 \times 1011 meters. When the Moon is directly between the Earth and the Sun, what is the gravitational force on the Moon due to the Earth and the Sun combined? ( G=6.67×1011 N m2/kg2\mathrm{G}=6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} )

A) 4.36×1020 N4.36 \times 1020 \mathrm{~N} toward the Earth
B) 2.36×1020 N2.36 \times 10^{20} \mathrm{~N} toward the Sun
C) 2.38×1020 N2.38 \times 10^{20} \mathrm{~N} toward the Earth
D) 4.36×1020 N4.36 \times 1020 \mathrm{~N} toward the Sun
E) 1.98×1020 N1.98 \times 10^{20} \mathrm{~N} toward the Earth
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
18
A boy with a mass of 55 kg55 \mathrm{~kg} walks into a room and sees a girl 8.0 m8.0 \mathrm{~m} in front of him who has a mass of 40 kg40 \mathrm{~kg} . What is his gravitational attraction to her?

A) 2.0×108 N2.0 \times 10^{8} \mathrm{~N}
B) 2.1×109 N2.1 \times 10^{9} \mathrm{~N}
C) 2.3×109 N2.3 \times 10^{-9} \mathrm{~N}
D) 2.4×108 N2.4 \times 10-8 \mathrm{~N}
E) 2.2×1011 N2.2 \times 10-11 \mathrm{~N}
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
19
A mass sits at rest on top of a table. Which two forces that are not action-reaction partners are equal and opposite?

A) the force of gravity on the mass due to the Earth and the contact force on the mass due to the table
B) the contact force on the mass due to the table and the force of gravity on the Earth due to the mass
C) the contact force on the mass due to the table and the contact force on the table due to the mass
D) the force of gravity on the mass due to the Earth and the contact force on the table due to the mass
E) the force of gravity on the mass due to the Earth and the force of gravity on the Earth due to the mass
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
20
Within a given system, the internal forces

A) determine the motion of the system.
B) are always balanced by the external forces.
C) all add to zero.
D) are measured with a gravimeter.
E) are only determined by subtracting the external forces from the net force on the system.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
21
A rope is connected to a spring scale on the left and exerts a force T1T_{1} . Another rope is connected to the scale on the right and exerts a force T2T_{2} . The scale shows a reading of Ts=120 NT_{s}=120 \mathrm{~N} . The values of T1T_{1} and T2T_{2} are
 <strong>A rope is connected to a spring scale on the left and exerts a force  T_{1} . Another rope is connected to the scale on the right and exerts a force  T_{2} . The scale shows a reading of  T_{s}=120 \mathrm{~N} . The values of  T_{1}  and  T_{2}  are  </strong> A)  \mathrm{T}_{1}=80 \mathrm{~N} , and  \mathrm{T}_{2}=120 \mathrm{~N} . B)  \mathrm{T}_{1}=80 \mathrm{~N} , and  \mathrm{T}_{2}=80 \mathrm{~N} . C)  \mathrm{T}_{1}=240 \mathrm{~N} , and  \mathrm{T}_{2}=240 \mathrm{~N} . D)  \mathrm{T}_{1}=120 \mathrm{~N} , and  \mathrm{T}_{2}=120 \mathrm{~N} .

A) T1=80 N\mathrm{T}_{1}=80 \mathrm{~N} , and T2=120 N\mathrm{T}_{2}=120 \mathrm{~N} .
B) T1=80 N\mathrm{T}_{1}=80 \mathrm{~N} , and T2=80 N\mathrm{T}_{2}=80 \mathrm{~N} .
C) T1=240 N\mathrm{T}_{1}=240 \mathrm{~N} , and T2=240 N\mathrm{T}_{2}=240 \mathrm{~N} .
D) T1=120 N\mathrm{T}_{1}=120 \mathrm{~N} , and T2=120 N\mathrm{T}_{2}=120 \mathrm{~N} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
22
A box rests on a frictionless countertop. A boy pushes horizontally to the right on the box, and a girl pushes on it to the left, yet it remains stationary. Which of the following statements is false?

A) We know the force of the boy on the box is equal in magnitude to the force of the girl on the box, because the box is in equilibrium.
B) We know the weight and normal force are equal in magnitude because the box is in equilibrium.
C) We know the weight and normal force are equal in magnitude because of Newton's third law.
D) We know the force of the boy on the box is equal in magnitude to the force of the box on the boy, because of Newton's third law.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
23
A tractor T\mathrm{T} is pulling a trailer M\mathrm{M} with a constant velocity. If the velocity is 20 m/s20 \mathrm{~m} / \mathrm{s} and M=200 kg\mathrm{M}=200 \mathrm{~kg} and T=\mathrm{T}= 500 kg500 \mathrm{~kg} , then the force on the trailer due to the tractor is (assume there is no friction or air resistance)
 <strong>A tractor  \mathrm{T}  is pulling a trailer  \mathrm{M}  with a constant velocity. If the velocity is  20 \mathrm{~m} / \mathrm{s}  and  \mathrm{M}=200 \mathrm{~kg}  and  \mathrm{T}=   500 \mathrm{~kg} , then the force on the trailer due to the tractor is (assume there is no friction or air resistance)  </strong> A)  600 \mathrm{~N}  forward. B)  450 \mathrm{~N}  backward. C) 0 . D)  35 \mathrm{~N}  forward. E)  200 \mathrm{~N}  backward.

A) 600 N600 \mathrm{~N} forward.
B) 450 N450 \mathrm{~N} backward.
C) 0 .
D) 35 N35 \mathrm{~N} forward.
E) 200 N200 \mathrm{~N} backward.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
24
A tractor T\mathrm{T} is pulling a trailer M\mathrm{M} with a constant acceleration. If the forward acceleration is 1.5 m/s21.5 \mathrm{~m} / \mathrm{s}^{2} and M=\mathrm{M}= 400 kg400 \mathrm{~kg} and T=500 kg\mathrm{T}=500 \mathrm{~kg} , then the force on the tractor due to the trailer is (ignore air resistance)
 <strong>A tractor  \mathrm{T}  is pulling a trailer  \mathrm{M}  with a constant acceleration. If the forward acceleration is  1.5 \mathrm{~m} / \mathrm{s}^{2}  and  \mathrm{M}=   400 \mathrm{~kg}  and  \mathrm{T}=500 \mathrm{~kg} , then the force on the tractor due to the trailer is (ignore air resistance)  </strong> A)  35 \mathrm{~N}  forward. B)  600 \mathrm{~N}  backward. C)  450 \mathrm{~N}  backward. D) 0 . E)  200 \mathrm{~N}  forward.

A) 35 N35 \mathrm{~N} forward.
B) 600 N600 \mathrm{~N} backward.
C) 450 N450 \mathrm{~N} backward.
D) 0 .
E) 200 N200 \mathrm{~N} forward.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
25
A tractor TT is pulling a trailer MM with a constant acceleration. If the forward acceleration is 0.50 m/s20.50 \mathrm{~m} / \mathrm{s}^{2} and MM =400 kg=400 \mathrm{~kg} and T=500 kg\mathrm{T}=500 \mathrm{~kg} , then the horizontal force on the tractor due to the ground is (ignore air resistance)
 <strong>A tractor  T  is pulling a trailer  M  with a constant acceleration. If the forward acceleration is  0.50 \mathrm{~m} / \mathrm{s}^{2}  and  M   =400 \mathrm{~kg}  and  \mathrm{T}=500 \mathrm{~kg} , then the horizontal force on the tractor due to the ground is (ignore air resistance)  </strong> A)  450 \mathrm{~N}  backward. B)  250 \mathrm{~N}  forward. C)  200 \mathrm{~N}  forward. D)  250 \mathrm{~N}  backward. E)  450 \mathrm{~N}  forward.

A) 450 N450 \mathrm{~N} backward.
B) 250 N250 \mathrm{~N} forward.
C) 200 N200 \mathrm{~N} forward.
D) 250 N250 \mathrm{~N} backward.
E) 450 N450 \mathrm{~N} forward.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
26
A tractor TT is pulling two trailers, M1M_{1} and M2M_{2} , with a constant acceleration. TT has a mass of 200 kg,M1200 \mathrm{~kg}, M_{1} has a mass of 100 kg100 \mathrm{~kg} , and M2M_{2} has a mass of 150 kg150 \mathrm{~kg} . If the forward acceleration is 0.60 m/s20.60 \mathrm{~m} / \mathrm{s}^{2} , then the horizontal force on the tractor due to the ground is (ignore air resistance)
 <strong>A tractor  T  is pulling two trailers,  M_{1}  and  M_{2} , with a constant acceleration.  T  has a mass of  200 \mathrm{~kg}, M_{1}  has a mass of  100 \mathrm{~kg} , and  M_{2}  has a mass of  150 \mathrm{~kg} . If the forward acceleration is  0.60 \mathrm{~m} / \mathrm{s}^{2} , then the horizontal force on the tractor due to the ground is (ignore air resistance)  </strong> A)  90 \mathrm{~N}  forward. B)  150 \mathrm{~N}  forward. C)  270 \mathrm{~N}  forward. D)  150 \mathrm{~N}  backward. E)  270 \mathrm{~N}  backward.

A) 90 N90 \mathrm{~N} forward.
B) 150 N150 \mathrm{~N} forward.
C) 270 N270 \mathrm{~N} forward.
D) 150 N150 \mathrm{~N} backward.
E) 270 N270 \mathrm{~N} backward.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
27
A tractor TT is pulling two trailers, M1M_{1} and M2M_{2} , with a constant acceleration. Thas a mass of 200 kg,M1200 \mathrm{~kg}, M_{1} has a mass of 100 kg100 \mathrm{~kg} , and M2\mathrm{M}_{2} has a mass of 150 kg150 \mathrm{~kg} . If the forward acceleration is 0.60 m/s20.60 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the horizontal force on the tractor due to the attachment to M1\mathrm{M}_{1} is
 <strong>A tractor  T  is pulling two trailers,  M_{1}  and  M_{2} , with a constant acceleration. Thas a mass of  200 \mathrm{~kg}, M_{1}  has a mass of  100 \mathrm{~kg} , and  \mathrm{M}_{2}  has a mass of  150 \mathrm{~kg} . If the forward acceleration is  0.60 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the horizontal force on the tractor due to the attachment to  \mathrm{M}_{1}  is  </strong> A)  270 \mathrm{~N}  backward. B)  150 \mathrm{~N}  forward. C)  150 \mathrm{~N}  backward. D)  270 \mathrm{~N}  forward. E)  90 \mathrm{~N}  forward.

A) 270 N270 \mathrm{~N} backward.
B) 150 N150 \mathrm{~N} forward.
C) 150 N150 \mathrm{~N} backward.
D) 270 N270 \mathrm{~N} forward.
E) 90 N90 \mathrm{~N} forward.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
28
A tractor TT is pulling two trailers, M1M_{1} and M2M_{2} , with a constant acceleration. Thas a mass of 200 kg,M1200 \mathrm{~kg}, M_{1} has a mass of 100 kg100 \mathrm{~kg} , and M2\mathrm{M}_{2} has a mass of 150 kg150 \mathrm{~kg} . If the forward acceleration is 0.60 m/s20.60 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the horizontal force on M2\mathrm{M}_{2} due to the attachment to M1\mathrm{M}_{1} is
 <strong>A tractor  T  is pulling two trailers,  M_{1}  and  M_{2} , with a constant acceleration. Thas a mass of  200 \mathrm{~kg}, M_{1}  has a mass of  100 \mathrm{~kg} , and  \mathrm{M}_{2}  has a mass of  150 \mathrm{~kg} . If the forward acceleration is  0.60 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the horizontal force on  \mathrm{M}_{2}  due to the attachment to  \mathrm{M}_{1}  is  </strong> A)  270 \mathrm{~N}  forward. B)  270 \mathrm{~N}  backward. C)  90 \mathrm{~N}  forward. D)  150 \mathrm{~N}  forward. E)  150 \mathrm{~N}  backward.

A) 270 N270 \mathrm{~N} forward.
B) 270 N270 \mathrm{~N} backward.
C) 90 N90 \mathrm{~N} forward.
D) 150 N150 \mathrm{~N} forward.
E) 150 N150 \mathrm{~N} backward.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
29
A tractor of mass M1=2,000 kgM_{1}=2,000 \mathrm{~kg} is pulling a trailer of mass M2=5,000 kgM_{2}=5,000 \mathrm{~kg} . If the tractor-trailer is accelerated at 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the tension in the trailer hitch that connects the trailer to the tractor is
 <strong>A tractor of mass  M_{1}=2,000 \mathrm{~kg}  is pulling a trailer of mass  M_{2}=5,000 \mathrm{~kg} . If the tractor-trailer is accelerated at  2.0 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the tension in the trailer hitch that connects the trailer to the tractor is  </strong> A)  8,000 \mathrm{~N} . B)  6,000 \mathrm{~N} . C)  11,000 \mathrm{~N} . D)  10,000 \mathrm{~N} . E)  9,000 \mathrm{~N} .

A) 8,000 N8,000 \mathrm{~N} .
B) 6,000 N6,000 \mathrm{~N} .
C) 11,000 N11,000 \mathrm{~N} .
D) 10,000 N10,000 \mathrm{~N} .
E) 9,000 N9,000 \mathrm{~N} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
30
A tractor of mass M1=2,000 kgM_{1}=2,000 \mathrm{~kg} is pulling a trailer of mass M2=5,000 kgM_{2}=5,000 \mathrm{~kg} . If the tractor-trailer is accelerated at 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the magnitude of the force the tractor applies to the road is
 <strong>A tractor of mass  M_{1}=2,000 \mathrm{~kg}  is pulling a trailer of mass  M_{2}=5,000 \mathrm{~kg} . If the tractor-trailer is accelerated at  2.0 \mathrm{~m} / \mathrm{s}^{2} , and air resistance is negligible, then the magnitude of the force the tractor applies to the road is  </strong> A)  12,000 \mathrm{~N}  B)  14,000 \mathrm{~N}  C)  6,000 \mathrm{~N} . D)  8,000 \mathrm{~N} . E)  10,000 \mathrm{~N}

A) 12,000 N12,000 \mathrm{~N}
B) 14,000 N14,000 \mathrm{~N}
C) 6,000 N6,000 \mathrm{~N} .
D) 8,000 N8,000 \mathrm{~N} .
E) 10,000 N10,000 \mathrm{~N}
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
31
In the figure, an airport luggage-carrying train with a tractor TT is pulling three luggage carts, M1,M2M_{1}, M_{2} , and M3M_{3} with an acceleration of 1.2 m/s21.2 \mathrm{~m} / \mathrm{s}^{2} . If T=300 kg,M1=200 kg,M2=100 kg\mathrm{T}=300 \mathrm{~kg}, \mathrm{M}_{1}=200 \mathrm{~kg}, \mathrm{M}_{2}=100 \mathrm{~kg} , and M3=100 kg\mathrm{M}_{3}=100 \mathrm{~kg} , and air resistance is negligible, then the tension in the connection between cart M2\mathrm{M}_{2} and cart M1\mathrm{M}_{1} is
 <strong>In the figure, an airport luggage-carrying train with a tractor  T  is pulling three luggage carts,  M_{1}, M_{2} , and  M_{3}  with an acceleration of  1.2 \mathrm{~m} / \mathrm{s}^{2} . If  \mathrm{T}=300 \mathrm{~kg}, \mathrm{M}_{1}=200 \mathrm{~kg}, \mathrm{M}_{2}=100 \mathrm{~kg} , and  \mathrm{M}_{3}=100 \mathrm{~kg} , and air resistance is negligible, then the tension in the connection between cart  \mathrm{M}_{2}  and cart  \mathrm{M}_{1}  is  </strong> A)  480 \mathrm{~N} . B)  840 \mathrm{~N} . C)  240 \mathrm{~N} . D)  0 \mathrm{~N} . E)  120 \mathrm{~N} .

A) 480 N480 \mathrm{~N} .
B) 840 N840 \mathrm{~N} .
C) 240 N240 \mathrm{~N} .
D) 0 N0 \mathrm{~N} .
E) 120 N120 \mathrm{~N} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
32
In the figure, an airport luggage-carrying train with a tractor TT is pulling three luggage carts, M1,M2M_{1}, M_{2} , and M3M_{3} with an acceleration of 1.0 m/s21.0 \mathrm{~m} / \mathrm{s}^{2} . If T=300 kg,M1=200 kg,M2=100 kg\mathrm{T}=300 \mathrm{~kg}, \mathrm{M}_{1}=200 \mathrm{~kg}, \mathrm{M}_{2}=100 \mathrm{~kg} , and M3=100 kg\mathrm{M}_{3}=100 \mathrm{~kg} , and air resistance is negligible, then the tension in the connection between cart M2\mathrm{M}_{2} and cart M3\mathrm{M}_{3} is
 <strong>In the figure, an airport luggage-carrying train with a tractor  T  is pulling three luggage carts,  M_{1}, M_{2} , and  M_{3}  with an acceleration of  1.0 \mathrm{~m} / \mathrm{s}^{2} . If  \mathrm{T}=300 \mathrm{~kg}, \mathrm{M}_{1}=200 \mathrm{~kg}, \mathrm{M}_{2}=100 \mathrm{~kg} , and  \mathrm{M}_{3}=100 \mathrm{~kg} , and air resistance is negligible, then the tension in the connection between cart  \mathrm{M}_{2}  and cart  \mathrm{M}_{3}  is  </strong> A)  200 \mathrm{~N}  B)  700 \mathrm{~N} . C)  100 \mathrm{~N} . D)  400 \mathrm{~N} . E)  0 \mathrm{~N} .

A) 200 N200 \mathrm{~N}
B) 700 N700 \mathrm{~N} .
C) 100 N100 \mathrm{~N} .
D) 400 N400 \mathrm{~N} .
E) 0 N0 \mathrm{~N} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
33
Two masses are suspended by a cord that passes over a pulley with negligible mass. The cord also has negligible mass. One of the masses, m1\mathrm{m}_{1} , has a mass of 5.0 kg5.0 \mathrm{~kg} and the other mass, m2\mathrm{m}_{2} , has a mass of 3.0 kg3.0 \mathrm{~kg} . The acceleration of m1\mathrm{m}_{1} is
 <strong> Two masses are suspended by a cord that passes over a pulley with negligible mass. The cord also has negligible mass. One of the masses,  \mathrm{m}_{1} , has a mass of  5.0 \mathrm{~kg}  and the other mass,  \mathrm{m}_{2} , has a mass of  3.0 \mathrm{~kg} . The acceleration of  \mathrm{m}_{1}  is  </strong> A)  2.5 \mathrm{~m} / \mathrm{s}^{2}  upward. B)  2.5 \mathrm{~m} / \mathrm{s}^{2}  downward. C)  3.3 \mathrm{~m} / \mathrm{s}^{2}  upward. D)  3.3 \mathrm{~m} / \mathrm{s}^{2}  downward. E)  1.1 \mathrm{~m} / \mathrm{s}^{2}  upward.

A) 2.5 m/s22.5 \mathrm{~m} / \mathrm{s}^{2} upward.
B) 2.5 m/s22.5 \mathrm{~m} / \mathrm{s}^{2} downward.
C) 3.3 m/s23.3 \mathrm{~m} / \mathrm{s}^{2} upward.
D) 3.3 m/s23.3 \mathrm{~m} / \mathrm{s}^{2} downward.
E) 1.1 m/s21.1 \mathrm{~m} / \mathrm{s}^{2} upward.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
34
Two masses are suspended by a cord that passes over a pulley with negligible mass. The cord also has negligible mass. One of the masses, m1m_{1} , has a mass of 7.0 kg7.0 \mathrm{~kg} and the other mass, m2m_{2} , has a mass of 3.0 kg3.0 \mathrm{~kg} . The pulley turns on a shaft through the center of the pulley, which supports the pulley and all the masses. The vertical force of the shaft on the pulley is
 <strong> Two masses are suspended by a cord that passes over a pulley with negligible mass. The cord also has negligible mass. One of the masses,  m_{1} , has a mass of  7.0 \mathrm{~kg}  and the other mass,  m_{2} , has a mass of  3.0 \mathrm{~kg} . The pulley turns on a shaft through the center of the pulley, which supports the pulley and all the masses. The vertical force of the shaft on the pulley is  </strong> A)  49 \mathrm{~N}  downward. B)  98 \mathrm{~N}  upward. C)  82 \mathrm{~N}  upward. D)  82 \mathrm{~N}  downward. E)  49 \mathrm{~N}  upward.

A) 49 N49 \mathrm{~N} downward.
B) 98 N98 \mathrm{~N} upward.
C) 82 N82 \mathrm{~N} upward.
D) 82 N82 \mathrm{~N} downward.
E) 49 N49 \mathrm{~N} upward.
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
35
An 80.0 kg80.0 \mathrm{~kg} person is riding in an elevator that is accelerating at 2.40 m/s22.40 \mathrm{~m} / \mathrm{s}^{2} downward. The apparent weight of the 80.0 kg80.0 \mathrm{~kg} person measured on a scale in the elevator is

A) 855 N855 \mathrm{~N} .
B) 592 N592 \mathrm{~N} .
C) 784 N784 \mathrm{~N} .
D) 976 N976 \mathrm{~N} .
E) 639 N639 \mathrm{~N} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
36
A 78 kg78 \mathrm{~kg} object is travelling due north at 15.2 m/s15.2 \mathrm{~m} / \mathrm{s} when it begins to experience a constant net force of 1.72 kN\mathrm{kN} toward the south. What will its velocity be 0.75 s0.75 \mathrm{~s} later?

A) 1.3 m/s1.3 \mathrm{~m} / \mathrm{s} , north.
B) 18.8 m/s18.8 \mathrm{~m} / \mathrm{s} , north.
C) 18.8 m/s18.8 \mathrm{~m} / \mathrm{s} , south
D) 16.5 m/s16.5 \mathrm{~m} / \mathrm{s} , north
E) 1.3 m/s1.3 \mathrm{~m} / \mathrm{s} , south.
F) 16.5 m/s16.5 \mathrm{~m} / \mathrm{s} , south
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
37
An object travels 7.5 m/s7.5 \mathrm{~m} / \mathrm{s} toward the west. Under the influence of a constant net force of 5.2kN5.2 \mathrm{kN} , after 4.3 s4.3 \mathrm{~s} , it is travelling 2.5 m/s2.5 \mathrm{~m} / \mathrm{s} toward the east. What is its mass?

A) 2200 kg2200 \mathrm{~kg}
B) 4500 kg4500 \mathrm{~kg}
C) 12000 kg12000 \mathrm{~kg}
D) 6000 kg6000 \mathrm{~kg}
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
38
Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a 30.0 degree incline. The inclined surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is 6.00 kg6.00 \mathrm{~kg} and the mass on the incline is 4.00 kg4.00 \mathrm{~kg} . The magnitude of the acceleration of the 4.00 kg4.00 \mathrm{~kg} mass is (the initial velocity of the 4.00 kg4.00 \mathrm{~kg} mass is down the incline)
 <strong> Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a 30.0 degree incline. The inclined surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is  6.00 \mathrm{~kg}  and the mass on the incline is  4.00 \mathrm{~kg} . The magnitude of the acceleration of the  4.00 \mathrm{~kg}  mass is (the initial velocity of the  4.00 \mathrm{~kg}  mass is down the incline)  </strong> A)  1.53 \mathrm{~m} / \mathrm{s}^{2} . B)  7.16 \mathrm{~m} / \mathrm{s}^{2} . C)  5.84 \mathrm{~m} / \mathrm{s}^{2} . D)  0.00 \mathrm{~m} / \mathrm{s}^{2} . E)  2.98 \mathrm{~m} / \mathrm{s}^{2} .

A) 1.53 m/s21.53 \mathrm{~m} / \mathrm{s}^{2} .
B) 7.16 m/s27.16 \mathrm{~m} / \mathrm{s}^{2} .
C) 5.84 m/s25.84 \mathrm{~m} / \mathrm{s}^{2} .
D) 0.00 m/s20.00 \mathrm{~m} / \mathrm{s}^{2} .
E) 2.98 m/s22.98 \mathrm{~m} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
39
Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a 30.0 degree incline. The inclined surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is 4.00 kg4.00 \mathrm{~kg} and the mass on the incline is 6.00 kg6.00 \mathrm{~kg} . The magnitude of the acceleration of the 4.00 kg4.00 \mathrm{~kg} mass is (the initial velocity of the 6.00 kg6.00 \mathrm{~kg} mass is down the incline)
 <strong> Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a 30.0 degree incline. The inclined surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is  4.00 \mathrm{~kg}  and the mass on the incline is  6.00 \mathrm{~kg} . The magnitude of the acceleration of the  4.00 \mathrm{~kg}  mass is (the initial velocity of the  6.00 \mathrm{~kg}  mass is down the incline)  </strong> A)  2.98 \mathrm{~m} / \mathrm{s}^{2} . B)  3.90 \mathrm{~m} / \mathrm{s}^{2} . C)  5.84 \mathrm{~m} / \mathrm{s}^{2} . D)  1.53 \mathrm{~m} / \mathrm{s}^{2} . E)  7.16 \mathrm{~m} / \mathrm{s}^{2} .

A) 2.98 m/s22.98 \mathrm{~m} / \mathrm{s}^{2} .
B) 3.90 m/s23.90 \mathrm{~m} / \mathrm{s}^{2} .
C) 5.84 m/s25.84 \mathrm{~m} / \mathrm{s}^{2} .
D) 1.53 m/s21.53 \mathrm{~m} / \mathrm{s}^{2} .
E) 7.16 m/s27.16 \mathrm{~m} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
40
Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a horizontal surface. The horizontal surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is 3.00 kg3.00 \mathrm{~kg} and the mass on the horizontal surface is 3.00 kg3.00 \mathrm{~kg} . The magnitude of the acceleration of the vertically hanging mass is (the initial velocity of the horizontal mass is to the right)
 <strong> Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a horizontal surface. The horizontal surface has a coefficient of kinetic friction of 0.200 . The vertically hanging mass is  3.00 \mathrm{~kg}  and the mass on the horizontal surface is  3.00 \mathrm{~kg} . The magnitude of the acceleration of the vertically hanging mass is (the initial velocity of the horizontal mass is to the right)  </strong> A)  2.00 \mathrm{~m} / \mathrm{s}^{2} . B)  4.02 \mathrm{~m} / \mathrm{s}^{2} . C)  7.16 \mathrm{~m} / \mathrm{s}^{2} . D)  5.88 \mathrm{~m} / \mathrm{s}^{2} . E)  3.53 \mathrm{~m} / \mathrm{s}^{2} .

A) 2.00 m/s22.00 \mathrm{~m} / \mathrm{s}^{2} .
B) 4.02 m/s24.02 \mathrm{~m} / \mathrm{s}^{2} .
C) 7.16 m/s27.16 \mathrm{~m} / \mathrm{s}^{2} .
D) 5.88 m/s25.88 \mathrm{~m} / \mathrm{s}^{2} .
E) 3.53 m/s23.53 \mathrm{~m} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 40 flashcards in this deck.