Deck 1: Introduction

Full screen (f)
exit full mode
Question
last page of a book is numbered 814 and the book is 3.00 cm3.00 \mathrm{~cm} thick. What is the average thickness of each page?

A) 2.54×103 cm2.54 \times 10^{3} \mathrm{~cm}
B) 2.54×103 cm2.54 \times 10^{-3} \mathrm{~cm}
C) 3.92×103 cm3.92 \times 10^{-3} \mathrm{~cm}
D) 7.37×103 cm7.37 \times 10^{-3} \mathrm{~cm}
Use Space or
up arrow
down arrow
to flip the card.
Question
The volume of a sphere is 8.00 m8.00 \mathrm{~m} . The radius of the sphere is

A) 1.24 m1.24 \mathrm{~m} .
B) 2.65 m2.65 \mathrm{~m} .
C) 2.00 m2.00 \mathrm{~m} .
D) 3.00 m3.00 \mathrm{~m} .
Question
The radius of a sphere is 2.00 m2.00 \mathrm{~m} . The surface area of the sphere is

A) 72.5 m272.5 \mathrm{~m}^{2} .
B) 50.3 m250.3 \mathrm{~m} 2 .
C) 75.0 m275.0 \mathrm{~m}^{2} .
D) 36.7 m236.7 \mathrm{~m}^{2} .
Question
1.0 kilometer equals how many nanometers?

A) 1.0 times 1012
B) 1.0×1041.0 \times 10^{4}
C) 1.0×1061.0 \times 10^{6}
D) 1.0×1031.0 \times 10^{-3}
Question
1.0 centimeter equals how many micrometers?

A) 1.0×1031.0 \times 10^{-3}
B) 1.0×1061.0 \times 10^{6}
C) 1.0×1041.0 \times 10^4
D) 1.0×10121.0 \times 10^ {12}
Question
1.0 micrometer equals how many millimeters?

A) 1.0×1031.0 \times 10^{3}
B) 1.0×1061.0 \times 10^{-6}
C) 1.0×1061.0 \times 10^{6}
D) 1.0×1031.0 \times 10^{-3}
Question
The length 4.221 cm4.221 \mathrm{~cm} is added to 0.01 cm0.01 \mathrm{~cm} . The appropriately rounded sum is

A) 4.231 cm4.231 \mathrm{~cm} .
B) 4.22 cm4.22 \mathrm{~cm} .
C) 4.21 cm4.21 \mathrm{~cm} .
D) 4.2 cm4.2 \mathrm{~cm} .
E) 4.23 cm4.23 \mathrm{~cm} .
Question
The length 3.76 mm3.76 \mathrm{~mm} is multiplied by 0.05 mm0.05 \mathrm{~mm} . The appropriately rounded product is

A) 0.2 mm20.2 \mathrm{~mm}^{2} .
B) 0.1881 mm20.1881 \mathrm{~mm}^{2} .
C) 0.18 mm20.18 \mathrm{~mm}^{2} .
D) 0.19 mm20.19 \mathrm{~mm}^{2} .
E) 0.29 mm20.29 \mathrm{~mm}^{2} .
Question
The length 3.76 mm3.76 \mathrm{~mm} is multiplied by 0.0232 mm0.0232 \mathrm{~mm} . The appropriately rounded product is

A) 0.0872 mm20.0872 \mathrm{~mm}^{2} .
B) 0.08723 mm20.08723 \mathrm{~mm}^{2} .
C) 0.09 mm20.09 \mathrm{~mm}^{2} .
D) 0.082 mm20.082 \mathrm{~mm}^{2} .
E) 0.087 mm20.087 \mathrm{~mm}^{2} .
Question
The length 3.76 mm3.76 \mathrm{~mm} is divided by 6 mm6 \mathrm{~mm} . The appropriately rounded ratio is

A) 0.627 .
B) 0.6267 .
C) 0.62666 .
D) 0.63 .
E) 0.6 .
Question
A cube is 1.0 inch in length on the side ( 1in=2.54 cm1 \mathrm{in}=2.54 \mathrm{~cm} ). The volume of the cube is

A) 1.64×101 cm31.64 \times 10^{1} \mathrm{~cm}^{3} .
B) 1.6×101 cm31.6 \times 10^{1} \mathrm{~cm}^{3} .
C) 1.639×101 cm31.639 \times 10^1 \mathrm{~cm}^{3} .
D) 1.6387×101 cm31.6387 \times 10^{1} \mathrm{~cm}^{3} .
Question
The number of seconds in exactly 30 days is

A) 2.5920×1062.5920 \times 106 .
B) 2.592000×1062.592000 \times 106 .
C) 2.59×1062.59 \times 106 .
D) 2.592×1062.592 \times 106 .
Question
The population of the United States (in 2019) is approximately 329,000,000. Write this number in scientific notation.

A) 329×106329 \times 106
B) 32.9×10732.9 \times 10^{7}
C) 3.29×1073.29 \times 10^{7}
D) 3.29×1083.29 \times 10^{8 }
E) 3.3×1073.3 \times 10^{7}
Question
Using the following unit conversions: 1.00 fluid ounce =29.573ml,1.00 L=1000 cm3=29.573 \mathrm{ml}, 1.00 \mathrm{~L}=1000 \mathrm{~cm}^{3} , density of water = 1.00 g/cm31.00 \mathrm{~g} / \mathrm{cm}^{3} , the number of fluid ounces in a kg\mathrm{kg} of water is

A) 33.8 fluid ounces.
B) 40.1 fluid ounces.
C) 48.8 fluid ounces.
D) 25.7 fluid ounces.
Question
If the radius of the Earth is 6400.0 km6400.0 \mathrm{~km} and the atmosphere is 10.0 km10.0 \mathrm{~km} high, then the volume of air around the Earth is

A) 5.16×1018 m35.16 \times 1018 \mathrm{~m} 3 .
B) 5.2×1018 m35.2 \times 1018 \mathrm{~m}^{3} .
C) 5.1552×109 m35.1552 \times 10^{9} \mathrm{~m}^{3}
D) 3.605×1016 m33.605 \times 10^{16} \mathrm{~m}^{3} .
Question
Approximately how many square centimeters are in 1 square foot (1in=2.54 cm)(1 \mathrm{in}=2.54 \mathrm{~cm}) ?

A) 30.5 cm230.5 \mathrm{~cm}^{2}
B) 144 cm2144 \mathrm{~cm}^{2}
C) 22.3 cm222.3 \mathrm{~cm}^{2}
D) 366 cm2366 \mathrm{~cm}^{2}
E) 929 cm2929 \mathrm{~cm}^{2}
Question
One angstrom =1010 m=10^{-10} \mathrm{~m} and one fermi =1015 m=10^{-15} \mathrm{~m} . What is the relationship between these units?

A) 1 angstrom =1025=10^{-25} fermi
B) 1 angstrom =1025=10^{25} fermi
C) 1 angstrom =105=10^{-5} fermi
D) 1 angstrom =105=10^{ 5} fermi
Question
To be dimensionally consistent, distance [L][\mathrm{L}] , velocity [L/T][\mathrm{L} / \mathrm{T}] , and acceleration [L/T2][\mathrm{L} / \mathrm{T} 2] must be related as follows.

A) distance == velocity ×\times acceleration 2{ }^{2}
B) distance == velocity 2×2 \times acceleration
C) distance == velocity 2/2 / acceleration
D) distance == velocity/acceleration
Question
To be dimensionally consistent, velocity [L/T][\mathrm{L} / \mathrm{T}] , pressure [M/LT2]\left[\mathrm{M} / \mathrm{LT}^{2}\right] , and density [M/L3]\left[\mathrm{M} / \mathrm{L}^{3}\right] must be related as follows.

A) velocity == pressure // density 2
B) velocity == pressure/density
C) velocity 2=^{2}= pressure/density
D) velocity 2=^{2}= pressure // density 2
Question
To be dimensionally consistent, force [ML/T2]\left[M L / \mathrm{T}^{2}\right] , pressure [MLLT2]\left[\mathrm{M}^{\mathrm{L}} \mathrm{LT}^{2}\right] , and length [L][\mathrm{L}] must be related as follows.

A) force == pressure ×\times length 2
B) force == pressure 2×2 \times length 2
C) force == pressure ×\times length
D) force == pressure 2×^{2} \times length
Question
To be dimensionally consistent, distance [L][\mathrm{L}] , acceleration [L/T2]\left[\mathrm{L} / \mathrm{T}^{2}\right] , and time [T][\mathrm{T}] must be related as follows.

A) distance == acceleration 2×2 \times time
B) distance == acceleration 2×^{2} \times time 2^{2}
C) distance == acceleration ×\times time
D) distance == acceleration ×\times time 2^{2}
Question
To be dimensionally consistent, velocity [L/T][\mathrm{L} / \mathrm{T}] , acceleration [L/T2]\left[\mathrm{L} / \mathrm{T}^{2}\right] and time [T][\mathrm{T}] must be related as follows.

A) velocity == acceleration 2×2 \times time 2^{2}
B) velocity == acceleration 2×2 \times time
C) velocity == acceleration ×\times time 2^{2}
D) velocity == acceleration ×\times time
Question
Estimate the number of dollar bills ( 15.5 cm15.5 \mathrm{~cm} wide), placed end to end, that it would take to circle the Earth (radius =6.40×103 km=6.40 \times 10^{3} \mathrm{~km} ).

A) 9.5×1089.5 \times 10^{8}
B) 3.7×1073.7 \times 10^{7}
C) 8.5×1068.5 \times 10^{6}
D) 1.2×1071.2 \times 10^{7}
E) 2.6×1082.6 \times 10^{8}
Question
Find the equation x=at2+bx=a t^{2}+b that fits the following data.

t(sec)012345x(m)16120204884\begin{array}{|l|l|l|l|l|l|l|}\hline \mathrm{t}(\mathrm{sec})& 0 & 1 & 2 & 3 & 4 & 5 \\\hline \mathrm{x}(\mathrm{m}) & -16 & -12 & 0 & 20 & 48 & 84 \\\hline\end{array}

A) x=4t216x=4 t^{2}-16
B) x=4t2+16x=4 t^{2}+16
C) x=2t2+16x=2 t^{2}+16
D) x=2t216x=2 t^{2}-16
Question
the equation x=at2+bx=a t^{2}+b that fits the following data.

t(sec)1357911x(m)2185098162242\begin{array}{|l|l|l|l|l|l|l|}\hline \mathrm{t}(\mathrm{sec}) & 1 & 3 & 5 & 7 & 9 & 11 \\\hline \mathrm{x}(\mathrm{m})& 2 & 18 & 50 & 98 & 162 & 242 \\\hline\end{array}

A) x=t2+18x=t^{2}+18
B) x=4t22x=4 t^{2}-2
C) x=2t2x=2 t^{2}
D) x=t2+1x=t^{2}+1
Question
Find the equation x=at2+bx=a t^{2}+b that fits the following data.

t(sec)012345x(mI)605852422810\begin{array}{|l|l|l|l|l|l|l|}\hline \mathrm{t}(\mathrm{sec})& 0 & 1 & 2 & 3 & 4 & 5 \\\hline \mathrm{x}(\mathrm{m} \mathrm{I}) & 60 & 58 & 52 & 42 & 28 & 10 \\\hline\end{array}

A) x=5t2+60x=5 t^{2}+60
B) x=2t2+60x=-2 t^{2}+60
C) x=4t2+60x=-4 t^{2}+60
D) x=3t2+60x=3 t^{2}+60
Question
Find the equation x=at2+btx=a t^{2}+b t that fits the following data.

t(sec)1357911x(m)32155105171253\begin{array}{|l|l|l|l|l|l|l|}\hline \mathrm{t}(\mathrm{sec}) & 1 & 3 & 5 & 7 & 9 & 11 \\\hline \mathrm{x}(\mathrm{m}) & 3 & 21 & 55 & 105 & 171 & 253 \\\hline\end{array}

A) x=6t23tx=6 t^{2}-3 t
B) x=2t2+2tx=2 t^{2}+2 t
C) x=2tx=2 t
D) x=t2+2tx=t^{2}+2 t
Question
Find the equation v2=ah+bv^{2}=a h+b that fits the following data.

h(m)24681012v(m/s)02002.833.464004.47\begin{array}{|l|l|l|l|l|l|l|}\hline \mathrm{h}(\mathrm{m}) & 2 & 4 & 6 & 8 & 10 & 12 \\\hline \mathrm{v}(\mathrm{m} / \mathrm{s}) & 0 & 200 & 2.83 & 3.46 & 400 & 4.47 \\\hline\end{array}

A) v2=2h4v^{2}=2 h-4
B) v2=h2v^{2}=h-2
C) v2=2h+4v^{2}=2 h+4
D) v2=3h6v^{2}=3 h-6
Question
Lake Superior has a shoreline of length 2726 miles. What would be its diameter in km\mathrm{km} if it were a perfectly circular lake? One mile is 1.609 km1.609 \mathrm{~km} .

A) 1396 km1396 \mathrm{~km}
B) 539 km539 \mathrm{~km}
C) 847 km847 \mathrm{~km}
D) 270 km270 \mathrm{~km}
E) 698 km698 \mathrm{~km}
F) 1694 km1694 \mathrm{~km}
Question
Lake Superior has a shoreline of length 2726 miles. What would be its area in km2\mathrm{km}^{2} if it were a perfectly circular lake? One mile is 1.609 km1.609 \mathrm{~km} .

A) 9.51×105 km29.51 \times 10^{5} \mathrm{~km}^{2}
B) 4.87×105 km24.87 \times 10^{5} \mathrm{~km}^{2}
C) 6.12×106 km26.12 \times 10^{6} \mathrm{~km}^{2}
D) 5.91×105 km25.91 \times 10^{5} \mathrm{~km}^{2}
E) 4.81×106 km24.81 \times 10^{6} \mathrm{~km}^{2}
F) 1.53×106 km21.53 \times 10^{6} \mathrm{~km}^{2}
Question
The surface area of Antarctica is 13.2 million square kilometers. If 1 acre is equivalent to 4047 m24047 \mathrm{~m}^{2} , what is the surface area of Antarctica in acres?

A) 8.05×1068.05 \times 10^{6} acres
B) 3.26×1033.26 \times 10^{3} acres
C) 8.05×1038.05 \times 10^{3} acres
D) 3.26×1093.26 \times 10^{9} acres
E) 3.26×1063.26 \times 10^{6} acres
F) 8.05×1098.05 \times 10^{9} acres
Question
Acceleration has dimension [L/T2]. Use dimensional analysis to determine the ratio of accelerations for car A to car B, if, everything else being equal, car A travels a given distance in half the time required by car B.

A) 4
B) 1/21 / \sqrt{2}
C) 2\sqrt{ } 2
D) 1/21 / 2
E) 1/41 / 4
F) 2
Question
You can reason that the time required for a ball to fall is related to the height from which it falls and to the acceleration due to gravity. Time is measured in seconds, height in meters, and gravitational acceleration in meters per second squared. Using dimensional analysis, determine how the time to fall from height h\mathrm{h} compares to the time required to fall from height 2 h2 \mathrm{~h} .

A) It takes 2\sqrt{2} times as long.
B) It takes 1/41 / 4 as long.
C) It takes 2 times as long.
D) It takes 1/21 / 2 as long.
E) It takes 4 times as long.
F) It takes 12\frac{1}{\sqrt{2}} as long.
Question
What is the approximate volume of the average adult human body?

A) 0.1 m30.1 \mathrm{~m}^{3}
B) 1 m31 \mathrm{~m}^{3}
C) 0.5 m30.5 \mathrm{~m}^{3}
D) 0.01 m30.01 \mathrm{~m}^{3}
Question
What is the approximate volume of an adult human's head?

A) 1.0 m31.0 \mathrm{~m}^{3}
B) 0.001 m30.001 \mathrm{~m}^{3}
C) 0.02 m30.02 \mathrm{~m}^{3}
D) 0.1 m30.1 \mathrm{~m}^{3}
E) 0.005 m30.005 \mathrm{~m}^{3}
Question
Estimate the surface area of an adult human's head.

A) 0.01 m20.01 \mathrm{~m}^{2}
B) 0.1 m20.1 \mathrm{~m}^{2}
C) 1.0 m21.0 \mathrm{~m}^{2}
D) 0.5 m20.5 \mathrm{~m}^{2}
Question
A graph of xx vs. tt is linear, and it intercepts the vertical axis at 15 m-15 \mathrm{~m} and the horizontal axis at 5 s5 \mathrm{~s} . What is the value of xx corresponding to t=3 st=3 \mathrm{~s} ?

A) 9 m-9 \mathrm{~m}
B) 6 m-6 \mathrm{~m}
C) 6 m6 \mathrm{~m}
D) 9 m9 \mathrm{~m}
E) 26 m26 \mathrm{~m}
F) 26 m-26 \mathrm{~m}
Question
A graph of xx vs. t2t^{2} is linear, and intercepts the vertical axis at 12 m12 \mathrm{~m} and the horizontal axis at 4 s24 \mathrm{~s}^{2} . What is the function?

A) x=12 m(3 m/s2)t2x=12 \mathrm{~m}-\left(3 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
B) x=12 m+(6 m/s2)t2x=12 \mathrm{~m}+\left(6 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
C) x=12 m(6 m/s2)t2x=12 \mathrm{~m}-\left(6 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
D) x=12 m+(3 m/s2)t2x=12 \mathrm{~m}+\left(3 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
Question
A 2.0 kg object is moving at a speed of v=12.0 m/sv=12.0 \mathrm{~m} / \mathrm{s} . The drag force is 6.0 N6.0 \mathrm{~N} . If the drag force is given by the equation F=bv2F=b v^{2} , then the value of bb is

A) 4.2×102 kg/m4.2 \times 10^{-2} \mathrm{~kg} / \mathrm{m} .
B) 7.5×103Ns2/m27.5 \times 10^{-3} \mathrm{Ns}^{2} / \mathrm{m}^{2} .
C) 4.2×101 N/m24.2 \times 10^{-1} \mathrm{~N} / \mathrm{m}^{2} .
D) 3.9×101 kg/m23.9 \times 10^{-1} \mathrm{~kg} / \mathrm{m}^{2} .
E) 1.5×102Ns2/m21.5 \times 10^{-2} \mathrm{Ns} 2 / \mathrm{m}^{2}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/39
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: Introduction
1
last page of a book is numbered 814 and the book is 3.00 cm3.00 \mathrm{~cm} thick. What is the average thickness of each page?

A) 2.54×103 cm2.54 \times 10^{3} \mathrm{~cm}
B) 2.54×103 cm2.54 \times 10^{-3} \mathrm{~cm}
C) 3.92×103 cm3.92 \times 10^{-3} \mathrm{~cm}
D) 7.37×103 cm7.37 \times 10^{-3} \mathrm{~cm}
7.37×103 cm7.37 \times 10^{-3} \mathrm{~cm}
2
The volume of a sphere is 8.00 m8.00 \mathrm{~m} . The radius of the sphere is

A) 1.24 m1.24 \mathrm{~m} .
B) 2.65 m2.65 \mathrm{~m} .
C) 2.00 m2.00 \mathrm{~m} .
D) 3.00 m3.00 \mathrm{~m} .
1.24 m1.24 \mathrm{~m} .
3
The radius of a sphere is 2.00 m2.00 \mathrm{~m} . The surface area of the sphere is

A) 72.5 m272.5 \mathrm{~m}^{2} .
B) 50.3 m250.3 \mathrm{~m} 2 .
C) 75.0 m275.0 \mathrm{~m}^{2} .
D) 36.7 m236.7 \mathrm{~m}^{2} .
50.3 m250.3 \mathrm{~m} 2 .
4
1.0 kilometer equals how many nanometers?

A) 1.0 times 1012
B) 1.0×1041.0 \times 10^{4}
C) 1.0×1061.0 \times 10^{6}
D) 1.0×1031.0 \times 10^{-3}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
5
1.0 centimeter equals how many micrometers?

A) 1.0×1031.0 \times 10^{-3}
B) 1.0×1061.0 \times 10^{6}
C) 1.0×1041.0 \times 10^4
D) 1.0×10121.0 \times 10^ {12}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
6
1.0 micrometer equals how many millimeters?

A) 1.0×1031.0 \times 10^{3}
B) 1.0×1061.0 \times 10^{-6}
C) 1.0×1061.0 \times 10^{6}
D) 1.0×1031.0 \times 10^{-3}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
7
The length 4.221 cm4.221 \mathrm{~cm} is added to 0.01 cm0.01 \mathrm{~cm} . The appropriately rounded sum is

A) 4.231 cm4.231 \mathrm{~cm} .
B) 4.22 cm4.22 \mathrm{~cm} .
C) 4.21 cm4.21 \mathrm{~cm} .
D) 4.2 cm4.2 \mathrm{~cm} .
E) 4.23 cm4.23 \mathrm{~cm} .
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
8
The length 3.76 mm3.76 \mathrm{~mm} is multiplied by 0.05 mm0.05 \mathrm{~mm} . The appropriately rounded product is

A) 0.2 mm20.2 \mathrm{~mm}^{2} .
B) 0.1881 mm20.1881 \mathrm{~mm}^{2} .
C) 0.18 mm20.18 \mathrm{~mm}^{2} .
D) 0.19 mm20.19 \mathrm{~mm}^{2} .
E) 0.29 mm20.29 \mathrm{~mm}^{2} .
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
9
The length 3.76 mm3.76 \mathrm{~mm} is multiplied by 0.0232 mm0.0232 \mathrm{~mm} . The appropriately rounded product is

A) 0.0872 mm20.0872 \mathrm{~mm}^{2} .
B) 0.08723 mm20.08723 \mathrm{~mm}^{2} .
C) 0.09 mm20.09 \mathrm{~mm}^{2} .
D) 0.082 mm20.082 \mathrm{~mm}^{2} .
E) 0.087 mm20.087 \mathrm{~mm}^{2} .
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
10
The length 3.76 mm3.76 \mathrm{~mm} is divided by 6 mm6 \mathrm{~mm} . The appropriately rounded ratio is

A) 0.627 .
B) 0.6267 .
C) 0.62666 .
D) 0.63 .
E) 0.6 .
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
11
A cube is 1.0 inch in length on the side ( 1in=2.54 cm1 \mathrm{in}=2.54 \mathrm{~cm} ). The volume of the cube is

A) 1.64×101 cm31.64 \times 10^{1} \mathrm{~cm}^{3} .
B) 1.6×101 cm31.6 \times 10^{1} \mathrm{~cm}^{3} .
C) 1.639×101 cm31.639 \times 10^1 \mathrm{~cm}^{3} .
D) 1.6387×101 cm31.6387 \times 10^{1} \mathrm{~cm}^{3} .
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
12
The number of seconds in exactly 30 days is

A) 2.5920×1062.5920 \times 106 .
B) 2.592000×1062.592000 \times 106 .
C) 2.59×1062.59 \times 106 .
D) 2.592×1062.592 \times 106 .
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
13
The population of the United States (in 2019) is approximately 329,000,000. Write this number in scientific notation.

A) 329×106329 \times 106
B) 32.9×10732.9 \times 10^{7}
C) 3.29×1073.29 \times 10^{7}
D) 3.29×1083.29 \times 10^{8 }
E) 3.3×1073.3 \times 10^{7}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
14
Using the following unit conversions: 1.00 fluid ounce =29.573ml,1.00 L=1000 cm3=29.573 \mathrm{ml}, 1.00 \mathrm{~L}=1000 \mathrm{~cm}^{3} , density of water = 1.00 g/cm31.00 \mathrm{~g} / \mathrm{cm}^{3} , the number of fluid ounces in a kg\mathrm{kg} of water is

A) 33.8 fluid ounces.
B) 40.1 fluid ounces.
C) 48.8 fluid ounces.
D) 25.7 fluid ounces.
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
15
If the radius of the Earth is 6400.0 km6400.0 \mathrm{~km} and the atmosphere is 10.0 km10.0 \mathrm{~km} high, then the volume of air around the Earth is

A) 5.16×1018 m35.16 \times 1018 \mathrm{~m} 3 .
B) 5.2×1018 m35.2 \times 1018 \mathrm{~m}^{3} .
C) 5.1552×109 m35.1552 \times 10^{9} \mathrm{~m}^{3}
D) 3.605×1016 m33.605 \times 10^{16} \mathrm{~m}^{3} .
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
16
Approximately how many square centimeters are in 1 square foot (1in=2.54 cm)(1 \mathrm{in}=2.54 \mathrm{~cm}) ?

A) 30.5 cm230.5 \mathrm{~cm}^{2}
B) 144 cm2144 \mathrm{~cm}^{2}
C) 22.3 cm222.3 \mathrm{~cm}^{2}
D) 366 cm2366 \mathrm{~cm}^{2}
E) 929 cm2929 \mathrm{~cm}^{2}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
17
One angstrom =1010 m=10^{-10} \mathrm{~m} and one fermi =1015 m=10^{-15} \mathrm{~m} . What is the relationship between these units?

A) 1 angstrom =1025=10^{-25} fermi
B) 1 angstrom =1025=10^{25} fermi
C) 1 angstrom =105=10^{-5} fermi
D) 1 angstrom =105=10^{ 5} fermi
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
18
To be dimensionally consistent, distance [L][\mathrm{L}] , velocity [L/T][\mathrm{L} / \mathrm{T}] , and acceleration [L/T2][\mathrm{L} / \mathrm{T} 2] must be related as follows.

A) distance == velocity ×\times acceleration 2{ }^{2}
B) distance == velocity 2×2 \times acceleration
C) distance == velocity 2/2 / acceleration
D) distance == velocity/acceleration
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
19
To be dimensionally consistent, velocity [L/T][\mathrm{L} / \mathrm{T}] , pressure [M/LT2]\left[\mathrm{M} / \mathrm{LT}^{2}\right] , and density [M/L3]\left[\mathrm{M} / \mathrm{L}^{3}\right] must be related as follows.

A) velocity == pressure // density 2
B) velocity == pressure/density
C) velocity 2=^{2}= pressure/density
D) velocity 2=^{2}= pressure // density 2
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
20
To be dimensionally consistent, force [ML/T2]\left[M L / \mathrm{T}^{2}\right] , pressure [MLLT2]\left[\mathrm{M}^{\mathrm{L}} \mathrm{LT}^{2}\right] , and length [L][\mathrm{L}] must be related as follows.

A) force == pressure ×\times length 2
B) force == pressure 2×2 \times length 2
C) force == pressure ×\times length
D) force == pressure 2×^{2} \times length
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
21
To be dimensionally consistent, distance [L][\mathrm{L}] , acceleration [L/T2]\left[\mathrm{L} / \mathrm{T}^{2}\right] , and time [T][\mathrm{T}] must be related as follows.

A) distance == acceleration 2×2 \times time
B) distance == acceleration 2×^{2} \times time 2^{2}
C) distance == acceleration ×\times time
D) distance == acceleration ×\times time 2^{2}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
22
To be dimensionally consistent, velocity [L/T][\mathrm{L} / \mathrm{T}] , acceleration [L/T2]\left[\mathrm{L} / \mathrm{T}^{2}\right] and time [T][\mathrm{T}] must be related as follows.

A) velocity == acceleration 2×2 \times time 2^{2}
B) velocity == acceleration 2×2 \times time
C) velocity == acceleration ×\times time 2^{2}
D) velocity == acceleration ×\times time
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
23
Estimate the number of dollar bills ( 15.5 cm15.5 \mathrm{~cm} wide), placed end to end, that it would take to circle the Earth (radius =6.40×103 km=6.40 \times 10^{3} \mathrm{~km} ).

A) 9.5×1089.5 \times 10^{8}
B) 3.7×1073.7 \times 10^{7}
C) 8.5×1068.5 \times 10^{6}
D) 1.2×1071.2 \times 10^{7}
E) 2.6×1082.6 \times 10^{8}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
24
Find the equation x=at2+bx=a t^{2}+b that fits the following data.

t(sec)012345x(m)16120204884\begin{array}{|l|l|l|l|l|l|l|}\hline \mathrm{t}(\mathrm{sec})& 0 & 1 & 2 & 3 & 4 & 5 \\\hline \mathrm{x}(\mathrm{m}) & -16 & -12 & 0 & 20 & 48 & 84 \\\hline\end{array}

A) x=4t216x=4 t^{2}-16
B) x=4t2+16x=4 t^{2}+16
C) x=2t2+16x=2 t^{2}+16
D) x=2t216x=2 t^{2}-16
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
25
the equation x=at2+bx=a t^{2}+b that fits the following data.

t(sec)1357911x(m)2185098162242\begin{array}{|l|l|l|l|l|l|l|}\hline \mathrm{t}(\mathrm{sec}) & 1 & 3 & 5 & 7 & 9 & 11 \\\hline \mathrm{x}(\mathrm{m})& 2 & 18 & 50 & 98 & 162 & 242 \\\hline\end{array}

A) x=t2+18x=t^{2}+18
B) x=4t22x=4 t^{2}-2
C) x=2t2x=2 t^{2}
D) x=t2+1x=t^{2}+1
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
26
Find the equation x=at2+bx=a t^{2}+b that fits the following data.

t(sec)012345x(mI)605852422810\begin{array}{|l|l|l|l|l|l|l|}\hline \mathrm{t}(\mathrm{sec})& 0 & 1 & 2 & 3 & 4 & 5 \\\hline \mathrm{x}(\mathrm{m} \mathrm{I}) & 60 & 58 & 52 & 42 & 28 & 10 \\\hline\end{array}

A) x=5t2+60x=5 t^{2}+60
B) x=2t2+60x=-2 t^{2}+60
C) x=4t2+60x=-4 t^{2}+60
D) x=3t2+60x=3 t^{2}+60
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
27
Find the equation x=at2+btx=a t^{2}+b t that fits the following data.

t(sec)1357911x(m)32155105171253\begin{array}{|l|l|l|l|l|l|l|}\hline \mathrm{t}(\mathrm{sec}) & 1 & 3 & 5 & 7 & 9 & 11 \\\hline \mathrm{x}(\mathrm{m}) & 3 & 21 & 55 & 105 & 171 & 253 \\\hline\end{array}

A) x=6t23tx=6 t^{2}-3 t
B) x=2t2+2tx=2 t^{2}+2 t
C) x=2tx=2 t
D) x=t2+2tx=t^{2}+2 t
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
28
Find the equation v2=ah+bv^{2}=a h+b that fits the following data.

h(m)24681012v(m/s)02002.833.464004.47\begin{array}{|l|l|l|l|l|l|l|}\hline \mathrm{h}(\mathrm{m}) & 2 & 4 & 6 & 8 & 10 & 12 \\\hline \mathrm{v}(\mathrm{m} / \mathrm{s}) & 0 & 200 & 2.83 & 3.46 & 400 & 4.47 \\\hline\end{array}

A) v2=2h4v^{2}=2 h-4
B) v2=h2v^{2}=h-2
C) v2=2h+4v^{2}=2 h+4
D) v2=3h6v^{2}=3 h-6
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
29
Lake Superior has a shoreline of length 2726 miles. What would be its diameter in km\mathrm{km} if it were a perfectly circular lake? One mile is 1.609 km1.609 \mathrm{~km} .

A) 1396 km1396 \mathrm{~km}
B) 539 km539 \mathrm{~km}
C) 847 km847 \mathrm{~km}
D) 270 km270 \mathrm{~km}
E) 698 km698 \mathrm{~km}
F) 1694 km1694 \mathrm{~km}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
30
Lake Superior has a shoreline of length 2726 miles. What would be its area in km2\mathrm{km}^{2} if it were a perfectly circular lake? One mile is 1.609 km1.609 \mathrm{~km} .

A) 9.51×105 km29.51 \times 10^{5} \mathrm{~km}^{2}
B) 4.87×105 km24.87 \times 10^{5} \mathrm{~km}^{2}
C) 6.12×106 km26.12 \times 10^{6} \mathrm{~km}^{2}
D) 5.91×105 km25.91 \times 10^{5} \mathrm{~km}^{2}
E) 4.81×106 km24.81 \times 10^{6} \mathrm{~km}^{2}
F) 1.53×106 km21.53 \times 10^{6} \mathrm{~km}^{2}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
31
The surface area of Antarctica is 13.2 million square kilometers. If 1 acre is equivalent to 4047 m24047 \mathrm{~m}^{2} , what is the surface area of Antarctica in acres?

A) 8.05×1068.05 \times 10^{6} acres
B) 3.26×1033.26 \times 10^{3} acres
C) 8.05×1038.05 \times 10^{3} acres
D) 3.26×1093.26 \times 10^{9} acres
E) 3.26×1063.26 \times 10^{6} acres
F) 8.05×1098.05 \times 10^{9} acres
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
32
Acceleration has dimension [L/T2]. Use dimensional analysis to determine the ratio of accelerations for car A to car B, if, everything else being equal, car A travels a given distance in half the time required by car B.

A) 4
B) 1/21 / \sqrt{2}
C) 2\sqrt{ } 2
D) 1/21 / 2
E) 1/41 / 4
F) 2
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
33
You can reason that the time required for a ball to fall is related to the height from which it falls and to the acceleration due to gravity. Time is measured in seconds, height in meters, and gravitational acceleration in meters per second squared. Using dimensional analysis, determine how the time to fall from height h\mathrm{h} compares to the time required to fall from height 2 h2 \mathrm{~h} .

A) It takes 2\sqrt{2} times as long.
B) It takes 1/41 / 4 as long.
C) It takes 2 times as long.
D) It takes 1/21 / 2 as long.
E) It takes 4 times as long.
F) It takes 12\frac{1}{\sqrt{2}} as long.
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
34
What is the approximate volume of the average adult human body?

A) 0.1 m30.1 \mathrm{~m}^{3}
B) 1 m31 \mathrm{~m}^{3}
C) 0.5 m30.5 \mathrm{~m}^{3}
D) 0.01 m30.01 \mathrm{~m}^{3}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
35
What is the approximate volume of an adult human's head?

A) 1.0 m31.0 \mathrm{~m}^{3}
B) 0.001 m30.001 \mathrm{~m}^{3}
C) 0.02 m30.02 \mathrm{~m}^{3}
D) 0.1 m30.1 \mathrm{~m}^{3}
E) 0.005 m30.005 \mathrm{~m}^{3}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
36
Estimate the surface area of an adult human's head.

A) 0.01 m20.01 \mathrm{~m}^{2}
B) 0.1 m20.1 \mathrm{~m}^{2}
C) 1.0 m21.0 \mathrm{~m}^{2}
D) 0.5 m20.5 \mathrm{~m}^{2}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
37
A graph of xx vs. tt is linear, and it intercepts the vertical axis at 15 m-15 \mathrm{~m} and the horizontal axis at 5 s5 \mathrm{~s} . What is the value of xx corresponding to t=3 st=3 \mathrm{~s} ?

A) 9 m-9 \mathrm{~m}
B) 6 m-6 \mathrm{~m}
C) 6 m6 \mathrm{~m}
D) 9 m9 \mathrm{~m}
E) 26 m26 \mathrm{~m}
F) 26 m-26 \mathrm{~m}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
38
A graph of xx vs. t2t^{2} is linear, and intercepts the vertical axis at 12 m12 \mathrm{~m} and the horizontal axis at 4 s24 \mathrm{~s}^{2} . What is the function?

A) x=12 m(3 m/s2)t2x=12 \mathrm{~m}-\left(3 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
B) x=12 m+(6 m/s2)t2x=12 \mathrm{~m}+\left(6 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
C) x=12 m(6 m/s2)t2x=12 \mathrm{~m}-\left(6 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
D) x=12 m+(3 m/s2)t2x=12 \mathrm{~m}+\left(3 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
39
A 2.0 kg object is moving at a speed of v=12.0 m/sv=12.0 \mathrm{~m} / \mathrm{s} . The drag force is 6.0 N6.0 \mathrm{~N} . If the drag force is given by the equation F=bv2F=b v^{2} , then the value of bb is

A) 4.2×102 kg/m4.2 \times 10^{-2} \mathrm{~kg} / \mathrm{m} .
B) 7.5×103Ns2/m27.5 \times 10^{-3} \mathrm{Ns}^{2} / \mathrm{m}^{2} .
C) 4.2×101 N/m24.2 \times 10^{-1} \mathrm{~N} / \mathrm{m}^{2} .
D) 3.9×101 kg/m23.9 \times 10^{-1} \mathrm{~kg} / \mathrm{m}^{2} .
E) 1.5×102Ns2/m21.5 \times 10^{-2} \mathrm{Ns} 2 / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 39 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 39 flashcards in this deck.