Deck 5: Full First-Order Logic

Full screen (f)
exit full mode
Question
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Hume is more skeptical than Locke.

A) Slh
B) Shl
C) hSl
D) lSh
E) hlS
Use Space or
up arrow
down arrow
to flip the card.
Question
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Locke influenced Hume, but is not more skeptical than him.

A) Ilh • ∼Slh
B) Ihl • ~Shl
C) Ilh • ~Shl
D) (I • ~S)lh
E) Ilh \lor Shl
Question
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-No philosopher is more skeptical than Hume.

A) (∀x)(Px ⊃ ∼Sxh)
B) ~(∃x)(Px • Shx)
C) (∀x)~(Px ⊃ Sxh)
D) (∀x)(~Sxh ⊃ Px)
E) (∀x)(Shx ⊃ Px)
Question
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Hume influenced some philosophers more skeptical than Locke.

A) (∀x)[Px ⊃ (Sxl • Ihx)]
B) (∃x)[(Px • Ihx) ⊃ Sxl]
C) (∀x)[(Sxl • Ihx) ⊃ Px]
D) (∃x)[(Px • Slx) ⊃ ~Ihx]
E) (∃x)[(Px • Sxl) • Ihx]
Question
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-All philosophers are more skeptical than some rationalists.

A) (∀x)[Px ⊃ (∀y)(Ry ⊃ Sxy)]
B) (∀x)[Px ⊃ (∀y)(Sxy ⊃ Ry)]
C) (∀x)[Px • (∃y)(Ry • Sxy)]
D) (∀x)[Px ⊃ (∃y)(Ry • Sxy)]
E) (∃x)[Px • (∃y)(Ry • Sxy)]
Question
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Hume is more skeptical than all rationalist philosophers.

A) (∀x)[Sxh ⊃ (Px • Rx)]
B) (∀x)[(Px • Rx) ⊃ Shx]
C) (∀x)[(Px • Rx) ⊃ Sxh]
D) (∀x)[Shx ⊃ (Px • Rx)]
E) (∀x)[(Px • Rx) ≡ Shx]
Question
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Hume is not more skeptical than some philosophers.

A) ~(∃x)(Px • Sxh)
B) (∃x)(Px • ∼Shx)
C) ~(∀x)(Px • Shx)
D) (∃x)(Px ⊃ ~Shx)
E) (∃x)(~Shx ⊃ Px)
Question
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Some philosophers more skeptical than Hume influenced all philosophers more skeptical
Than Locke.

A) (∃x){(Px • Sxh) • (∀y)[(Py • Syl) ⊃ Ixy]}
B) (∃x){(Px • Sxh) • (∀y)[(Py • Sly) ⊃ Ixy]}
C) (∃x){(Px • Shx) • (∀y)[(Py • Sly) ⊃ Ixy]}
D) (∃x){(Px • Shx) • (∀y)[(Py • Sly) ⊃ Iyx]}
E) (∃x){(Px • Sxh) • (∀y)[(Py • Sly) ⊃ Iyx]}
Question
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Some rationalists influenced some philosophers who were more skeptical than them.

A) (∀x){Px ⊃ (∃y)[(Ry • Syx) • Ixy]}
B) (∃x){Px • (∃y)[(Ry • Sxy) • Ixy]}
C) (∃x){Rx • (∃y)[(Py • Syx) • Ixy]}
D) (∃x){Rx • (∃y)[(Py • Sxy) • Iyx]}
E) (∃x){Rx • (∀y)[(Py • Syx) ⊃ Ixy]}
Question
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-If some rationalist is more skeptical than Locke, then no philosopher influenced Hume.

A) (∃x)(Rx • Sxl) ⊃ (∀x)(Px ⊃ ∼Ixh)
B) (∃x)[(Rx • Sxl) ⊃ (∀y)(Py ⊃ ~Iyh)]
C) (∃x)[(Rx • Sxl) ⊃ ~(∃y)(Py ⊃ ~Iyh)]
D) (∃x)(Rx • Sxl) ⊃ ~(∃x)(Px ⊃ ~Ixh)
E) (∃x)[(Rx • Sxl) ⊃ (Px ⊃ ~Ixh)]
Question
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Some cheetahs are faster than all lions.

A) (∀x)[Lx ⊃ (∃y)(Cy • Fxy)]
B) (∀x)[Lx ⊃ ~(∀y)(Cy • Fyx)]
C) (∃x)(Cx ⊃ (∀y)(Ly ⊃ Fxy)]
D) (∃x)[Cx • (∀y)(Ly ⊃ Fxy)]
E) (∃x)[Cx • (∀y)(Ly • Fxy)]
Question
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-No tiger is faster than all cheetahs.

A) ∼(∃x)[Tx • (∀y)(Cy ⊃ Fxy)]
B) (∀x)[Tx ⊃ ~(∀y)(Cy • Fxy)]
C) (∀x)[Tx ⊃ ~(∃y)(Cy ⊃ Fxy)]
D) ~(∃x)[Cx • (∃y)(Ty . Fyx)]
E) ~(∃x)[Tx • (∀y)(Fyx ⊃ Cy)]
Question
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-No lion is faster than some tigers.

A) ~(∃x)[Lx • (∀y)(Ty ⊃ Fyx)]
B) (∀x)[Lx ⊃ (∃y)(Ty • ∼Fxy)]
C) ~(∃x)[Lx • (∃y)(Ty • Fxy)]
D) ~(∃x)(∃y)[(Lx • Ty) • Fxy]
E) (∀x)[Lx ⊃ (∀y)(Ty ⊃ ~Fyx)]
Question
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Some lions are larger than all cheetahs.

A) (∃x)[Lx • (∀y)(Lxy ⊃ Cy)]
B) (∃x)(∀y)[(Lx • Lxy) ⊃ Cy]
C) (∃x)[Lx • (∀y)(Cy ⊃ Lxy)]
D) (∀x)[Cx ⊃ (∃y)(Ly • Lxy)]
E) (∃x)[Lx ⊃ (∀y)(Cy ⊃ Lxy)]
Question
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Some tigers and all cheetahs are faster than all lions.

A) (∃x)[Tx • (∀y)(Ly ⊃ Fxy)] • (∀x)[Cx • (∀y)(Lz ⊃ Fxy)]
B) (∃x)(∀y)(∀z){(Fyz • Fxz) ⊃ [(Lz • Tx) • Cy]}
C) (∃x)(∀y)(∀z){[(Lz • Tx) • Cy] ⊃ (Fyz • Fxz)]}
D) (∃x)(∀y){(Tx • Cy) ⊃ (∀z)[Lz ⊃ (Fzx • Fzy)]}
E) (∀x){Lx ⊃ [(∃y)(Ty • Fyx) • (∀z)(Cz ⊃ Fzx)]}
Question
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-All lions and tigers are larger than some cheetahs, but not faster than all cheetahs.

A) (∀x)(∀y){(Lx • Ty) ⊃ (∃z)[(Cz • Lxz) • Lyz]} • ~(∀x)(∀y)(∀z)(Fxz • Fyz)
B) ~(∃x){Cx • (∀y)[(Ly \lor Ty) ⊃ (Fxy • Lyx)]}
C) (∀x){(Lx \lor Tx) ⊃ ~(∃y)[Cy • (Fyx • Lxy)]}
D) (∃x){Cx ⊃ (∀y)(∀z)[(Ly . Tz) ⊃ (~Fxy . ~Lzx)]}
E) (∀x){(Lx \lor Tx) ⊃ [(∃y)(Cy • Lxy) • ∼(∀y)(Cy ⊃ Fxy)]}
Question
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Some cheetahs that are not larger than any lion are faster than some tigers.

A) (∃x){[Cx • (∀y)(Ty ⊃ ~Lxy)] • (∃y)(Ly • Fxy)}
B) (∃x){[Cx • (∀y)(Cy • ~Lxy)] ⊃ (∃y)(Ty • Fxy)}
C) (∃x){Cx • (∀y)(∃z)[(Ly • Tx) • (~Lxy • Fxy)]}
D) (∃x){[Cx • (∀y)(~Lxy ⊃ Lx)] • (∃y)(Fxy • Tx)}
E) (∃x){[Cx • (∀y)(Ly ⊃ ∼Lxy)] • (∃y)(Ty • Fxy)}
Question
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Any lion larger than all cheetahs is not faster than any tiger.

A) (∀x){[Lx ⊃ (∀y)(Lxy ⊃ Cx)] ⊃ ~(∃y)(Ty • Fxy)}
B) (∀x){Tx ⊃ ~(∃y)[(Ly • Lxy) • (∀z)(Cz ⊃ Fxz)]}
C) (∀x){[Lx • (∀y)(Cx ⊃ Lxy)] ⊃ ∼(∃y)(Ty • Fxy)}
D) (∀x){[Lx ⊃ (∀y)(Cy ⊃ Lxy)] ⊃ (∀y)(Ty ⊃ ~Fxy)}
E) (∀x){[Lx • (∀y)(Cx • Lyx)] ⊃ ~(∃y)(Ty ⊃ ~Fxy)}
Question
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-No cheetahs that are larger than some tiger are faster than all lions or tigers.

A) ~(∃x){[Cx • (∃y)(Ty • Lxy)] • (∀y)[(Ly • Ty) ⊃ Fxy]}
B) ~(∃x){[Cx • (∃y)(Ty • Fxy)] • (∀y)[(Ly • Ty) ⊃ Lxy]}
C) (∀x){[Cx • (∃y)(Ty • Lxy)] ⊃ ∼(∀y)[(Ly \lor Ty) ⊃ Fxy]}
D) ~(∃x){[Cx ⊃ (∃y)(Ty • Lxy)] • (∀y)((Ly \lor Ty) ⊃ Fxy]}
E) ~(∃x){[Cx • (∃y)(Ty • Lxy)] ⊃ ~(∀y)(Ly \lor Ty) ⊃ Fxy]}
Question
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Some lion is faster than all tigers if, and only if, some cheetah is larger than any tiger faster than it.

A) (∃x)[Lx • (∀y)(Ty ⊃ Fxy)] ≡ (∃x){Cx • (∀y)[(Ty • Fyx) ⊃ Lxy]}
B) (∃x)[Lx • (∀y)(Fxy ⊃ Ty)] ≡ (∃x){Cx • (∀y)[Lxy ⊃ (Ty • Fyx)]}
C) (∃x)(∃y)(∀z){[(Lx • Cy) • Tz] • [Fxz ≡ (Fzy ⊃ Lyz)]}
D) (∃x)(∃y)(∀z){[(Lx • Cy) • Tz] • [Fxz ≡ (Lyz ⊃ Fzy)]}
E) (∃x)(∃y)(∀z){[Tz ⊃ (Lx • Cy)] ≡ [(Fxz • Lyz) • Fzy]}
Question
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-(∀x)[Nx ⊃ (Ox ⊃ ∼Ex)]

A) All numbers are odd if they are not even.
B) All numbers are odd or even.
C) No even number is odd.
D) No odd number is even.
E) If a number is odd it is even.
Question
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-∼(∃x)(Nx • Gxx)

A) Some numbers are not greater than themselves.
B) Some numbers are not greater than any other number.
C) No number is greater than itself.
D) No number is greater than any other number.
E) Some number is no greater than itself.
Question
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-~(∃x)[(Nx • ∼Ex) • Gxt]

A) No number that is not even is greater than two.
B) Some even numbers are not greater than two.
C) Some number greater than two is not even.
D) Two is the smallest even number.
E) Two is not the smallest even number.
Question
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-(∀x){(Nx • Ox) ⊃ (∃y)[(Ey • Ny) • Gyx)]}

A) For every odd number, there is an even number greater than it.
B) Every odd number is greater than some even number.
C) All odd numbers are smaller than all even numbers.
D) Any number smaller than every odd number is even.
E) Any number greater than every odd number is even.
Question
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-(∀x){(Ex • Nx) ⊃ (∀y)[(Oy • Ny) ⊃ ∼Gxy]}

A) All even numbers are smaller than all odd numbers.
B) No even number is greater than any odd number.
C) No odd number is greater than any even number.
D) All even numbers are greater than all odd numbers.
E) No even number is greater than every odd number.
Question
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {, , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) Pa • Pd
Cad • ~Cda
B) Pb • Pd
Cbd • ~Cdb
C) Pa • Pb
Cab • ∼Cba
D) Pb • Pa
Cba • ~Cab
E) Pc • Pb
Ccb • ~Cbc
Question
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {, , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (Ma • Pb) • (Pc \lor Pd) (∃x)Cxa • ~(∃x)Cxd
B) (Pa • Mb) • (Pc \lor Pd) (∃x)Cxd \lor ~(∃x)Cxa
C) (Pa • Pb) • (Pc \lor Pd)
(∃x)Cxd • ∼(∃x)Cxa
D) (Pa • Pb) • (Mc \lor Pd) (∃x)Cxd \lor ~(∃x)Cxa
E) (Pa • Pb) • (Pc \lor Md) (∃x)Cxa • ~(∃x)Cxd
Question
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {, , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) Ma • ~Mc
(∃x)Cxc
∼(∃x)(∼Cxc • Mx)
B) Ma • Mc (∃x)Ccx (∃x)(~Cxc • Mx)
C) ~(Ma • Mc)
(∃x)Ccx
~(∃x)(Cxc • Mx)
D) ~(Ma \lor Mc) (∃x)Ccx
~(∃x)(Ccx • Mx)
E) Ma ≡ ~Mc
(∃x)Cax
~(∃x)(Cxc • ~Mx)
Question
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {, , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (∀x){Px ⊃ [(∃y)Cxy • (∃y)Cyx]} Cab • ~Cba
Cca • ~Cac Cad • ~Cda
B) (∀x){Px ⊃ [(∃y)Cxy ≡ (∃x)Cyx]} Cab • ~Cba
Cac • ~Cca Cad • ~Cda
C) (∀x)[Px ⊃ (∃y)(Cxy • Cyx)] Cba • ~Caa
Cca • ~Ccc Cda • ~Cdd
D) (∀x){Px ⊃ [(∃y)Cxy \lor (∃y)Cyx]}
Cab • ∼Cba Cac • ∼Cca Cad • ∼Cda
E) (∀x)[Px ⊃ (∃y)(Cxy \lor Cyx)]
Cab • ~Cba Cac • Cad
~(~Cca • ~Cda)
Question
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {, , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (∀x)(Px ⊃ Mx)
~(∃x)Px
(∀x)(∀y)[(Px • Py) ⊃ Cxy]
B) (∀x)(Mx ≡ Px)
~(∀x)Mx (∀x)[(∀y)Cxy ⊃ Py]
C) (∀x)(Mx \lor Px)
~(∃x)Mx
(∀x)[Px ⊃ ~(∀y)(Py ⊃ Cxy)]
D) (∀x)(~Mx \lor Px)
~(∀x)(Px
(∀x)[Px ⊃ (∀y)(Py ⊃ Cxy)]
E) (∀x)(Mx ⊃ Px)
∼(∀x)Px
(∀x)[∼Px ⊃ (∀y)(Py ⊃ Cyx)]
Question
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1
e = 21
b = 2
f = 23
c = 4
g = 27
d = 20
h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) Sdca • Shgb
(∃x)(∃y)Sdxy • ~(∃x)(∃y)Sgxy
B) Scbb • Seda
(∃x)(∃y)Scxy • ~(∃x)(∃y)Sbxy
C) Secb • Shga
(∃x)(∃y)Sgxy • ~(∀x)(∀y)Sfxy
D) Sfeb • Sgfc
(∃x)(∃y)Shxy • ∼(∀x)(∀y)Shxy
E) Shgb • Sfbe
(∃x)(∃y)Sgxy • ~(∃x)Sxcd
Question
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1
e = 21
b = 2
f = 23
c = 4
g = 27
d = 20
h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (∃x)(Ex • Sfex)
(∀x)(Ox ⊃ ∼Sfex) (∃x)(∃y)(Oy • Sxey)
B) (∃x)(Ex • Sefx) (∀x)(Ox ⊃ ~Sefx) (∃x)(∃y)(Oy • Sxfy)
C) (∃x)(Ox • Sfex) (∀x)(Ex ⊃ ~Sfex) (∃x)(∃y)(Ey • Sxey)
D) (∃x)(Ox • Sefx) (∀x)(Ex ⊃ ~Sefx) (∃x)(∃y)(Ey • Sxfy)
E) (∃x)(Ox • Sfxe) (∀x)(Ex ⊃ ~Sfxe) (∃x)(∃y)(Ey • Sfxy)
Question
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1
e = 21
b = 2
f = 23
c = 4
g = 27
d = 20
h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) Sgfc • Sgcf
(∀x)(∀y)(∀z)(Sxyz ≡ Sxzy)
B) Sgba • Sgab
(∀x)(∀y)[(∀z)Sxyz ≡ (∀z)Sxzy]
C) Seda • Sead
(∀x)(∀y)(∀z)(Sxyz ≡ Szyx)
D) Sfea • Sfae
(∀x)(∀y)(∀z)(Sxyz ≡ Syxz)
E) Sdba • Sdab
(∀x)(∀y)[(∀z)(Sxyz ≡ (∀z)Syxz]
Question
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1
e = 21
b = 2
f = 23
c = 4
g = 27
d = 20
h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (∃x)(∃y)[(Ex • Ey) • Sfxy] (∃x)(∃y)[(Ox • Oy) • Sfxy]
(∀x){Ex ⊃ {(∃y)(∃z)[(Ey • Ez) • Sxyz)] \lor (∃y)(∃z)[(Ox • Oy) • Sxyz]}}
B) (∃x)(∃y)[(Ex • Ey) • Sdxy]
(∃x)(∃y)[(Ox • Oy) • Sdxy]
(∀x){Ex ⊃ {(∃y)(∃z)[(Ey • Ez) • Sxyz)] \lor (∃y)(∃z)[(Ox • Oy) • Sxyz]}}
C) (∃x)(∃y)[(Ex • Ey) • Sdxy]
(∃x)(∃y)[(Ox • Oy) • Sdxy]
(∀x){Ex ⊃ {(∃y)(∃z)[(Ey • Ez) • Sxyz)] • (∃y)(∃z)[(Ox • Oy) • Sxyz]}}
D) (∃x)(∃y)[(Ex • Ey) • Sfxy]
(∃x)(∃y)[(Ox • Oy) • Sfxy]
(∀x){Ex ⊃ {(∃y)(∃z)[(Ey • Ez) • Sxyz)] • (∃y)(∃z)[(Ox • Oy) • Sxyz]}}
E) (∃x)(∃y)[(Ex • Ey) • Sdxy]
(∃x)(∃y)[(Ox • Oy) • Sdxy]
(∀x){Ox ⊃ {(∃y)(∃z)[(Ey • Ez) • Sxyz)] \lor (∃y)(∃z)[(Ox • Oy) • Sxyz]}}
Question
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1
e = 21
b = 2
f = 23
c = 4
g = 27
d = 20
h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (∃x)(∀y)(∀z)Sxyz (∃x)(∀y)(∀z)Syxz
B) (∃x)(∀y)(∀z)∼Sxyz (∃x)(∀y)(∀z)Syxz
C) (∃x)(∀y)(∀z)Sxyz (∃x)(∀y)(∀z)∼Syxz
D) (∃x)(∀y)∼Sxyy
(∃x)(∀y)Syxy
E) (∃x)(∀y)(∀z)∼Sxyz (∃x)(∀y)(∀z)∼Syxz
Question
provide a conterexample in a finite domain to each given invalid argument.
-1. Ad ⊃ (∀x)Fdx / (∃x)Fdx

A) Counterexample in a domain of one member, in which: Ad: True Fdd: False
B) Counterexample in a domain of one member, in which: Ad: False Fdd: False
C) Counterexample in a domain of one member, in which: Ad: True Fdd: True
D) Counterexample in a domain of two members, in which: Ad: True Fdd: False
Ab: True Fdb: False
E) Counterexample in a domain of two members, in which: Ad: False Fdd: True
Ab: False Fdb: False
Question
provide a conterexample in a finite domain to each given invalid argument.
-1. (∃x)(Dxa • Ex)
2) (∃x)(Dxa • Fx) / (∃x)(Ex • Fx)

A) Counterexample in a domain of one member, in which: Ea: True Fa: False Daa: True
B) Counterexample in a domain of one member, in which: Ea: False Fa: True Daa: False
C) Counterexample in a domain of two members, in which: Ea: True Fa: True Daa: True
Eb: True Fb: False Dba: False
D) Counterexample in a domain of two members, in which: Ea: True Fa: False Daa: False
Eb: False Fb: False Dba: True
E) Counterexample in a domain of two members, in which: Ea: True Fa: False Daa: True
Eb: False Fb: True Dba: True
Question
provide a conterexample in a finite domain to each given invalid argument.
-1. (∀x)[Hx ⊃ (∃y)(Ix • Jxy)]
2) Ha
3) Ib / Jab

A) Counterexample in a domain of two members, in which:
Ha: True Ia: True Jaa: True Jba: False
Hb: True Ib: False Jab: False Jbb: True
B) Counterexample in a domain of two members, in which:
Ha: True Ia: False Jaa: True Jba: False
Hb: False Ib: True Jab: False Jbb: True
C) Counterexample in a domain of two members, in which:
Ha: True Ia: True Jaa: True Jba: True
Hb: False Ib: True Jab: False Jbb: True
D) Counterexample in a domain of two members, in which:
Ha: False Ia: True Jaa: False Jba: True
Hb: True Ib: True Jab: True Jbb: True
E) Counterexample in a domain of two members, in which:
Ha: True Ia: True Jaa: False Jba: False
Hb: True Ib: False Jab: True Jbb: True
Question
provide a conterexample in a finite domain to each given invalid argument.
-1. (∀x)[Px ⊃ (∃y)Qxy]
2) (∀x)[(∃y)Qxy ⊃ (∃y)Rxy]
3) Pa / Rab

A) Counterexample in a domain of two members, in which:
Pa: True Qaa: False Qba: True Raa: True Rba: False
Pb: False Qab: False Qbb: True Rab: False Rbb: True
B) Counterexample in a domain of two members, in which:
Pa: True Qaa: True Qba: False Raa: True Rba: True
Pb: False Qab: True Qbb: False Rab: False Rbb: False
C) Counterexample in a domain of two members, in which:
Pa: True Qaa: False Qba: False Raa: False Rba: True
Pb: True Qab: True Qbb: False Rab: False Rbb: True
D) Counterexample in a domain of two members, in which:
Pa: True Qaa: True Qba: True Raa: True Rba: False
Pb: False Qab: False Qbb: True Rab: True Rbb: True
E) Counterexample in a domain of two members, in which:
Pa: True Qaa: True Qba: True Raa: False Rba: False
Pb: True Qab: False Qbb: False Rab: False Rbb: False
Question
provide a conterexample in a finite domain to each given invalid argument.
-1. (∀x)[(∃y)(Fxy • Gy) ⊃ (∀y)(Gy ⊃ Fxy)]
2) Ga / (∀x)(Fxa ⊃ Fax)

A) Counterexample in a domain of two members, in which: Ga: True Faa: True Fba: True
Gb: False Fab: False Fbb: True
B) Counterexample in a domain of two members, in which: Ga: True Faa: False Fba: True
Gb: True Fab: False Fbb: False
C) Counterexample in a domain of two members, in which: Ga: True Faa: True Fba: True
Gb: False Fab: True Fbb: False
D) Counterexample in a domain of two members, in which: Ga: False Faa: True Fba: False
Gb: False Fab: True Fbb: True
E) Counterexample in a domain of two members, in which: Ga: True Faa: False Fba: True
Gb: True Fab: True Fbb: False
Question
1. (∀x)[Ex ⊃ (∀y)(Fy • Gxy)]
2. (∃x)(Ex • Hxb)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Eb ⊃ (∀y)(Fy • Gxy)
B) Ea • Hab
C) Ea ⊃ (∀y)(Fy • Gby)
D) Hbb
E) (∀x)[Ex ⊃ (Fx • Gxx)]
Question
1. (∀x)[Ex ⊃ (∀y)(Fy • Gxy)]
2. (∃x)(Ex • Hxb)
-Which of the following propositions is derivable from the given premises in F?

A) ~Fb
B) (∀x)Gax
C) (∀x)Gbx
D) (∃x)(∀y)(Gxy ⊃ Hxy)
E) (∃x)(∃y)(Gxy • Hxy)
Question
1. (∀x)(∃y)Axy ⊃ (∀x)(∃y)Bxy
2. (∃x)(∀y)∼Bxy
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) (∃y)Axy ⊃ (∀x)(∃y)Bxy
B) ~Bxy
C) (∃x)∼(∃y)Bxy
D) (∀x)(∃y)Bxy
E) (∀y)~Byy
Question
1. (∀x)(∃y)Axy ⊃ (∀x)(∃y)Bxy
2. (∃x)(∀y)∼Bxy
-Which of the following propositions is derivable from the given premises in F?

A) (∃x)(∀y)∼Axy
B) (∃x)(∀y)~Ayx
C) (∀x)(∃y)Axy
D) (∀x)(∃y)Ayx
E) (∃x)(∃y)(Axy • Bxy)
Question
1. (∃x)[Dx • (∀y)(Ey ⊃ Fxy)]
2. (∀x)(Dx ⊃ Ex)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Dx ⊃ Ea
B) Dx • (∀y)(Ey ⊃ Fyy)
C) Da • (∀y)(Ey ⊃ Fay)
D) Da
E) Da • (∀y)(Ea ⊃ Fay)
Question
1. (∃x)[Dx • (∀y)(Ey ⊃ Fxy)]
2. (∀x)(Dx ⊃ Ex)
-Which of the following propositions is derivable from the given premises in F?

A) (∀x)(∀y)[(Dx • Dy) ⊃ Fxy]
B) (∀x)(Dx ⊃ Fxx)
C) (∀x)[Ex ⊃ (∃y)Fxy]
D) (∀x)[Ex ⊃ (∀y)Fyx]
E) (∃y)(Ey • Fyy)
Question
1. (∀x)[(Cx • Exa) ⊃ Dx]
2. Cd • ∼Dd
-Which of the following propositions is an immediate (one-step) consequence in F of the given premise?

A) Cd • Eda
B) Ca • Eaa
C) Eda ⊃ Dd
D) ∼Dd • Cd
E) (Cx • Exd) ⊃ Dd
Question
1. (∀x)[(Cx • Exa) ⊃ Dx]
2. Cd • ∼Dd
-Which of the following propositions is derivable from the given premises in F?

A) ∼Eda
B) ~(∃x)Exa
C) (∀x)Exa
D) Eda
E) Eaa
Question
1. (∀x)[(Px \lor Qx)] ⊃ Rxx]
2. (∀x){Qx ⊃ [(∃y)Rxy ⊃ Sxx]}
3. Pn • Qn
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Qn
B) (Px \lor Qx) ⊃ Rnn
C) Qn ⊃ [(∃y)Rny ⊃ Sxx]
D) (∀x)[Qx ⊃ (Rxy ⊃ Sxx)]
E) Pn
Question
1. (∀x)[(Px \lor Qx)] ⊃ Rxx]
2. (∀x){Qx ⊃ [(∃y)Rxy ⊃ Sxx]}
3. Pn • Qn
-Which of the following propositions is derivable from the given premises in F?

A) Rnn • Snn
B) (∀x)Rnx
C) (∀x)Rxn
D) (∀x)(Px ⊃ Sxx)
E) Rnn ≡ ~Snn
Question
1. (∀x)[Ax ⊃ (∃y)(By • Cxy)]
2. (∃x)(Ax • Dx)
3. (∀x)(Bx ⊃ Ex)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Ba ⊃ Eb
B) Ax ⊃ (∃y)(By • Cyy)
C) Ax • Dy
D) Ae • De
E) Bb ⊃ Ex
Question
1. (∀x)[Ax ⊃ (∃y)(By • Cxy)]
2. (∃x)(Ax • Dx)
3. (∀x)(Bx ⊃ Ex)
-Which of the following propositions is derivable from the given premises in F?

A) (∃x)[Dx • (∃y)(Ey • Cxy)]
B) (∃x)[(Dx • Ex) • Cxx]
C) (∃x)[Dx • (∃y)(Ey • Cyx)]
D) (∃x)[Dx • (∀y)(Ey ⊃ Cyx)]
E) (∃x)[Dx • (∀y)(Ey ⊃ Cxy)]
Question
1. (∀x)[Ax ⊃ (∀y)(By ⊃ Cxy)]
2. (∃x)[Ex • (∀y)(Hy ⊃ Cxy)]
3. (∀x)(∀y)(∀z)[(Cxy • Cyz) ⊃ Cxz]
4. (∀x)(Ex ⊃ Bx)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Ax ⊃ (By ⊃ Cxy)
B) (∀z)[(Cab • Cbz) ⊃ Caz]
C) Eb ⊃ Be
D) Eb • (∀y)(Hy ⊃ Cby)
E) Ax ⊃ (∀y)(By ⊃ Cby)
Question
1. (∀x)[Ax ⊃ (∀y)(By ⊃ Cxy)]
2. (∃x)[Ex • (∀y)(Hy ⊃ Cxy)]
3. (∀x)(∀y)(∀z)[(Cxy • Cyz) ⊃ Cxz]
4. (∀x)(Ex ⊃ Bx)
-Which of the following propositions is derivable from the given premises in F?

A) (∀x){Ex ⊃ [(∃y)Cxy ⊃ (∃y)Cyx]}
B) (∀x)[Bx ⊃ (Ex \lor Ax)]
C) (∀x)[Ax ⊃ (∀y)(By ⊃ Cyx)]
D) (∀x)[Ax ⊃ (∀y)(Hy ⊃ Cxy)]
E) (∀x){Ax ⊃ (∀y)[(Hy • By) ≡ Cxy]}
Question
(∀x)[Px ⊃ (∃y)Rxy] ⊃ [(∀x)(∀y)∼Rxy ⊃ ∼(∃x)Px]
-Consider assuming '(∀x)[Px ⊃ (∃y)Rxy]' for a conditional proof of the above logical truth. Which of the
Following propositions is a legitimate second step in that proof?

A) Assume '~(∃x)Px' for a nested conditional proof.
B) Assume '(∀x)(∀y)∼Rxy' for a nested conditional proof.
C) Assume '~(∀x)(∀y)~Rxy' for a nested indirect proof.
D) Px ⊃ (∃y)Ryy
E) Py ⊃ (∃y)Ryy
Question
(∀x)[Px ⊃ (∃y)Rxy] ⊃ [(∀x)(∀y)∼Rxy ⊃ ∼(∃x)Px]
-Which of the following propositions is also derivable in F?

A) (∀x)[Px ⊃ (∃y)Rxy] ⊃ [(∃x)~Px ⊃ (∃x)(∃y)Rxy]
B) (∀x)[(∃y)Rxy ⊃ ~Px] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Rxy]
C) (∀x)[Px ⊃ (∃y)Rxy] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Rxy]
D) (∀x)[~(∃y)Rxy ⊃ Px] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Rxy]
E) (∀x)[Px ⊃ (∃y)Rxy] ⊃ [(∃x)~Px ⊃ (∃x)(∃y)~Rxy]
Question
(∀x)[Px ⊃ (∃y)Qxy] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Qxy]
-Consider assuming '(∀x)[Px ⊃ (∃y)Qxy]' for a conditional proof of the above logical truth. Which of the
Following propositions is a legitimate second step in that proof?

A) Assume '(∃x)Px' for a nested indirect proof.
B) Assume '(∃x)(∃y)Qxy' for a nested indirect proof.
C) Assume '(∃x)Px' for a nested conditional proof.
D) Assume '(∃x)(∃y)Qxy' for a nested conditional proof.
E) Px ⊃ (∃y)Qyy
Question
(∀x)[Px ⊃ (∃y)Qxy] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Qxy]
-Which of the following propositions is also derivable in F?

A) (∀x)[~(∃y)Qxy ⊃ ~Px] ⊃ [(∀x)Px \lor ~(∃x)(∃y)Qxy]
B) (∀x)[Px ⊃ (∃y)Qxy] ⊃ [(∀x)∼Px \lor (∃x)(∃y)Qxy]
C) (∀x)[~(∃y)Qxy ⊃ ~Px] ⊃ [~(∀x)Px \lor ~(∃x)(∃y)Qxy]
D) (∀x)[~(∃y)Qxy ⊃ ~Px] ⊃ ~[(∀x)Px \lor ~(∃x)(∃y)Qxy]
E) (∀x)[Px ⊃ (∃y)Qxy] ⊃ [(∀x)∼Px \lor (∃x)(∃y)~Qxy]
Question
[(∀x)Pax • ∼(∃x)Pxa] ⊃ (∀x)(Pax • ∼Pxa)
-Consider assuming '(∀x)Pax • ∼(∃x)Pxa' for a conditional proof of the above logical truth. Which of the
Following propositions is a legitimate second step in that proof?

A) Assume '(∀x)Pax' for a nested indirect proof.
B) Assume ~(∀x)Pax' for a nested indirect proof.
C) ~(∃x)Pxa
D) (∀x)~Pxa
E) ∼(∃x)Pxa • (∀x)Pax
Question
[(∀x)Pax • ∼(∃x)Pxa] ⊃ (∀x)(Pax • ∼Pxa)
-Which of the following propositions is also derivable in F?

A) [(∃x)∼Pax \lor ~(∃x)Pxa] \lor (∀x)(Pax • ∼Pxa)
B) [(∃x)∼Pax \lor (∃x)Pxa] \lor (∀x)(Pax • ∼Pxa)
C) [(∃x)Pax \lor (∃x)Pxa] \lor (∀x)(Pax • Pxa)
D) [(∃x)Pax \lor ~(∃x)Pxa] \lor (∀x)(Pax • ∼Pxa)
E) [(∃x)∼Pax • (∃x)Pxa] • (∀x)(Pax • ∼Pxa)
Question
All cheetahs are faster than some tigers. Everything is striped if, and only if, it is a tiger. So, if some things are cheetahs, then some things have stripes. (Cx: x is a cheetah; Tx: x is a tiger; Sx: x has stripes; Fxy: x is faster than y)
-Which of the following is the best translation into F of this argument?

A) 1. (∀x)[Cx ⊃ (∃y)(Ty • Fyx)] 2. (∀x)[(Sx ⊃ Tx) • (Tx ⊃ Sx)] / (∃x)Cx ⊃ (∃x)Sx
B) 1. (∀x)(∃y)[Cx • (Ty • Fxy)] 2. (∀x)Sx ≡ (∀x)Tx / (∃x)Cx ⊃ (∃x)Sx
C) 1. (∀x)[Cx ⊃ (∃y)(Ty • Fxy)] 2. (∀y)(Sy ≡ Ty) / (∃x)Cx ⊃ (∃x)Sx
D) 1. (∀x)[Cx ⊃ (∃y)(Ty • Fyx)] 2. (∀x)(Sx ≡ Tx) / (∃x)(Cx ⊃ Sx)
E) 1. (∀x)[(∀y)(Fxy • Ty) ⊃ Cx] 2. (∀x)(Sx ⊃ Tx) • (∀x)(Tx ⊃ Sx) / (∃x)(Cx ⊃ Sx)
Question
All cheetahs are faster than some tigers. Everything is striped if, and only if, it is a tiger. So, if some things are cheetahs, then some things have stripes. (Cx: x is a cheetah; Tx: x is a tiger; Sx: x has stripes; Fxy: x is faster than y)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Sx ≡ Ty
B) Sx ≡ (∀x)Tx
C) Ca ⊃ (∃y)(Ty • Fya)
D) Sx ⊃ Tx
E) Cx ⊃ (∃y)(Ty • Fxy)
Question
All cheetahs are faster than some tigers. Everything is striped if, and only if, it is a tiger. So, if some things are cheetahs, then some things have stripes. (Cx: x is a cheetah; Tx: x is a tiger; Sx: x has stripes; Fxy: x is faster than y)
-Which of the following claims can also be derived from the premises of this argument?

A) (∀x)∼Sx ⊃ (∀x)∼Cx
B) (∀x)(∃y)[Fxy ⊃ (Cy • Tx)]
C) (∃x)(Cx • Tx)
D) ~(∃x)(Cx • Tx)
E) (∀x)(∃y)[Fxy ⊃ (Cx • Ty)]
Question
All philosophers respect each other. Some philosopher doesn't study some philosopher. Anything which respects something without studying it is open-minded, if ignorant. So something is open-minded and ignorant. (Ix: x is ignorant; Ox: x is open-minded; Px: x is a philosoper; Rxy: x respects y; Sxy: x studies y)
-Which of the following is the best translation into F of this argument?

A) 1. (∀x)(∀y)[(Px • Py) ⊃ (Rxx • Ryy)] 2. (∃x)(∃y)[(Px • Py) • ~Sxy]
3) (∀x)(∀y)[(Rxy • ~Sxy) ⊃ (Ox \lor Ix)] / (∃x)(Ox • Ix)
B) 1. (∀x)(∀y)[(Px • Py) ⊃ (Rxy ≡ Ryx)] 2. (∃x)(∃y)[(Px • Py) • ~Sxy]
3) (∀x)(∀y)[(Rxy • ~Sxy) ⊃ (Ox \lor Ix)] / (∃x)(Ox • Ix)
C) 1. (∀x)(∀y)[(Px • Py) ⊃ (Rxy • Ryx)] 2. (∃x)(∃y)[(Px • Py) • ~Sxy]
3) (∀x)(∀y)[(Rxy • ~Sxy) ⊃ (Ox \lor Ix)] / (∃x)(Ox • Ix)
D) 1. (∀x)(∀y)[(Px • Py) ⊃ (Rxy • Ryx)] 2. (∃x)[Px • (∃y)(Py • ∼Sxy)]
3) (∀x)(∀y)[(Rxy • ∼Sxy) ⊃ (Ox • Ix)] / (∃x)(Ox • Ix)
E) 1. (∀x)(∀y)[(Px • Py) ⊃ (Rxx • Ryy)] 2. (∃x)(∃y)[(Px • Py) • ~Sxy]
3) (∀x)(∀y)[(Rxy • ~Sxy) ⊃ (Ox \lor Ix)] / (∃x)(Ox \lor Ix)
Question
All philosophers respect each other. Some philosopher doesn't study some philosopher. Anything which respects something without studying it is open-minded, if ignorant. So something is open-minded and ignorant. (Ix: x is ignorant; Ox: x is open-minded; Px: x is a philosoper; Rxy: x respects y; Sxy: x studies y)
-Which of the following propositions is an immediate (one-step) consequence in F of the
Given premises?

A) Ox • Ix
B) (∀y)[(Px • Py) ⊃ (Ryy • Ryy)]
C) (∃y)[(Px • Py) ~ Sxy]
D) Pa • (∃y)(Py • ∼Say)
E) (∀y)[(Rxy • ~Sxy) ⊃ (Ox \lor Ix)]
Question
All philosophers respect each other. Some philosopher doesn't study some philosopher. Anything which respects something without studying it is open-minded, if ignorant. So something is open-minded and ignorant. (Ix: x is ignorant; Ox: x is open-minded; Px: x is a philosoper; Rxy: x respects y; Sxy: x studies y)
-Which of the following claims can also be derived from the premises of this argument?

A) Rab • ∼Sab
B) ~Rab • ~Sab
C) ~Rba • ~Sab
D) Rba • Sab
E) Rba • Sbb
Question
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
-1. (∀x)(Ax ⊃ Dex)
2) (∃x)(Bx • Dxe)
3) (∀x)(Bx ⊃ Ax) / (∃x)[Ax • (Dxe • Dex)]

A) Valid
B) Invalid. Counterexample in a domain of one member, in which: Ae: True Be: False Dee: False
C) Invalid. Counterexample in a domain of two members, in which:
Aa: True Ba: True Daa: True Dea: False
Ae: True Be: True Dae: False Dee: False
D) Invalid. Counterexample in a domain of two members, in which:
Aa: True Ba: False Daa: True Dea: True
Ae: False Be: False Dae: False Dee: True
E) Invalid. Counterexample in a domain of two members, in which: Aa: False Ba: True Daa: False Dea: False
Ae: True Be: True Dae: True Dee: False
Question
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.

-1. (?x)(?y)(Pxy • ?Pyx)
2) (?x)[(?y)Pxy ? (?y)Qxy] / (?x)(?y)(Qxy • ?Pyx)

A) Valid
B) Invalid. Counterexample in a domain of three members, in which:
 Paa: True  Pab: True  Pac: False  Pba: False  Pbb: True  Pbc: True  Pca: True  Pcb: False  Pcc: True  Qaa: False  Qab: False  Qac: True  Qba: True  Qbb:True  Qbc: True  Qca: True  Qcb:True  Qcc: True \begin{array}{lll}\text { Paa: True } & \text { Pab: True } & \text { Pac: False } \\\text { Pba: False } & \text { Pbb: True } & \text { Pbc: True } \\\text { Pca: True } & \text { Pcb: False } & \text { Pcc: True } \\\text { Qaa: False } & \text { Qab: False } & \text { Qac: True } \\\text { Qba: True } & \text { Qbb:True } & \text { Qbc: True } \\\text { Qca: True } & \text { Qcb:True } & \text { Qcc: True }\end{array}

C) Invalid. Counterexample in a domain of three members, in which:
 Paa: True  Pab: True  Pac: False  Pba: False  Fbb: False  Pbc: False  Pca: False  Pcb: False  Pcc: True  Qaa: False  Qab: False  Qac: True  Qba: True  Qbb:True  Qbc: False  Qca: True  Qcb: True  Qcc: True \begin{array}{lll}\text { Paa: True } & \text { Pab: True } & \text { Pac: False } \\\text { Pba: False } & \text { Fbb: False } & \text { Pbc: False } \\\text { Pca: False } & \text { Pcb: False } & \text { Pcc: True } \\\text { Qaa: False } & \text { Qab: False } & \text { Qac: True } \\\text { Qba: True } & \text { Qbb:True } & \text { Qbc: False } \\\text { Qca: True } & \text { Qcb: True } & \text { Qcc: True }\end{array}

D) Invalid. Counterexample in a domain of three members, in which:
 Paa: False  Pab: Ture  Pac: False  Pba: False  Pbb: True  Pbc: True  Pca: True  Pcb: True  Pcc: True  Qaa: False  Qab:True  Qac: True  Qba: False  Qbb:True  Qbc: True  Qca: True  Qcb:True  Qcc: False \begin{array}{lll}\text { Paa: False } & \text { Pab: Ture } & \text { Pac: False } \\\text { Pba: False } & \text { Pbb: True } & \text { Pbc: True } \\\text { Pca: True } & \text { Pcb: True } & \text { Pcc: True } \\\text { Qaa: False } & \text { Qab:True } & \text { Qac: True } \\\text { Qba: False } & \text { Qbb:True } & \text { Qbc: True } \\\text { Qca: True } & \text { Qcb:True } & \text { Qcc: False }\end{array}

E) Invalid. Counterexample in a domain of three members, in which:
 Paa: True  Pab: True  Pac: False  Pla: False  Pbb: False  Ploc: True  Pca: True  Pcb: False  Pcc: True  Qaa: False  Qab: False  Qac: True  Qba: False  Qbb: False  Qbc: False  Qca: True  Qcb: True  Qcc: False \begin{array}{lll}\text { Paa: True } & \text { Pab: True } & \text { Pac: False } \\\text { Pla: False } & \text { Pbb: False } & \text { Ploc: True } \\\text { Pca: True } & \text { Pcb: False } & \text { Pcc: True } \\\text { Qaa: False } & \text { Qab: False } & \text { Qac: True } \\\text { Qba: False } & \text { Qbb: False } & \text { Qbc: False } \\\text { Qca: True } & \text { Qcb: True } & \text { Qcc: False }\end{array}
Question
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.

-1. (?x)[Tx ? (?y)(Sy • Wxy)]
2) (?x)(Sx • Vx)
3) (?x)(Tx • Rx) / (?x)[(Rx • Vx) • (?y)Wxy]

A) Valid
B) Invalid. Counterexample in a domain of one member, in which: Ta: True Sa: False Waa: True
Ra: False Va: True
C) Invalid. Counterexample in a domain of two members, in which:
 Ta: False  Sa: False  Waa: True  Tb: True  Sb: True  Wab: False  Ra: True  Va: False  Wba: False  Rb: False  Vb: False  Wbb:True \begin{array}{lll}\text { Ta: False } & \text { Sa: False } & \text { Waa: True } \\\text { Tb: True } & \text { Sb: True } & \text { Wab: False } \\\text { Ra: True } & \text { Va: False } & \text { Wba: False } \\\text { Rb: False } & \text { Vb: False } & \text { Wbb:True }\end{array}

D) Invalid. Counterexample in a domain of two members, in which:
 Ta: False  Sa: True  Waa: True  Tb: True  Sb: True  Wab: True  Ra: False  Va: False  Wba: False  Rb: False  Vb:True  Wbb: False \begin{array}{lll}\text { Ta: False } & \text { Sa: True } & \text { Waa: True } \\\text { Tb: True } & \text { Sb: True } & \text { Wab: True } \\\text { Ra: False } & \text { Va: False } & \text { Wba: False } \\\text { Rb: False } & \text { Vb:True } & \text { Wbb: False }\end{array}

E) Invalid. Counterexample in a domain of two members, in which:
 Ta: True  Sa: True  Waa: True  Tb: False  Sb: True  Wab: True  Ra: True  Va: False  Wba: True  Rb: False  Vb:True  Wbb: True \begin{array}{llll}\text { Ta: True } & \text { Sa: True } & \text { Waa: True } & \\ \text { Tb: False } & \text { Sb: True } & \text { Wab: True } \\ \text { Ra: True } & \text { Va: False } & \text { Wba: True } \\\text { Rb: False } & \text { Vb:True } & \text { Wbb: True }\end{array}
Question
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.

-1. (?x)[Lx ? (?y)(My • Nxy)]
2) (?x)[Lx • (?y)Nxy] / (?x)[Mx • (?y)Nyx]

A) Valid
B) Invalid. Counterexample in a domain of one member, in which:
La: True Ma: True Naa: False
C) Invalid. Counterexample in a domain of two members, in which:
 La: False  Ma: True  Naa: True  Nba: True  Lb:True  Mb: True  Nab: True  Nbb: False \begin{array}{llll}\text { La: False } & \text { Ma: True } & \text { Naa: True } & \text { Nba: True } \\\text { Lb:True } & \text { Mb: True } & \text { Nab: True } & \text { Nbb: False }\end{array}

D) Invalid. Counterexample in a domain of two members, in which:
 La: True  Ma: False  Naa: True  Nba: False  Lb: False  Mb: True  Nab: True  Nbb: False \begin{array}{llll}\text { La: True } & \text { Ma: False } & \text { Naa: True } & \text { Nba: False } \\\text { Lb: False } & \text { Mb: True } & \text { Nab: True } & \text { Nbb: False }\end{array}

E) Invalid. Counterexample in a domain of two members, in which: La: True Ma: False Naa: True Nba: True
Lb: False Mb: True Nab: False Nbb: False
Question
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-There is exactly one philosophy major on the Dean's list.

A) (∃x){(Px • Dx) • (∀y)[(Py • Dy) ⊃ y=x]}
B) (Pd • Ps) ⊃ [(Dd \lor Ds) • ~(Dd • Ds)]
C) (∀x)(∀y){[(Px • Dx) • (Py • Dy)] ⊃ x=y}
D) (∃x){(Px • Dx) ⊃ (∀y)[(Py • Dy) ⊃ x=y]}
E) (Pd • Dd) \lor (Ps • Ds)
Question
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-There are exactly two philosophy majors on the Dean's list.

A) Pd • Ps • Dd • Ds
B) (∃x)(∀y)[(Px • Py • Dx • Dy) ⊃ x=y]
C) (∀x)(∀y)(∀z)[(Px • Py • Pz • Dx • Dy • Dz) ⊃ (x =y \lor x=z \lor y=z)]
D) (∃x)(∃y){Px • Dx • Py • Dy • x≠y • (∀z)[(Pz • Dz) ⊃ (z=x \lor z=y)]}
E) ~(∃x)(∃y)(∃z)(Px • Py • Pz • Dx • Dy • Dz • x≠y • x≠z • y≠z)
Question
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-At least four philosophy majors are on the Dean's list.

A) (∃x)(∃y)(∃z)(∃w)[Px • Dx • Py • Dy • Pz • Dz • Pw • Dw •
(x=y \lor x=z \lor x=w \lor y=z \lor y=w \lor z=w)]
B) (∀x)(∀y)(∀z)(∀w)[(Px • Py • Pz • Pw • Dx • Dy • Dz • Dw) ⊃
(x=y \lor x=z \lor x=w \lor y=z \lor y=w \lor z=w)]
C) (∃x)(∃y)(∃z)(∃w)(Px • Dx • Py • Dy • Pz • Dz • Pw • Dw • x≠y • x≠z • x≠w • y≠z • y≠w • z≠w)
D) (∀x)(∀y)(∀z)(∀w)[(Px • Py • Pz • Pw • Dx • Dy • Dz • Dw) ⊃
(x≠y • x≠z • x≠w • y≠z • y≠w • z≠w)]
E) (∃x)(∃y)(∃z)(∃w)[(Px • Dx • Py • Dy • Pz • Dz • Pw • Dw) ⊃
(x≠y • x≠z • x≠w • y≠z • y≠w • z≠w)]
Question
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-All philosophy majors except Sean are on the Dean's list.

A) (∃x)(Px • Dx • x≠s)
B) Ps • ∼Ds • (∀x)[(Px • x≠s) ⊃ Dx]
C) (∀x)[Dx ⊃ (Px ⊃ x≠s)]
D) (∀x)(Px ⊃ Dx) • Ps • ~Ds
E) (∀x)[Px ⊃ (Dx ⊃ x≠s)]
Question
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-Of the philosophy majors, only Diego is a valedictorian.

A) Vd • (∀x)[Px ⊃ (~Vx \lor x=d)]
B) Pd • Vd • (∀x)[(Px • Vx) ⊃ x=d]
C) ~(∃x)(Px • Vx • x≠d)
D) (∀x)[(Px • Vx) ⊃ x=d]
E) (∃x)(∀y)[x=d • Vd • Pd • (Py ⊃ y=d)]
Question
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-At most two philosophy majors are on the Dean's list.

A) (∃x)(∃y){Px • Dx • Py • Dy • (∀z)[(Pz • Dz) ⊃ (x=z \lor y=z)]}
B) (∃x)(∃y)[Px • Dx • Py • Dy • ~(∃z)(Pz • Dz • x=z • y=z)]
C) (∀x)(∀y)(∀z)(Px • Dx • Py • Dy • Pz • Dz • x≠y • x≠z • y≠z)
D) ~(∃x)(∃y)(∃z)(Px • Dx • Py • Dy • Pz • Dz • x≠y • x≠z • y≠z)
E) (∀x)(∀y)(∀z)[(Px • Dx • Py • Dy • Pz • Dz) ⊃ (x=y \lor x=z \lor y=z)]
Question
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-Exactly one student is a valedictorian.

A) (∃x)(Sx • Vx) • ~(∃y)(Sy • Vy)
B) (∀x)[(Sx • Vx) ⊃ ~(∃y)(Sy • Vy • x≠y)]
C) ~(∃x)(∃y)(Sx • Vx • Sy • Vy • x≠y)
D) (∃x)[Sx • Vx • (∃y)(Sy • Vy • x=y)]
E) (∃x){Sx • Vx • (∀y)[(Sy • Vy) ⊃ y=x]}
Question
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-The valedictorian is Diego.

A) (∃x){Vx • (∀y)[(Vy ⊃ y=x) • x=d]}
B) (∀x)(Vx ⊃ x=d)
C) (∀x)(Vx ≡ x=d)
D) Vd • ~(∃x)(Vx • x=d)
E) (∃x)[Vx • (∃y)(Vy • x=y) • x=d]
Question
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-Only Sean and Diego are both on the Dean's list and philosophy majors.

A) (∀x)[(Dx • Px) ⊃ (x=s • x=d)]
B) (∀x)[(Dx • Px) ⊃ ~(x=s • x=d)]
C) Ds • Ps • Dd • Pd • [(∃x)(Px • Dx) ⊃ ~(x=s • x=d)]
D) Ds • Dd • Ps • Pd • (∀x)[(Dx • Px) ⊃ (x=s \lor x=d)]
E) Ds • Ps • Dd • Pd • (∀x)[(Dx • Px) ⊃ ~(x=s • x=d)]
Question
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-The philosophy major on the Dean's list is a valedictorian.

A) (Ps • Ds • Vs) \lor (Pd • Dd • Vd)
B) (∀x)[Vx ⊃ (Px • Dx)]
C) (∃x){Px • Dx • (∀y)[(Py • Dy) ⊃ y=x] • Vx}
D) (∃x){Px • Vx • (∀y)[(Py • Vy) ⊃ y=x] • Dx}
E) (∃x){Dx • Vx • (∀y)[(Dy • Vy) ⊃ y=x] • Px}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/300
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Full First-Order Logic
1
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Hume is more skeptical than Locke.

A) Slh
B) Shl
C) hSl
D) lSh
E) hlS
B
2
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Locke influenced Hume, but is not more skeptical than him.

A) Ilh • ∼Slh
B) Ihl • ~Shl
C) Ilh • ~Shl
D) (I • ~S)lh
E) Ilh \lor Shl
A
3
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-No philosopher is more skeptical than Hume.

A) (∀x)(Px ⊃ ∼Sxh)
B) ~(∃x)(Px • Shx)
C) (∀x)~(Px ⊃ Sxh)
D) (∀x)(~Sxh ⊃ Px)
E) (∀x)(Shx ⊃ Px)
A
4
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Hume influenced some philosophers more skeptical than Locke.

A) (∀x)[Px ⊃ (Sxl • Ihx)]
B) (∃x)[(Px • Ihx) ⊃ Sxl]
C) (∀x)[(Sxl • Ihx) ⊃ Px]
D) (∃x)[(Px • Slx) ⊃ ~Ihx]
E) (∃x)[(Px • Sxl) • Ihx]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
5
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-All philosophers are more skeptical than some rationalists.

A) (∀x)[Px ⊃ (∀y)(Ry ⊃ Sxy)]
B) (∀x)[Px ⊃ (∀y)(Sxy ⊃ Ry)]
C) (∀x)[Px • (∃y)(Ry • Sxy)]
D) (∀x)[Px ⊃ (∃y)(Ry • Sxy)]
E) (∃x)[Px • (∃y)(Ry • Sxy)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
6
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Hume is more skeptical than all rationalist philosophers.

A) (∀x)[Sxh ⊃ (Px • Rx)]
B) (∀x)[(Px • Rx) ⊃ Shx]
C) (∀x)[(Px • Rx) ⊃ Sxh]
D) (∀x)[Shx ⊃ (Px • Rx)]
E) (∀x)[(Px • Rx) ≡ Shx]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
7
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Hume is not more skeptical than some philosophers.

A) ~(∃x)(Px • Sxh)
B) (∃x)(Px • ∼Shx)
C) ~(∀x)(Px • Shx)
D) (∃x)(Px ⊃ ~Shx)
E) (∃x)(~Shx ⊃ Px)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
8
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Some philosophers more skeptical than Hume influenced all philosophers more skeptical
Than Locke.

A) (∃x){(Px • Sxh) • (∀y)[(Py • Syl) ⊃ Ixy]}
B) (∃x){(Px • Sxh) • (∀y)[(Py • Sly) ⊃ Ixy]}
C) (∃x){(Px • Shx) • (∀y)[(Py • Sly) ⊃ Ixy]}
D) (∃x){(Px • Shx) • (∀y)[(Py • Sly) ⊃ Iyx]}
E) (∃x){(Px • Sxh) • (∀y)[(Py • Sly) ⊃ Iyx]}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
9
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Some rationalists influenced some philosophers who were more skeptical than them.

A) (∀x){Px ⊃ (∃y)[(Ry • Syx) • Ixy]}
B) (∃x){Px • (∃y)[(Ry • Sxy) • Ixy]}
C) (∃x){Rx • (∃y)[(Py • Syx) • Ixy]}
D) (∃x){Rx • (∃y)[(Py • Sxy) • Iyx]}
E) (∃x){Rx • (∀y)[(Py • Syx) ⊃ Ixy]}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
10
select the best translation into predicate logic, using the following translation key:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-If some rationalist is more skeptical than Locke, then no philosopher influenced Hume.

A) (∃x)(Rx • Sxl) ⊃ (∀x)(Px ⊃ ∼Ixh)
B) (∃x)[(Rx • Sxl) ⊃ (∀y)(Py ⊃ ~Iyh)]
C) (∃x)[(Rx • Sxl) ⊃ ~(∃y)(Py ⊃ ~Iyh)]
D) (∃x)(Rx • Sxl) ⊃ ~(∃x)(Px ⊃ ~Ixh)
E) (∃x)[(Rx • Sxl) ⊃ (Px ⊃ ~Ixh)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
11
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Some cheetahs are faster than all lions.

A) (∀x)[Lx ⊃ (∃y)(Cy • Fxy)]
B) (∀x)[Lx ⊃ ~(∀y)(Cy • Fyx)]
C) (∃x)(Cx ⊃ (∀y)(Ly ⊃ Fxy)]
D) (∃x)[Cx • (∀y)(Ly ⊃ Fxy)]
E) (∃x)[Cx • (∀y)(Ly • Fxy)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
12
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-No tiger is faster than all cheetahs.

A) ∼(∃x)[Tx • (∀y)(Cy ⊃ Fxy)]
B) (∀x)[Tx ⊃ ~(∀y)(Cy • Fxy)]
C) (∀x)[Tx ⊃ ~(∃y)(Cy ⊃ Fxy)]
D) ~(∃x)[Cx • (∃y)(Ty . Fyx)]
E) ~(∃x)[Tx • (∀y)(Fyx ⊃ Cy)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
13
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-No lion is faster than some tigers.

A) ~(∃x)[Lx • (∀y)(Ty ⊃ Fyx)]
B) (∀x)[Lx ⊃ (∃y)(Ty • ∼Fxy)]
C) ~(∃x)[Lx • (∃y)(Ty • Fxy)]
D) ~(∃x)(∃y)[(Lx • Ty) • Fxy]
E) (∀x)[Lx ⊃ (∀y)(Ty ⊃ ~Fyx)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
14
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Some lions are larger than all cheetahs.

A) (∃x)[Lx • (∀y)(Lxy ⊃ Cy)]
B) (∃x)(∀y)[(Lx • Lxy) ⊃ Cy]
C) (∃x)[Lx • (∀y)(Cy ⊃ Lxy)]
D) (∀x)[Cx ⊃ (∃y)(Ly • Lxy)]
E) (∃x)[Lx ⊃ (∀y)(Cy ⊃ Lxy)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
15
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Some tigers and all cheetahs are faster than all lions.

A) (∃x)[Tx • (∀y)(Ly ⊃ Fxy)] • (∀x)[Cx • (∀y)(Lz ⊃ Fxy)]
B) (∃x)(∀y)(∀z){(Fyz • Fxz) ⊃ [(Lz • Tx) • Cy]}
C) (∃x)(∀y)(∀z){[(Lz • Tx) • Cy] ⊃ (Fyz • Fxz)]}
D) (∃x)(∀y){(Tx • Cy) ⊃ (∀z)[Lz ⊃ (Fzx • Fzy)]}
E) (∀x){Lx ⊃ [(∃y)(Ty • Fyx) • (∀z)(Cz ⊃ Fzx)]}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
16
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-All lions and tigers are larger than some cheetahs, but not faster than all cheetahs.

A) (∀x)(∀y){(Lx • Ty) ⊃ (∃z)[(Cz • Lxz) • Lyz]} • ~(∀x)(∀y)(∀z)(Fxz • Fyz)
B) ~(∃x){Cx • (∀y)[(Ly \lor Ty) ⊃ (Fxy • Lyx)]}
C) (∀x){(Lx \lor Tx) ⊃ ~(∃y)[Cy • (Fyx • Lxy)]}
D) (∃x){Cx ⊃ (∀y)(∀z)[(Ly . Tz) ⊃ (~Fxy . ~Lzx)]}
E) (∀x){(Lx \lor Tx) ⊃ [(∃y)(Cy • Lxy) • ∼(∀y)(Cy ⊃ Fxy)]}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
17
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Some cheetahs that are not larger than any lion are faster than some tigers.

A) (∃x){[Cx • (∀y)(Ty ⊃ ~Lxy)] • (∃y)(Ly • Fxy)}
B) (∃x){[Cx • (∀y)(Cy • ~Lxy)] ⊃ (∃y)(Ty • Fxy)}
C) (∃x){Cx • (∀y)(∃z)[(Ly • Tx) • (~Lxy • Fxy)]}
D) (∃x){[Cx • (∀y)(~Lxy ⊃ Lx)] • (∃y)(Fxy • Tx)}
E) (∃x){[Cx • (∀y)(Ly ⊃ ∼Lxy)] • (∃y)(Ty • Fxy)}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
18
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Any lion larger than all cheetahs is not faster than any tiger.

A) (∀x){[Lx ⊃ (∀y)(Lxy ⊃ Cx)] ⊃ ~(∃y)(Ty • Fxy)}
B) (∀x){Tx ⊃ ~(∃y)[(Ly • Lxy) • (∀z)(Cz ⊃ Fxz)]}
C) (∀x){[Lx • (∀y)(Cx ⊃ Lxy)] ⊃ ∼(∃y)(Ty • Fxy)}
D) (∀x){[Lx ⊃ (∀y)(Cy ⊃ Lxy)] ⊃ (∀y)(Ty ⊃ ~Fxy)}
E) (∀x){[Lx • (∀y)(Cx • Lyx)] ⊃ ~(∃y)(Ty ⊃ ~Fxy)}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
19
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-No cheetahs that are larger than some tiger are faster than all lions or tigers.

A) ~(∃x){[Cx • (∃y)(Ty • Lxy)] • (∀y)[(Ly • Ty) ⊃ Fxy]}
B) ~(∃x){[Cx • (∃y)(Ty • Fxy)] • (∀y)[(Ly • Ty) ⊃ Lxy]}
C) (∀x){[Cx • (∃y)(Ty • Lxy)] ⊃ ∼(∀y)[(Ly \lor Ty) ⊃ Fxy]}
D) ~(∃x){[Cx ⊃ (∃y)(Ty • Lxy)] • (∀y)((Ly \lor Ty) ⊃ Fxy]}
E) ~(∃x){[Cx • (∃y)(Ty • Lxy)] ⊃ ~(∀y)(Ly \lor Ty) ⊃ Fxy]}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
20
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-Some lion is faster than all tigers if, and only if, some cheetah is larger than any tiger faster than it.

A) (∃x)[Lx • (∀y)(Ty ⊃ Fxy)] ≡ (∃x){Cx • (∀y)[(Ty • Fyx) ⊃ Lxy]}
B) (∃x)[Lx • (∀y)(Fxy ⊃ Ty)] ≡ (∃x){Cx • (∀y)[Lxy ⊃ (Ty • Fyx)]}
C) (∃x)(∃y)(∀z){[(Lx • Cy) • Tz] • [Fxz ≡ (Fzy ⊃ Lyz)]}
D) (∃x)(∃y)(∀z){[(Lx • Cy) • Tz] • [Fxz ≡ (Lyz ⊃ Fzy)]}
E) (∃x)(∃y)(∀z){[Tz ⊃ (Lx • Cy)] ≡ [(Fxz • Lyz) • Fzy]}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
21
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-(∀x)[Nx ⊃ (Ox ⊃ ∼Ex)]

A) All numbers are odd if they are not even.
B) All numbers are odd or even.
C) No even number is odd.
D) No odd number is even.
E) If a number is odd it is even.
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
22
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-∼(∃x)(Nx • Gxx)

A) Some numbers are not greater than themselves.
B) Some numbers are not greater than any other number.
C) No number is greater than itself.
D) No number is greater than any other number.
E) Some number is no greater than itself.
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
23
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-~(∃x)[(Nx • ∼Ex) • Gxt]

A) No number that is not even is greater than two.
B) Some even numbers are not greater than two.
C) Some number greater than two is not even.
D) Two is the smallest even number.
E) Two is not the smallest even number.
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
24
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-(∀x){(Nx • Ox) ⊃ (∃y)[(Ey • Ny) • Gyx)]}

A) For every odd number, there is an even number greater than it.
B) Every odd number is greater than some even number.
C) All odd numbers are smaller than all even numbers.
D) Any number smaller than every odd number is even.
E) Any number greater than every odd number is even.
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
25
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-(∀x){(Ex • Nx) ⊃ (∀y)[(Oy • Ny) ⊃ ∼Gxy]}

A) All even numbers are smaller than all odd numbers.
B) No even number is greater than any odd number.
C) No odd number is greater than any even number.
D) All even numbers are greater than all odd numbers.
E) No even number is greater than every odd number.
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
26
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {, , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) Pa • Pd
Cad • ~Cda
B) Pb • Pd
Cbd • ~Cdb
C) Pa • Pb
Cab • ∼Cba
D) Pb • Pa
Cba • ~Cab
E) Pc • Pb
Ccb • ~Cbc
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
27
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {, , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (Ma • Pb) • (Pc \lor Pd) (∃x)Cxa • ~(∃x)Cxd
B) (Pa • Mb) • (Pc \lor Pd) (∃x)Cxd \lor ~(∃x)Cxa
C) (Pa • Pb) • (Pc \lor Pd)
(∃x)Cxd • ∼(∃x)Cxa
D) (Pa • Pb) • (Mc \lor Pd) (∃x)Cxd \lor ~(∃x)Cxa
E) (Pa • Pb) • (Pc \lor Md) (∃x)Cxa • ~(∃x)Cxd
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
28
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {, , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) Ma • ~Mc
(∃x)Cxc
∼(∃x)(∼Cxc • Mx)
B) Ma • Mc (∃x)Ccx (∃x)(~Cxc • Mx)
C) ~(Ma • Mc)
(∃x)Ccx
~(∃x)(Cxc • Mx)
D) ~(Ma \lor Mc) (∃x)Ccx
~(∃x)(Ccx • Mx)
E) Ma ≡ ~Mc
(∃x)Cax
~(∃x)(Cxc • ~Mx)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
29
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {, , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (∀x){Px ⊃ [(∃y)Cxy • (∃y)Cyx]} Cab • ~Cba
Cca • ~Cac Cad • ~Cda
B) (∀x){Px ⊃ [(∃y)Cxy ≡ (∃x)Cyx]} Cab • ~Cba
Cac • ~Cca Cad • ~Cda
C) (∀x)[Px ⊃ (∃y)(Cxy • Cyx)] Cba • ~Caa
Cca • ~Ccc Cda • ~Cdd
D) (∀x){Px ⊃ [(∃y)Cxy \lor (∃y)Cyx]}
Cab • ∼Cba Cac • ∼Cca Cad • ∼Cda
E) (∀x)[Px ⊃ (∃y)(Cxy \lor Cyx)]
Cab • ~Cba Cac • Cad
~(~Cca • ~Cda)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
30
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {, , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (∀x)(Px ⊃ Mx)
~(∃x)Px
(∀x)(∀y)[(Px • Py) ⊃ Cxy]
B) (∀x)(Mx ≡ Px)
~(∀x)Mx (∀x)[(∀y)Cxy ⊃ Py]
C) (∀x)(Mx \lor Px)
~(∃x)Mx
(∀x)[Px ⊃ ~(∀y)(Py ⊃ Cxy)]
D) (∀x)(~Mx \lor Px)
~(∀x)(Px
(∀x)[Px ⊃ (∀y)(Py ⊃ Cxy)]
E) (∀x)(Mx ⊃ Px)
∼(∀x)Px
(∀x)[∼Px ⊃ (∀y)(Py ⊃ Cyx)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
31
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1
e = 21
b = 2
f = 23
c = 4
g = 27
d = 20
h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) Sdca • Shgb
(∃x)(∃y)Sdxy • ~(∃x)(∃y)Sgxy
B) Scbb • Seda
(∃x)(∃y)Scxy • ~(∃x)(∃y)Sbxy
C) Secb • Shga
(∃x)(∃y)Sgxy • ~(∀x)(∀y)Sfxy
D) Sfeb • Sgfc
(∃x)(∃y)Shxy • ∼(∀x)(∀y)Shxy
E) Shgb • Sfbe
(∃x)(∃y)Sgxy • ~(∃x)Sxcd
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
32
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1
e = 21
b = 2
f = 23
c = 4
g = 27
d = 20
h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (∃x)(Ex • Sfex)
(∀x)(Ox ⊃ ∼Sfex) (∃x)(∃y)(Oy • Sxey)
B) (∃x)(Ex • Sefx) (∀x)(Ox ⊃ ~Sefx) (∃x)(∃y)(Oy • Sxfy)
C) (∃x)(Ox • Sfex) (∀x)(Ex ⊃ ~Sfex) (∃x)(∃y)(Ey • Sxey)
D) (∃x)(Ox • Sefx) (∀x)(Ex ⊃ ~Sefx) (∃x)(∃y)(Ey • Sxfy)
E) (∃x)(Ox • Sfxe) (∀x)(Ex ⊃ ~Sfxe) (∃x)(∃y)(Ey • Sfxy)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
33
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1
e = 21
b = 2
f = 23
c = 4
g = 27
d = 20
h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) Sgfc • Sgcf
(∀x)(∀y)(∀z)(Sxyz ≡ Sxzy)
B) Sgba • Sgab
(∀x)(∀y)[(∀z)Sxyz ≡ (∀z)Sxzy]
C) Seda • Sead
(∀x)(∀y)(∀z)(Sxyz ≡ Szyx)
D) Sfea • Sfae
(∀x)(∀y)(∀z)(Sxyz ≡ Syxz)
E) Sdba • Sdab
(∀x)(∀y)[(∀z)(Sxyz ≡ (∀z)Syxz]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
34
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1
e = 21
b = 2
f = 23
c = 4
g = 27
d = 20
h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (∃x)(∃y)[(Ex • Ey) • Sfxy] (∃x)(∃y)[(Ox • Oy) • Sfxy]
(∀x){Ex ⊃ {(∃y)(∃z)[(Ey • Ez) • Sxyz)] \lor (∃y)(∃z)[(Ox • Oy) • Sxyz]}}
B) (∃x)(∃y)[(Ex • Ey) • Sdxy]
(∃x)(∃y)[(Ox • Oy) • Sdxy]
(∀x){Ex ⊃ {(∃y)(∃z)[(Ey • Ez) • Sxyz)] \lor (∃y)(∃z)[(Ox • Oy) • Sxyz]}}
C) (∃x)(∃y)[(Ex • Ey) • Sdxy]
(∃x)(∃y)[(Ox • Oy) • Sdxy]
(∀x){Ex ⊃ {(∃y)(∃z)[(Ey • Ez) • Sxyz)] • (∃y)(∃z)[(Ox • Oy) • Sxyz]}}
D) (∃x)(∃y)[(Ex • Ey) • Sfxy]
(∃x)(∃y)[(Ox • Oy) • Sfxy]
(∀x){Ex ⊃ {(∃y)(∃z)[(Ey • Ez) • Sxyz)] • (∃y)(∃z)[(Ox • Oy) • Sxyz]}}
E) (∃x)(∃y)[(Ex • Ey) • Sdxy]
(∃x)(∃y)[(Ox • Oy) • Sdxy]
(∀x){Ox ⊃ {(∃y)(∃z)[(Ey • Ez) • Sxyz)] \lor (∃y)(∃z)[(Ox • Oy) • Sxyz]}}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
35
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1
e = 21
b = 2
f = 23
c = 4
g = 27
d = 20
h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?

A) (∃x)(∀y)(∀z)Sxyz (∃x)(∀y)(∀z)Syxz
B) (∃x)(∀y)(∀z)∼Sxyz (∃x)(∀y)(∀z)Syxz
C) (∃x)(∀y)(∀z)Sxyz (∃x)(∀y)(∀z)∼Syxz
D) (∃x)(∀y)∼Sxyy
(∃x)(∀y)Syxy
E) (∃x)(∀y)(∀z)∼Sxyz (∃x)(∀y)(∀z)∼Syxz
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
36
provide a conterexample in a finite domain to each given invalid argument.
-1. Ad ⊃ (∀x)Fdx / (∃x)Fdx

A) Counterexample in a domain of one member, in which: Ad: True Fdd: False
B) Counterexample in a domain of one member, in which: Ad: False Fdd: False
C) Counterexample in a domain of one member, in which: Ad: True Fdd: True
D) Counterexample in a domain of two members, in which: Ad: True Fdd: False
Ab: True Fdb: False
E) Counterexample in a domain of two members, in which: Ad: False Fdd: True
Ab: False Fdb: False
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
37
provide a conterexample in a finite domain to each given invalid argument.
-1. (∃x)(Dxa • Ex)
2) (∃x)(Dxa • Fx) / (∃x)(Ex • Fx)

A) Counterexample in a domain of one member, in which: Ea: True Fa: False Daa: True
B) Counterexample in a domain of one member, in which: Ea: False Fa: True Daa: False
C) Counterexample in a domain of two members, in which: Ea: True Fa: True Daa: True
Eb: True Fb: False Dba: False
D) Counterexample in a domain of two members, in which: Ea: True Fa: False Daa: False
Eb: False Fb: False Dba: True
E) Counterexample in a domain of two members, in which: Ea: True Fa: False Daa: True
Eb: False Fb: True Dba: True
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
38
provide a conterexample in a finite domain to each given invalid argument.
-1. (∀x)[Hx ⊃ (∃y)(Ix • Jxy)]
2) Ha
3) Ib / Jab

A) Counterexample in a domain of two members, in which:
Ha: True Ia: True Jaa: True Jba: False
Hb: True Ib: False Jab: False Jbb: True
B) Counterexample in a domain of two members, in which:
Ha: True Ia: False Jaa: True Jba: False
Hb: False Ib: True Jab: False Jbb: True
C) Counterexample in a domain of two members, in which:
Ha: True Ia: True Jaa: True Jba: True
Hb: False Ib: True Jab: False Jbb: True
D) Counterexample in a domain of two members, in which:
Ha: False Ia: True Jaa: False Jba: True
Hb: True Ib: True Jab: True Jbb: True
E) Counterexample in a domain of two members, in which:
Ha: True Ia: True Jaa: False Jba: False
Hb: True Ib: False Jab: True Jbb: True
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
39
provide a conterexample in a finite domain to each given invalid argument.
-1. (∀x)[Px ⊃ (∃y)Qxy]
2) (∀x)[(∃y)Qxy ⊃ (∃y)Rxy]
3) Pa / Rab

A) Counterexample in a domain of two members, in which:
Pa: True Qaa: False Qba: True Raa: True Rba: False
Pb: False Qab: False Qbb: True Rab: False Rbb: True
B) Counterexample in a domain of two members, in which:
Pa: True Qaa: True Qba: False Raa: True Rba: True
Pb: False Qab: True Qbb: False Rab: False Rbb: False
C) Counterexample in a domain of two members, in which:
Pa: True Qaa: False Qba: False Raa: False Rba: True
Pb: True Qab: True Qbb: False Rab: False Rbb: True
D) Counterexample in a domain of two members, in which:
Pa: True Qaa: True Qba: True Raa: True Rba: False
Pb: False Qab: False Qbb: True Rab: True Rbb: True
E) Counterexample in a domain of two members, in which:
Pa: True Qaa: True Qba: True Raa: False Rba: False
Pb: True Qab: False Qbb: False Rab: False Rbb: False
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
40
provide a conterexample in a finite domain to each given invalid argument.
-1. (∀x)[(∃y)(Fxy • Gy) ⊃ (∀y)(Gy ⊃ Fxy)]
2) Ga / (∀x)(Fxa ⊃ Fax)

A) Counterexample in a domain of two members, in which: Ga: True Faa: True Fba: True
Gb: False Fab: False Fbb: True
B) Counterexample in a domain of two members, in which: Ga: True Faa: False Fba: True
Gb: True Fab: False Fbb: False
C) Counterexample in a domain of two members, in which: Ga: True Faa: True Fba: True
Gb: False Fab: True Fbb: False
D) Counterexample in a domain of two members, in which: Ga: False Faa: True Fba: False
Gb: False Fab: True Fbb: True
E) Counterexample in a domain of two members, in which: Ga: True Faa: False Fba: True
Gb: True Fab: True Fbb: False
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
41
1. (∀x)[Ex ⊃ (∀y)(Fy • Gxy)]
2. (∃x)(Ex • Hxb)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Eb ⊃ (∀y)(Fy • Gxy)
B) Ea • Hab
C) Ea ⊃ (∀y)(Fy • Gby)
D) Hbb
E) (∀x)[Ex ⊃ (Fx • Gxx)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
42
1. (∀x)[Ex ⊃ (∀y)(Fy • Gxy)]
2. (∃x)(Ex • Hxb)
-Which of the following propositions is derivable from the given premises in F?

A) ~Fb
B) (∀x)Gax
C) (∀x)Gbx
D) (∃x)(∀y)(Gxy ⊃ Hxy)
E) (∃x)(∃y)(Gxy • Hxy)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
43
1. (∀x)(∃y)Axy ⊃ (∀x)(∃y)Bxy
2. (∃x)(∀y)∼Bxy
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) (∃y)Axy ⊃ (∀x)(∃y)Bxy
B) ~Bxy
C) (∃x)∼(∃y)Bxy
D) (∀x)(∃y)Bxy
E) (∀y)~Byy
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
44
1. (∀x)(∃y)Axy ⊃ (∀x)(∃y)Bxy
2. (∃x)(∀y)∼Bxy
-Which of the following propositions is derivable from the given premises in F?

A) (∃x)(∀y)∼Axy
B) (∃x)(∀y)~Ayx
C) (∀x)(∃y)Axy
D) (∀x)(∃y)Ayx
E) (∃x)(∃y)(Axy • Bxy)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
45
1. (∃x)[Dx • (∀y)(Ey ⊃ Fxy)]
2. (∀x)(Dx ⊃ Ex)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Dx ⊃ Ea
B) Dx • (∀y)(Ey ⊃ Fyy)
C) Da • (∀y)(Ey ⊃ Fay)
D) Da
E) Da • (∀y)(Ea ⊃ Fay)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
46
1. (∃x)[Dx • (∀y)(Ey ⊃ Fxy)]
2. (∀x)(Dx ⊃ Ex)
-Which of the following propositions is derivable from the given premises in F?

A) (∀x)(∀y)[(Dx • Dy) ⊃ Fxy]
B) (∀x)(Dx ⊃ Fxx)
C) (∀x)[Ex ⊃ (∃y)Fxy]
D) (∀x)[Ex ⊃ (∀y)Fyx]
E) (∃y)(Ey • Fyy)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
47
1. (∀x)[(Cx • Exa) ⊃ Dx]
2. Cd • ∼Dd
-Which of the following propositions is an immediate (one-step) consequence in F of the given premise?

A) Cd • Eda
B) Ca • Eaa
C) Eda ⊃ Dd
D) ∼Dd • Cd
E) (Cx • Exd) ⊃ Dd
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
48
1. (∀x)[(Cx • Exa) ⊃ Dx]
2. Cd • ∼Dd
-Which of the following propositions is derivable from the given premises in F?

A) ∼Eda
B) ~(∃x)Exa
C) (∀x)Exa
D) Eda
E) Eaa
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
49
1. (∀x)[(Px \lor Qx)] ⊃ Rxx]
2. (∀x){Qx ⊃ [(∃y)Rxy ⊃ Sxx]}
3. Pn • Qn
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Qn
B) (Px \lor Qx) ⊃ Rnn
C) Qn ⊃ [(∃y)Rny ⊃ Sxx]
D) (∀x)[Qx ⊃ (Rxy ⊃ Sxx)]
E) Pn
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
50
1. (∀x)[(Px \lor Qx)] ⊃ Rxx]
2. (∀x){Qx ⊃ [(∃y)Rxy ⊃ Sxx]}
3. Pn • Qn
-Which of the following propositions is derivable from the given premises in F?

A) Rnn • Snn
B) (∀x)Rnx
C) (∀x)Rxn
D) (∀x)(Px ⊃ Sxx)
E) Rnn ≡ ~Snn
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
51
1. (∀x)[Ax ⊃ (∃y)(By • Cxy)]
2. (∃x)(Ax • Dx)
3. (∀x)(Bx ⊃ Ex)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Ba ⊃ Eb
B) Ax ⊃ (∃y)(By • Cyy)
C) Ax • Dy
D) Ae • De
E) Bb ⊃ Ex
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
52
1. (∀x)[Ax ⊃ (∃y)(By • Cxy)]
2. (∃x)(Ax • Dx)
3. (∀x)(Bx ⊃ Ex)
-Which of the following propositions is derivable from the given premises in F?

A) (∃x)[Dx • (∃y)(Ey • Cxy)]
B) (∃x)[(Dx • Ex) • Cxx]
C) (∃x)[Dx • (∃y)(Ey • Cyx)]
D) (∃x)[Dx • (∀y)(Ey ⊃ Cyx)]
E) (∃x)[Dx • (∀y)(Ey ⊃ Cxy)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
53
1. (∀x)[Ax ⊃ (∀y)(By ⊃ Cxy)]
2. (∃x)[Ex • (∀y)(Hy ⊃ Cxy)]
3. (∀x)(∀y)(∀z)[(Cxy • Cyz) ⊃ Cxz]
4. (∀x)(Ex ⊃ Bx)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Ax ⊃ (By ⊃ Cxy)
B) (∀z)[(Cab • Cbz) ⊃ Caz]
C) Eb ⊃ Be
D) Eb • (∀y)(Hy ⊃ Cby)
E) Ax ⊃ (∀y)(By ⊃ Cby)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
54
1. (∀x)[Ax ⊃ (∀y)(By ⊃ Cxy)]
2. (∃x)[Ex • (∀y)(Hy ⊃ Cxy)]
3. (∀x)(∀y)(∀z)[(Cxy • Cyz) ⊃ Cxz]
4. (∀x)(Ex ⊃ Bx)
-Which of the following propositions is derivable from the given premises in F?

A) (∀x){Ex ⊃ [(∃y)Cxy ⊃ (∃y)Cyx]}
B) (∀x)[Bx ⊃ (Ex \lor Ax)]
C) (∀x)[Ax ⊃ (∀y)(By ⊃ Cyx)]
D) (∀x)[Ax ⊃ (∀y)(Hy ⊃ Cxy)]
E) (∀x){Ax ⊃ (∀y)[(Hy • By) ≡ Cxy]}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
55
(∀x)[Px ⊃ (∃y)Rxy] ⊃ [(∀x)(∀y)∼Rxy ⊃ ∼(∃x)Px]
-Consider assuming '(∀x)[Px ⊃ (∃y)Rxy]' for a conditional proof of the above logical truth. Which of the
Following propositions is a legitimate second step in that proof?

A) Assume '~(∃x)Px' for a nested conditional proof.
B) Assume '(∀x)(∀y)∼Rxy' for a nested conditional proof.
C) Assume '~(∀x)(∀y)~Rxy' for a nested indirect proof.
D) Px ⊃ (∃y)Ryy
E) Py ⊃ (∃y)Ryy
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
56
(∀x)[Px ⊃ (∃y)Rxy] ⊃ [(∀x)(∀y)∼Rxy ⊃ ∼(∃x)Px]
-Which of the following propositions is also derivable in F?

A) (∀x)[Px ⊃ (∃y)Rxy] ⊃ [(∃x)~Px ⊃ (∃x)(∃y)Rxy]
B) (∀x)[(∃y)Rxy ⊃ ~Px] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Rxy]
C) (∀x)[Px ⊃ (∃y)Rxy] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Rxy]
D) (∀x)[~(∃y)Rxy ⊃ Px] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Rxy]
E) (∀x)[Px ⊃ (∃y)Rxy] ⊃ [(∃x)~Px ⊃ (∃x)(∃y)~Rxy]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
57
(∀x)[Px ⊃ (∃y)Qxy] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Qxy]
-Consider assuming '(∀x)[Px ⊃ (∃y)Qxy]' for a conditional proof of the above logical truth. Which of the
Following propositions is a legitimate second step in that proof?

A) Assume '(∃x)Px' for a nested indirect proof.
B) Assume '(∃x)(∃y)Qxy' for a nested indirect proof.
C) Assume '(∃x)Px' for a nested conditional proof.
D) Assume '(∃x)(∃y)Qxy' for a nested conditional proof.
E) Px ⊃ (∃y)Qyy
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
58
(∀x)[Px ⊃ (∃y)Qxy] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Qxy]
-Which of the following propositions is also derivable in F?

A) (∀x)[~(∃y)Qxy ⊃ ~Px] ⊃ [(∀x)Px \lor ~(∃x)(∃y)Qxy]
B) (∀x)[Px ⊃ (∃y)Qxy] ⊃ [(∀x)∼Px \lor (∃x)(∃y)Qxy]
C) (∀x)[~(∃y)Qxy ⊃ ~Px] ⊃ [~(∀x)Px \lor ~(∃x)(∃y)Qxy]
D) (∀x)[~(∃y)Qxy ⊃ ~Px] ⊃ ~[(∀x)Px \lor ~(∃x)(∃y)Qxy]
E) (∀x)[Px ⊃ (∃y)Qxy] ⊃ [(∀x)∼Px \lor (∃x)(∃y)~Qxy]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
59
[(∀x)Pax • ∼(∃x)Pxa] ⊃ (∀x)(Pax • ∼Pxa)
-Consider assuming '(∀x)Pax • ∼(∃x)Pxa' for a conditional proof of the above logical truth. Which of the
Following propositions is a legitimate second step in that proof?

A) Assume '(∀x)Pax' for a nested indirect proof.
B) Assume ~(∀x)Pax' for a nested indirect proof.
C) ~(∃x)Pxa
D) (∀x)~Pxa
E) ∼(∃x)Pxa • (∀x)Pax
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
60
[(∀x)Pax • ∼(∃x)Pxa] ⊃ (∀x)(Pax • ∼Pxa)
-Which of the following propositions is also derivable in F?

A) [(∃x)∼Pax \lor ~(∃x)Pxa] \lor (∀x)(Pax • ∼Pxa)
B) [(∃x)∼Pax \lor (∃x)Pxa] \lor (∀x)(Pax • ∼Pxa)
C) [(∃x)Pax \lor (∃x)Pxa] \lor (∀x)(Pax • Pxa)
D) [(∃x)Pax \lor ~(∃x)Pxa] \lor (∀x)(Pax • ∼Pxa)
E) [(∃x)∼Pax • (∃x)Pxa] • (∀x)(Pax • ∼Pxa)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
61
All cheetahs are faster than some tigers. Everything is striped if, and only if, it is a tiger. So, if some things are cheetahs, then some things have stripes. (Cx: x is a cheetah; Tx: x is a tiger; Sx: x has stripes; Fxy: x is faster than y)
-Which of the following is the best translation into F of this argument?

A) 1. (∀x)[Cx ⊃ (∃y)(Ty • Fyx)] 2. (∀x)[(Sx ⊃ Tx) • (Tx ⊃ Sx)] / (∃x)Cx ⊃ (∃x)Sx
B) 1. (∀x)(∃y)[Cx • (Ty • Fxy)] 2. (∀x)Sx ≡ (∀x)Tx / (∃x)Cx ⊃ (∃x)Sx
C) 1. (∀x)[Cx ⊃ (∃y)(Ty • Fxy)] 2. (∀y)(Sy ≡ Ty) / (∃x)Cx ⊃ (∃x)Sx
D) 1. (∀x)[Cx ⊃ (∃y)(Ty • Fyx)] 2. (∀x)(Sx ≡ Tx) / (∃x)(Cx ⊃ Sx)
E) 1. (∀x)[(∀y)(Fxy • Ty) ⊃ Cx] 2. (∀x)(Sx ⊃ Tx) • (∀x)(Tx ⊃ Sx) / (∃x)(Cx ⊃ Sx)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
62
All cheetahs are faster than some tigers. Everything is striped if, and only if, it is a tiger. So, if some things are cheetahs, then some things have stripes. (Cx: x is a cheetah; Tx: x is a tiger; Sx: x has stripes; Fxy: x is faster than y)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?

A) Sx ≡ Ty
B) Sx ≡ (∀x)Tx
C) Ca ⊃ (∃y)(Ty • Fya)
D) Sx ⊃ Tx
E) Cx ⊃ (∃y)(Ty • Fxy)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
63
All cheetahs are faster than some tigers. Everything is striped if, and only if, it is a tiger. So, if some things are cheetahs, then some things have stripes. (Cx: x is a cheetah; Tx: x is a tiger; Sx: x has stripes; Fxy: x is faster than y)
-Which of the following claims can also be derived from the premises of this argument?

A) (∀x)∼Sx ⊃ (∀x)∼Cx
B) (∀x)(∃y)[Fxy ⊃ (Cy • Tx)]
C) (∃x)(Cx • Tx)
D) ~(∃x)(Cx • Tx)
E) (∀x)(∃y)[Fxy ⊃ (Cx • Ty)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
64
All philosophers respect each other. Some philosopher doesn't study some philosopher. Anything which respects something without studying it is open-minded, if ignorant. So something is open-minded and ignorant. (Ix: x is ignorant; Ox: x is open-minded; Px: x is a philosoper; Rxy: x respects y; Sxy: x studies y)
-Which of the following is the best translation into F of this argument?

A) 1. (∀x)(∀y)[(Px • Py) ⊃ (Rxx • Ryy)] 2. (∃x)(∃y)[(Px • Py) • ~Sxy]
3) (∀x)(∀y)[(Rxy • ~Sxy) ⊃ (Ox \lor Ix)] / (∃x)(Ox • Ix)
B) 1. (∀x)(∀y)[(Px • Py) ⊃ (Rxy ≡ Ryx)] 2. (∃x)(∃y)[(Px • Py) • ~Sxy]
3) (∀x)(∀y)[(Rxy • ~Sxy) ⊃ (Ox \lor Ix)] / (∃x)(Ox • Ix)
C) 1. (∀x)(∀y)[(Px • Py) ⊃ (Rxy • Ryx)] 2. (∃x)(∃y)[(Px • Py) • ~Sxy]
3) (∀x)(∀y)[(Rxy • ~Sxy) ⊃ (Ox \lor Ix)] / (∃x)(Ox • Ix)
D) 1. (∀x)(∀y)[(Px • Py) ⊃ (Rxy • Ryx)] 2. (∃x)[Px • (∃y)(Py • ∼Sxy)]
3) (∀x)(∀y)[(Rxy • ∼Sxy) ⊃ (Ox • Ix)] / (∃x)(Ox • Ix)
E) 1. (∀x)(∀y)[(Px • Py) ⊃ (Rxx • Ryy)] 2. (∃x)(∃y)[(Px • Py) • ~Sxy]
3) (∀x)(∀y)[(Rxy • ~Sxy) ⊃ (Ox \lor Ix)] / (∃x)(Ox \lor Ix)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
65
All philosophers respect each other. Some philosopher doesn't study some philosopher. Anything which respects something without studying it is open-minded, if ignorant. So something is open-minded and ignorant. (Ix: x is ignorant; Ox: x is open-minded; Px: x is a philosoper; Rxy: x respects y; Sxy: x studies y)
-Which of the following propositions is an immediate (one-step) consequence in F of the
Given premises?

A) Ox • Ix
B) (∀y)[(Px • Py) ⊃ (Ryy • Ryy)]
C) (∃y)[(Px • Py) ~ Sxy]
D) Pa • (∃y)(Py • ∼Say)
E) (∀y)[(Rxy • ~Sxy) ⊃ (Ox \lor Ix)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
66
All philosophers respect each other. Some philosopher doesn't study some philosopher. Anything which respects something without studying it is open-minded, if ignorant. So something is open-minded and ignorant. (Ix: x is ignorant; Ox: x is open-minded; Px: x is a philosoper; Rxy: x respects y; Sxy: x studies y)
-Which of the following claims can also be derived from the premises of this argument?

A) Rab • ∼Sab
B) ~Rab • ~Sab
C) ~Rba • ~Sab
D) Rba • Sab
E) Rba • Sbb
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
67
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
-1. (∀x)(Ax ⊃ Dex)
2) (∃x)(Bx • Dxe)
3) (∀x)(Bx ⊃ Ax) / (∃x)[Ax • (Dxe • Dex)]

A) Valid
B) Invalid. Counterexample in a domain of one member, in which: Ae: True Be: False Dee: False
C) Invalid. Counterexample in a domain of two members, in which:
Aa: True Ba: True Daa: True Dea: False
Ae: True Be: True Dae: False Dee: False
D) Invalid. Counterexample in a domain of two members, in which:
Aa: True Ba: False Daa: True Dea: True
Ae: False Be: False Dae: False Dee: True
E) Invalid. Counterexample in a domain of two members, in which: Aa: False Ba: True Daa: False Dea: False
Ae: True Be: True Dae: True Dee: False
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
68
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.

-1. (?x)(?y)(Pxy • ?Pyx)
2) (?x)[(?y)Pxy ? (?y)Qxy] / (?x)(?y)(Qxy • ?Pyx)

A) Valid
B) Invalid. Counterexample in a domain of three members, in which:
 Paa: True  Pab: True  Pac: False  Pba: False  Pbb: True  Pbc: True  Pca: True  Pcb: False  Pcc: True  Qaa: False  Qab: False  Qac: True  Qba: True  Qbb:True  Qbc: True  Qca: True  Qcb:True  Qcc: True \begin{array}{lll}\text { Paa: True } & \text { Pab: True } & \text { Pac: False } \\\text { Pba: False } & \text { Pbb: True } & \text { Pbc: True } \\\text { Pca: True } & \text { Pcb: False } & \text { Pcc: True } \\\text { Qaa: False } & \text { Qab: False } & \text { Qac: True } \\\text { Qba: True } & \text { Qbb:True } & \text { Qbc: True } \\\text { Qca: True } & \text { Qcb:True } & \text { Qcc: True }\end{array}

C) Invalid. Counterexample in a domain of three members, in which:
 Paa: True  Pab: True  Pac: False  Pba: False  Fbb: False  Pbc: False  Pca: False  Pcb: False  Pcc: True  Qaa: False  Qab: False  Qac: True  Qba: True  Qbb:True  Qbc: False  Qca: True  Qcb: True  Qcc: True \begin{array}{lll}\text { Paa: True } & \text { Pab: True } & \text { Pac: False } \\\text { Pba: False } & \text { Fbb: False } & \text { Pbc: False } \\\text { Pca: False } & \text { Pcb: False } & \text { Pcc: True } \\\text { Qaa: False } & \text { Qab: False } & \text { Qac: True } \\\text { Qba: True } & \text { Qbb:True } & \text { Qbc: False } \\\text { Qca: True } & \text { Qcb: True } & \text { Qcc: True }\end{array}

D) Invalid. Counterexample in a domain of three members, in which:
 Paa: False  Pab: Ture  Pac: False  Pba: False  Pbb: True  Pbc: True  Pca: True  Pcb: True  Pcc: True  Qaa: False  Qab:True  Qac: True  Qba: False  Qbb:True  Qbc: True  Qca: True  Qcb:True  Qcc: False \begin{array}{lll}\text { Paa: False } & \text { Pab: Ture } & \text { Pac: False } \\\text { Pba: False } & \text { Pbb: True } & \text { Pbc: True } \\\text { Pca: True } & \text { Pcb: True } & \text { Pcc: True } \\\text { Qaa: False } & \text { Qab:True } & \text { Qac: True } \\\text { Qba: False } & \text { Qbb:True } & \text { Qbc: True } \\\text { Qca: True } & \text { Qcb:True } & \text { Qcc: False }\end{array}

E) Invalid. Counterexample in a domain of three members, in which:
 Paa: True  Pab: True  Pac: False  Pla: False  Pbb: False  Ploc: True  Pca: True  Pcb: False  Pcc: True  Qaa: False  Qab: False  Qac: True  Qba: False  Qbb: False  Qbc: False  Qca: True  Qcb: True  Qcc: False \begin{array}{lll}\text { Paa: True } & \text { Pab: True } & \text { Pac: False } \\\text { Pla: False } & \text { Pbb: False } & \text { Ploc: True } \\\text { Pca: True } & \text { Pcb: False } & \text { Pcc: True } \\\text { Qaa: False } & \text { Qab: False } & \text { Qac: True } \\\text { Qba: False } & \text { Qbb: False } & \text { Qbc: False } \\\text { Qca: True } & \text { Qcb: True } & \text { Qcc: False }\end{array}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
69
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.

-1. (?x)[Tx ? (?y)(Sy • Wxy)]
2) (?x)(Sx • Vx)
3) (?x)(Tx • Rx) / (?x)[(Rx • Vx) • (?y)Wxy]

A) Valid
B) Invalid. Counterexample in a domain of one member, in which: Ta: True Sa: False Waa: True
Ra: False Va: True
C) Invalid. Counterexample in a domain of two members, in which:
 Ta: False  Sa: False  Waa: True  Tb: True  Sb: True  Wab: False  Ra: True  Va: False  Wba: False  Rb: False  Vb: False  Wbb:True \begin{array}{lll}\text { Ta: False } & \text { Sa: False } & \text { Waa: True } \\\text { Tb: True } & \text { Sb: True } & \text { Wab: False } \\\text { Ra: True } & \text { Va: False } & \text { Wba: False } \\\text { Rb: False } & \text { Vb: False } & \text { Wbb:True }\end{array}

D) Invalid. Counterexample in a domain of two members, in which:
 Ta: False  Sa: True  Waa: True  Tb: True  Sb: True  Wab: True  Ra: False  Va: False  Wba: False  Rb: False  Vb:True  Wbb: False \begin{array}{lll}\text { Ta: False } & \text { Sa: True } & \text { Waa: True } \\\text { Tb: True } & \text { Sb: True } & \text { Wab: True } \\\text { Ra: False } & \text { Va: False } & \text { Wba: False } \\\text { Rb: False } & \text { Vb:True } & \text { Wbb: False }\end{array}

E) Invalid. Counterexample in a domain of two members, in which:
 Ta: True  Sa: True  Waa: True  Tb: False  Sb: True  Wab: True  Ra: True  Va: False  Wba: True  Rb: False  Vb:True  Wbb: True \begin{array}{llll}\text { Ta: True } & \text { Sa: True } & \text { Waa: True } & \\ \text { Tb: False } & \text { Sb: True } & \text { Wab: True } \\ \text { Ra: True } & \text { Va: False } & \text { Wba: True } \\\text { Rb: False } & \text { Vb:True } & \text { Wbb: True }\end{array}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
70
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.

-1. (?x)[Lx ? (?y)(My • Nxy)]
2) (?x)[Lx • (?y)Nxy] / (?x)[Mx • (?y)Nyx]

A) Valid
B) Invalid. Counterexample in a domain of one member, in which:
La: True Ma: True Naa: False
C) Invalid. Counterexample in a domain of two members, in which:
 La: False  Ma: True  Naa: True  Nba: True  Lb:True  Mb: True  Nab: True  Nbb: False \begin{array}{llll}\text { La: False } & \text { Ma: True } & \text { Naa: True } & \text { Nba: True } \\\text { Lb:True } & \text { Mb: True } & \text { Nab: True } & \text { Nbb: False }\end{array}

D) Invalid. Counterexample in a domain of two members, in which:
 La: True  Ma: False  Naa: True  Nba: False  Lb: False  Mb: True  Nab: True  Nbb: False \begin{array}{llll}\text { La: True } & \text { Ma: False } & \text { Naa: True } & \text { Nba: False } \\\text { Lb: False } & \text { Mb: True } & \text { Nab: True } & \text { Nbb: False }\end{array}

E) Invalid. Counterexample in a domain of two members, in which: La: True Ma: False Naa: True Nba: True
Lb: False Mb: True Nab: False Nbb: False
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
71
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-There is exactly one philosophy major on the Dean's list.

A) (∃x){(Px • Dx) • (∀y)[(Py • Dy) ⊃ y=x]}
B) (Pd • Ps) ⊃ [(Dd \lor Ds) • ~(Dd • Ds)]
C) (∀x)(∀y){[(Px • Dx) • (Py • Dy)] ⊃ x=y}
D) (∃x){(Px • Dx) ⊃ (∀y)[(Py • Dy) ⊃ x=y]}
E) (Pd • Dd) \lor (Ps • Ds)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
72
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-There are exactly two philosophy majors on the Dean's list.

A) Pd • Ps • Dd • Ds
B) (∃x)(∀y)[(Px • Py • Dx • Dy) ⊃ x=y]
C) (∀x)(∀y)(∀z)[(Px • Py • Pz • Dx • Dy • Dz) ⊃ (x =y \lor x=z \lor y=z)]
D) (∃x)(∃y){Px • Dx • Py • Dy • x≠y • (∀z)[(Pz • Dz) ⊃ (z=x \lor z=y)]}
E) ~(∃x)(∃y)(∃z)(Px • Py • Pz • Dx • Dy • Dz • x≠y • x≠z • y≠z)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
73
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-At least four philosophy majors are on the Dean's list.

A) (∃x)(∃y)(∃z)(∃w)[Px • Dx • Py • Dy • Pz • Dz • Pw • Dw •
(x=y \lor x=z \lor x=w \lor y=z \lor y=w \lor z=w)]
B) (∀x)(∀y)(∀z)(∀w)[(Px • Py • Pz • Pw • Dx • Dy • Dz • Dw) ⊃
(x=y \lor x=z \lor x=w \lor y=z \lor y=w \lor z=w)]
C) (∃x)(∃y)(∃z)(∃w)(Px • Dx • Py • Dy • Pz • Dz • Pw • Dw • x≠y • x≠z • x≠w • y≠z • y≠w • z≠w)
D) (∀x)(∀y)(∀z)(∀w)[(Px • Py • Pz • Pw • Dx • Dy • Dz • Dw) ⊃
(x≠y • x≠z • x≠w • y≠z • y≠w • z≠w)]
E) (∃x)(∃y)(∃z)(∃w)[(Px • Dx • Py • Dy • Pz • Dz • Pw • Dw) ⊃
(x≠y • x≠z • x≠w • y≠z • y≠w • z≠w)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
74
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-All philosophy majors except Sean are on the Dean's list.

A) (∃x)(Px • Dx • x≠s)
B) Ps • ∼Ds • (∀x)[(Px • x≠s) ⊃ Dx]
C) (∀x)[Dx ⊃ (Px ⊃ x≠s)]
D) (∀x)(Px ⊃ Dx) • Ps • ~Ds
E) (∀x)[Px ⊃ (Dx ⊃ x≠s)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
75
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-Of the philosophy majors, only Diego is a valedictorian.

A) Vd • (∀x)[Px ⊃ (~Vx \lor x=d)]
B) Pd • Vd • (∀x)[(Px • Vx) ⊃ x=d]
C) ~(∃x)(Px • Vx • x≠d)
D) (∀x)[(Px • Vx) ⊃ x=d]
E) (∃x)(∀y)[x=d • Vd • Pd • (Py ⊃ y=d)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
76
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-At most two philosophy majors are on the Dean's list.

A) (∃x)(∃y){Px • Dx • Py • Dy • (∀z)[(Pz • Dz) ⊃ (x=z \lor y=z)]}
B) (∃x)(∃y)[Px • Dx • Py • Dy • ~(∃z)(Pz • Dz • x=z • y=z)]
C) (∀x)(∀y)(∀z)(Px • Dx • Py • Dy • Pz • Dz • x≠y • x≠z • y≠z)
D) ~(∃x)(∃y)(∃z)(Px • Dx • Py • Dy • Pz • Dz • x≠y • x≠z • y≠z)
E) (∀x)(∀y)(∀z)[(Px • Dx • Py • Dy • Pz • Dz) ⊃ (x=y \lor x=z \lor y=z)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
77
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-Exactly one student is a valedictorian.

A) (∃x)(Sx • Vx) • ~(∃y)(Sy • Vy)
B) (∀x)[(Sx • Vx) ⊃ ~(∃y)(Sy • Vy • x≠y)]
C) ~(∃x)(∃y)(Sx • Vx • Sy • Vy • x≠y)
D) (∃x)[Sx • Vx • (∃y)(Sy • Vy • x=y)]
E) (∃x){Sx • Vx • (∀y)[(Sy • Vy) ⊃ y=x]}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
78
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-The valedictorian is Diego.

A) (∃x){Vx • (∀y)[(Vy ⊃ y=x) • x=d]}
B) (∀x)(Vx ⊃ x=d)
C) (∀x)(Vx ≡ x=d)
D) Vd • ~(∃x)(Vx • x=d)
E) (∃x)[Vx • (∃y)(Vy • x=y) • x=d]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
79
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-Only Sean and Diego are both on the Dean's list and philosophy majors.

A) (∀x)[(Dx • Px) ⊃ (x=s • x=d)]
B) (∀x)[(Dx • Px) ⊃ ~(x=s • x=d)]
C) Ds • Ps • Dd • Pd • [(∃x)(Px • Dx) ⊃ ~(x=s • x=d)]
D) Ds • Dd • Ps • Pd • (∀x)[(Dx • Px) ⊃ (x=s \lor x=d)]
E) Ds • Ps • Dd • Pd • (∀x)[(Dx • Px) ⊃ ~(x=s • x=d)]
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
80
select the best translation into predicate logic, using the following translation key:
d: Diego
s: Sean
Dx: x is on the Dean's list
Px: x is a philosophy major
Sx: x is a student
Vx: x is a valedictorian
-The philosophy major on the Dean's list is a valedictorian.

A) (Ps • Ds • Vs) \lor (Pd • Dd • Vd)
B) (∀x)[Vx ⊃ (Px • Dx)]
C) (∃x){Px • Dx • (∀y)[(Py • Dy) ⊃ y=x] • Vx}
D) (∃x){Px • Vx • (∀y)[(Py • Vy) ⊃ y=x] • Dx}
E) (∃x){Dx • Vx • (∀y)[(Dy • Vy) ⊃ y=x] • Px}
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 300 flashcards in this deck.