Deck 5: Polynomials and Factoring

Full screen (f)
exit full mode
Question
Rewrite the expression 12z5\frac { 1 } { 2 z ^ { - 5 } } using only positive exponents. Assume that z is not zero.

A) 32z532 z ^ { 5 }
B) z52- \frac { z ^ { 5 } } { 2 }
C) z52\frac { z ^ { 5 } } { 2 }
D) 2z52 z ^ { 5 }
E) - 2z52 z ^ { 5 }
Use Space or
up arrow
down arrow
to flip the card.
Question
Simplify the expression (st)8(s6t)2( s t ) ^ { 8 } \left( s ^ { 6 } t \right) ^ { 2 } .

A) s44t32s ^ { 44 } t ^ { 32 }
B) s37t16s ^ { 37 } t ^ { 16 }
C) s16t10s ^ { 16 } t ^ { 10 }
D) s96t16s ^ { 96 } t ^ { 16 }
E) s20t10s ^ { 20 } t ^ { 10 }
Question
Rewrite the expression 3x43 x ^ { - 4 } using only positive exponents. Assume that x is not zero.

A) 181x4\frac { 1 } { 81 x ^ { 4 } }
B) 3x4\frac { 3 } { x ^ { 4 } }
C) 13x4\frac { 1 } { 3 x ^ { 4 } }
D) 3x4- \frac { 3 } { x ^ { 4 } }
E) 181x4- \frac { 1 } { 81 x ^ { 4 } }
Question
Simplify the expression 56u9v958u9v3\frac { 5 ^ { 6 } u ^ { 9 } v ^ { 9 } } { 5 ^ { 8 } u ^ { 9 } v ^ { 3 } } . Assume that neither u nor v is zero.

A) uv610\frac { u v ^ { 6 } } { 10 }
B) v625\frac { v ^ { 6 } } { 25 }
C) v610\frac { v ^ { 6 } } { 10 }
D) v325\frac { v ^ { 3 } } { 25 }
E) uv310\frac { u v ^ { 3 } } { 10 }
Question
Use the rules of exponents to simplify the expression below. x4n+4y5n5x3n+2yn2\frac { x ^ { 4 n + 4 } y ^ { 5 n - 5 } } { x ^ { 3 n + 2 } y ^ { n - 2 } }

A) xn+2y4n7x ^ { n + 2 } y ^ { 4 n - 7 }
B) xn+6y4n3x ^ { n + 6 } y ^ { 4 n - 3 }
C) x7n+2y4x3x ^ { 7 n + 2 } y ^ { 4 x - 3 }
D) xn+2y4n3x ^ { n + 2 } y ^ { 4 n - 3 }
E) x7n+2y4n7x ^ { 7n+ 2 } y ^ { 4 n - 7 }
Question
Use the rules of exponents to simplify the expression below. [(2x2)(2x)2(2x2)(2x)]2\left[ \frac { \left( 2 x ^ { 2 } \right) ( 2 x ) ^ { 2 } } { \left( - 2 x ^ { 2 } \right) ( 2 x ) } \right] ^ { 2 }

A) 4x24 x ^ { 2 }
B) 6x5- 6 x ^ { 5 }
C) 3x23 x ^ { 2 }
D) 14x714 x ^ { 7 }
E) 5x65 x ^ { 6 }
Question
Use the rules of exponents to simplify the expression (2x5y5)3(2x5y5)3\left( 2 x ^ { - 5 } y ^ { 5 } \right) ^ { - 3 } \left( 2 x ^ { - 5 } y ^ { 5 } \right) ^ { 3 } using only positive exponents. Assume that no variable is zero.

A) 64y30x30\frac { 64 y ^ { 30 } } { x ^ { 30 } }
B)1
C) 64x30y30\frac { 64 x ^ { 30 } } { y ^ { 30 } }
D) 4y30x30\frac { - 4 y ^ { 30 } } { x ^ { 30 } }
E) 64
Question
Find the value of (67)2\left( \frac { 6 } { 7 } \right) ^ { - 2 } .

A) 4936- \frac { 49 } { 36 }
B) 4936\frac { 49 } { 36 }
C) 3649\frac { 36 } { 49 }
D) 367\frac { 36 } { 7 }
E) - 3649\frac { 36 } { 49 }
Question
Use the rules of exponents to simplify the expression below.
[(3x2)(3x)2(3x2)(3x)]3\left[ \frac { \left( 3 x ^ { 2 } \right) ( 3 x ) ^ { 2 } } { \left( - 3 x ^ { 2 } \right) ( 3 x ) } \right] ^ { 3 }

A) 26x7- 26 x ^ { 7 }
B) 28x3- 28 x ^ { 3 }
C) 27x3- 27 x ^ { 3 }
D) 37x6- 37 x ^ { 6 }
E) 17x8- 17 x ^ { 8 }
Question
Rewrite the expression 3w35z3\frac { 3 w ^ { 3 } } { 5 z ^ { - 3 } } using only positive exponents. Assume that z is not zero.

A) 27w3z35\frac { 27 w ^ { 3 } z ^ { 3 } } { 5 }
B) 375w3z3375 w ^ { 3 } z ^ { 3 }
C) 15w3z315 w ^ { 3 } z ^ { 3 }
D) 3w9z95\frac { 3 w ^ { 9 } z ^ { 9 } } { 5 }
E) 3w3z35\frac { 3 w ^ { 3 } z ^ { 3 } } { 5 }
Question
Evaluate the expression (5x3y)1\left( \frac { 5 x } { 3 y } \right) ^ { - 1 } when x=-8 and y=9 .

A) 2740- \frac { 27 } { 40 }
B) 4027\frac { 40 } { 27 }
C) 2740\frac { 27 } { 40 }
D) 4027- \frac { 40 } { 27 }
E) 158- \frac { 15 } { 8 }
Question
Find the value of (2)5( - 2 ) ^ { - 5 } .

A) 132\frac { 1 } { 32 }
B) -10
C) 10
D) 7,57,5
E) - 132\frac { 1 } { 32 }
Question
Simplify the expression 64u64u2\frac { 64 u ^ { 6 } } { 4 u ^ { 2 } } . Assume that u is not zero.

A) 16u316 u ^ { 3 }
B) 8u48 u ^ { 4 }
C) 16u416 u ^ { 4 }
D) 8u38 u ^ { 3 }
E) 8u88 u ^ { 8 }
Question
Rewrite the expression using only positive exponents, and simplify. Assume that any variables in the expression are nonzero. s1+r1s1r1\frac { s ^ { - 1 } + r ^ { - 1 } } { s ^ { - 1 } - r ^ { - 1 } }

A) rsr+s\frac { r - s } { r + s }
B) s2+r2s ^ { 2 } + r ^ { 2 }
C) r+srs\frac { r + s } { r - s }
D) s+rsr\frac { s + r } { s - r }
E) srs+r\frac { s - r } { s + r }
Question
Use the rules of exponents to simplify the expression below. x4ny3xn1xnyn4\frac { x ^ { 4 n } y ^ { 3 xn - 1 } } { x ^ { n } y ^ { n - 4 } }

A) x3y2x ^ { 3 } y ^ { 2 }
B) x3y2n+3x ^ { 3 } y ^ { 2 n + 3 }
C) x3ny2n+3x ^ { 3 n } y ^ { 2 n + 3 }
D) x2y2n+3x ^ { 2 } y ^ { 2 n + 3 }
E) x2ny2n+3x ^ { 2 n } y ^ { 2 n + 3 }
Question
Evaluate the expression (9+34)0\left( 9 + 3 ^ { - 4 } \right) ^ { 0 } .

A) 73081\frac { 730 } { 81 }
B)0
C) 9
D)1
E) 181\frac { 1 } { 81 }
Question
Simplify the expression 10(uv2)3(5u)3v4\frac { 10 \left( u v ^ { 2 } \right) ^ { 3 } } { ( 5 u ) ^ { 3 } v ^ { 4 } } . Assume that neither u nor v is zero.

A) 2v225u2\frac { 2 v ^ { 2 } } { 25 u ^ { 2 } }
B) 2v225\frac { 2 v ^ { 2 } } { 25 }
C) 2v45u2\frac { 2 v ^ { 4 } } { 5 u ^ { 2 } }
D) 2v5\frac { 2 v } { 5 }
E) 2v2\frac { 2 } { v ^ { 2 } }
Question
Simplify the expression (9x8)x4\left( - 9 x ^ { 8 } \right) x ^ { 4 } .

A) 9x32- 9 x ^ { 32 }
B) 9x16- 9 x ^ { 16 }
C) 9x129 x ^ { - 12 }
D) 9x12- 9 x ^ { 12 }
E) 9x329 x ^ { - 32 }
Question
Rewrite the expression using only positive exponents, and simplify. Assume that any variables in the expression are nonzero.
(2a3b2)3b(10a4b)4\frac { \left( 2 a ^ { - 3 } b ^ { 2 } \right) ^ { 3 } b } { \left( 10 a ^ { 4 } b \right) ^ { 4 } }

A) b35a25\frac { b ^ { 3 } } { 5 a ^ { 25 } }
B) b31,250a25\frac { b ^ { 3 } } { 1,250 a ^ { 25 } }
C) b35a24\frac { b ^ { 3 } } { 5 a ^ { 24 } }
D) b25a24\frac { b ^ { 2 } } { 5 a ^ { 24 } }
E) b21,250a25\frac { b ^ { 2 } } { 1,250 a ^ { 25 } }
Question
Use the rules of exponents to simplify the expression (2x4y6)2\left( 2 x ^ { 4 } y ^ { 6 } \right) ^ { - 2 } using only positive exponents. Assume that neither x nor y is 0.

A) 2x2y42 x ^ { 2 } y ^ { 4 }
B) 14x8y12\frac { 1 } { 4 x ^ { 8 } y ^ { 12 } }
C) 12x8y12\frac { 1 } { 2 x ^ { 8 } y ^ { 12 } }
D) 4x2y44 x ^ { 2 } y ^ { 4 }
E) 2x8y12\frac { 2 } { x ^ { 8 } y ^ { 12 } }
Question
The masses of Mercury and the sun are approximately 3.3×10233.3 \times 10 ^ { 23 } kilograms and 1.99×10301.99 \times 10 ^ { 30 } kilograms, respectively. The mass of the sun is approximately how many times that of Mercury?

A) 3,030 times
B) 6,030,3036,030,303 times
C) 16,470 times
D) 3,919 times
E) 84,200 times
Question
Write 9×1059 \times 10 ^ { - 5 } in decimal notation.

A) 0.000090.00009
B) 900,000900,000
C) 9,000,0009,000,000
D) 0.0000090.000009
E) 0.00090.0009
Question
Find the sum (9x28x+12)+(2x35x212)\left( - 9 x ^ { 2 } - 8 x + 12 \right) + \left( - 2 x ^ { 3 } - 5 x ^ { 2 } - 12 \right) .

A) 2x314x28x- 2 x ^ { 3 } - 14 x ^ { 2 } - 8 x
B) 11x513x3- 11 x ^ { 5 } - 13 x ^ { 3 }
C) 24x8- 24 x ^ { 8 }
D) 11x513x3+24- 11 x ^ { 5 } - 13 x ^ { 3 } + 24
E) 11x313x2+24- 11 x ^ { 3 } - 13 x ^ { 2 } + 24
Question
Find the difference (9x+8)(2x+4)( - 9 x + 8 ) - ( 2 x + 4 ) .

A) -11 x+2
B) -7x+12
C) 7x2+12- 7 x ^ { 2 } + 12
D) -11 x+4
E) 7x2+4- 7 x ^ { 2 } + 4
Question
Is the polynomial below a monomial, binomial, trinomial, or none of these? 4x34 x ^ { 3 }

A)binomial
B)monomial
C)none of these
D)trinomial
Question
Find the sum of the polynomials. 6x2+7x27x2+2x26x2\begin{array} { r } 6 x ^ { 2 } + 7 x - 2 \\7 x ^ { 2 } + 2 x - 2 \\- 6 x - 2 \\\hline\end{array}

A) 13x4+3x2613 x ^ { 4 } + 3 x ^ { 2 } - 6
B) 13x2+3x213 x ^ { 2 } + 3 x - 2
C) 16x7616 x ^ { 7 } - 6
D) 13x4+3x2213 x ^ { 4 } + 3 x ^ { 2 } - 2
E) 13x2+3x613 x ^ { 2 } + 3 x - 6
Question
Find the sum of the polynomials. x4+9x3+5x+78x32x7\begin{array} { r } x ^ { 4 } + 9 x ^ { 3 } + 5 x + 7 \\8 x ^ { 3 } - 2 x - 7\\\hline\end{array}

A) x4+17x3+3xx ^ { 4 } + 17 x ^ { 3 } + 3 x
B) 17x3+3x17 x ^ { 3 } + 3 x
C) 17x6+x4+3x217 x ^ { 6 } + x ^ { 4 } + 3 x ^ { 2 }
D) x4+17x3+3x+14x ^ { 4 } + 17 x ^ { 3 } + 3 x + 14
E) 17x6+x4+3x21417 x ^ { 6 } + x ^ { 4 } + 3 x ^ { 2 } - 14
Question
Find the difference 2(6u28)- 2 - \left( - 6 u ^ { 2 } - 8 \right) .

A) 6u2106 u ^ { 2 } - 10
B) 6u2+66 u ^ { 2 } + 6
C) 4u2104 u ^ { 2 } - 10
D) 4u2+64 u ^ { 2 } + 6
E) 6u210- 6 u ^ { 2 } - 10
Question
Write the number 5.92×1035.92 \times 10 ^ { - 3 } in decimal notation.

A) 59,20059,200
B) 59.2
C) 0.005920.00592
D) 592,000592,000
E) 0.592
Question
Find the difference of the polynomials. x4+7x3+5x7(3x3+2x+7)\begin{array} { l } x ^ { 4 } + 7 x ^ { 3 } + 5 x - 7 \\- \left( - 3 x ^ { 3 } + 2 x + 7 \right)\\\hline\end{array}

A) x4+10x3+3x14x ^ { 4 } + 10 x ^ { 3 } + 3 x - 14
B) x4+10x3+7x14x ^ { 4 } + 10 x ^ { 3 } + 7 x - 14
C) x4+10x3+3x+14x ^ { 4 } + 10 x ^ { 3 } + 3 x + 14
D) x4+4x3+3x+14x ^ { 4 } + 4 x ^ { 3 } + 3 x + 14
E) x4+4x3+7x+14x ^ { 4 } + 4 x ^ { 3 } + 7 x + 14
Question
Find the difference (6x2+4x12)(4x3+2x212)\left( - 6 x ^ { 2 } + 4 x - 12 \right) - \left( 4 x ^ { 3 } + 2 x ^ { 2 } - 12 \right) .

A) 4x38x2+4x- 4 x ^ { 3 } - 8 x ^ { 2 } + 4 x
B) 4x34x2+4x- 4 x ^ { 3 } - 4 x ^ { 2 } + 4 x
C) 10x3+2x224- 10 x ^ { 3 } + 2 x ^ { 2 } - 24
D) 10x3+2x2- 10 x ^ { 3 } + 2 x ^ { 2 }
E) 4x34x224- 4 x ^ { 3 } - 4 x ^ { 2 } - 24
Question
Find the sum (58x3+2)+(516x35)\left( \frac { 5 } { 8 } x ^ { 3 } + 2 \right) + \left( \frac { 5 } { 16 } x ^ { 3 } - 5 \right) .

A) 1516x33\frac { 15 } { 16 } x ^ { 3 } - 3
B) 1516x63\frac { 15 } { 16 } x ^ { 6 } - 3
C) 15x34815 x ^ { 3 } - 48
D) 15x64815 x ^ { 6 } - 48
E) 1516x93\frac { 15 } { 16 } x ^ { 9 } - 3
Question
Which of the following polynomials is a binomial of degree 3?

A) 3x3+9x3 x ^ { 3 } + 9 x
B) 3x3+9x2+6x+23 x ^ { 3 } + 9 x ^ { 2 } + 6 x + 2
C) 3x2+9x+63 x ^ { 2 } + 9 x + 6
D) 3x2+3x3 x ^ { 2 } + 3 x
E) 3x3+9x+63 x ^ { 3 } + 9 x + 6
Question
Evaluate the expression 2.6×1051.3×103\frac { 2.6 \times 10 ^ { 5 } } { 1.3 \times 10 ^ { 3 } } . Write the answer in scientific notation.

A) 2×1042 \times 10 ^ { 4 }
B) 2×1012 \times 10 ^ { 1 }
C) 2×1022 \times 10 ^ { 2 }
D) 2×1032 \times 10 ^ { 3 }
E) 2×1022 \times 10 ^ { - 2 }
Question
Find the sum (6x+2)+(8x6)( 6 x + 2 ) + ( 8 x - 6 ) .

A) 48x448 x - 4
B) 10x
C) 14x-4
D) 14x2414 x ^ { 2 } - 4
E) 10x210 x ^ { 2 }
Question
Evaluate the expression below without a calculator. 680000.00001\frac { 68000 } { 0.00001 }

A) 6,800,0006,800,000
B) 68,000,00068,000,000
C) 68,000,000,00068,000,000,000
D) 6,800,000,0006,800,000,000
E) 680,000,000,000680,000,000,000
Question
Add 5z4z2 to 6z2+6z5 z - 4 z ^ { 2 } \text { to } 6 z ^ { 2 } + 6 z .

A) 11z4+2z211 z ^ { 4 } + 2 z ^ { 2 }
B) 13z613 z ^ { 6 }
C) 2z2+11z2 z ^ { 2 } + 11 z
D) 11z2+2z11 z ^ { 2 } + 2 z
E) 2z4+11z22 z ^ { 4 } + 11 z ^ { 2 }
Question
Subtract 3y23y3 from 9y5+9y33 y ^ { 2 } - 3 y ^ { 3 } \text { from } 9 y ^ { 5 } + 9 y ^ { 3 } .

A) 6y3+126 y ^ { 3 } + 12
B) 9y512y3+3y2- 9 y ^ { 5 } - 12 y ^ { 3 } + 3 y ^ { 2 }
C) 6y312- 6 y ^ { 3 } - 12
D) 9y5+12y33y29 y ^ { 5 } + 12 y ^ { 3 } - 3 y ^ { 2 }
E) 6y5+12y36 y ^ { 5 } + 12 y ^ { 3 }
Question
Write the polynomial 2x6x4+4x2+7- 2 x - 6 x ^ { 4 } + 4 x ^ { 2 } + 7 in standard form. Find the leading coefficient of the polynomial.

A) 7+4x22x6x47 + 4 x ^ { 2 } - 2 x - 6 x ^ { 4 } leading coefficient: 2
B) 6x4+4x22x+7- 6 x ^ { 4 } + 4 x ^ { 2 } - 2 x + 7 leading coefficient: 7
C) 7+4x22x6x47 + 4 x ^ { 2 } - 2 x - 6 x ^ { 4 } leading coefficient: 7
D) 6x4+4x22x+7- 6 x ^ { 4 } + 4 x ^ { 2 } - 2 x + 7 leading coefficient: 6
E) 6x4+4x22x+7- 6 x ^ { 4 } + 4 x ^ { 2 } - 2 x + 7 leading coefficient: 2
Question
Write the number 0.001610.00161 in scientific notation.

A) 1.61×1041.61 \times 10 ^ { - 4 }
B) 1.61×1021.61 \times 10 ^ { - 2 }
C) 1.61×1031.61 \times 10 ^ { - 3 }
D) 1.61×1031.61 \times 10 ^ { 3 }
E) 1.61×1021.61 \times 10 ^ { 2 }
Question
An object is thrown upwards from the top of a building, which is 1296 feet tall. The initial velocity is 3 feet per second. Use the position function below to find the height of the object when t=2 seconds. s=16t2+3t+1296s = - 16 t ^ { 2 } + 3 t + 1296

A)58 feet
B)1354 feet
C)1226 feet
D)1238 feet
E)1366 feet
Question
Perform the indicated operations and simplify. Assume that all exponents represent positive integers. (2x3n+2x2n4xn)(5x2n+3xn2)\left( - 2 x ^ { 3 n } + 2 x ^ { 2 n } - 4 x ^ { n } \right) - \left( 5 x ^ { 2 n } + 3 x ^ { n } - 2 \right)

A) 2x3n3x2n7xn+2- 2 x ^ { 3 n } - 3 x ^ { 2 n } - 7 x ^ { n } + 2
B) 7x3n3x2n7xn+2- 7 x ^ { 3 n } - 3 x ^ { 2 n } - 7 x ^ { n } + 2
C) 7x3nx2n2xn2- 7 x ^ { 3 n } - x ^ { 2 n } - 2 x ^ { n } - 2
D) 2x3n+7x2nxn2- 2 x ^ { 3 n } + 7 x ^ { 2 n } - x ^ { n } - 2
E) 7x3nx2n2xn- 7 x ^ { 3 n } - x ^ { 2 n } - 2 x ^ { n }
Question
Perform the indicated operations and simplify. 2(4t2+7)8(t2+7)+6(6t2+7)2 \left( 4 t ^ { 2 } + 7 \right) - 8 \left( t ^ { 2 } + 7 \right) + 6 \left( 6 t ^ { 2 } + 7 \right)

A) 36t28436 t ^ { 2 } - 84
B) 36t236 t ^ { 2 }
C) 52t2+2852 t ^ { 2 } + 28
D) 36t284- 36 t ^ { 2 } - 84
E) 52t2+11252 t ^ { 2 } + 112
Question
Multiply: 9y(8y)9 y ( 8 y )

A) 72y272 y ^ { 2 }
B) 144y144 y
C) 72y
D) 17y
E) 17y217 y ^ { 2 }
Question
Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> 4.5 x 3 x

A) <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Multiply: 9x(2x65x3+8)- 9 x \left( 2 x ^ { 6 } - 5 x ^ { 3 } + 8 \right)

A) 18x7+45x472x- 18 x ^ { 7 } + 45 x ^ { 4 } - 72 x
B) 18x7+5x38x- 18 x ^ { 7 } + 5 x ^ { 3 } - 8 x
C) 18x745x4+72x- 18 x ^ { 7 } - 45 x ^ { 4 } + 72 x
D) 18x7+45x4+72x- 18 x ^ { 7 } + 45 x ^ { 4 } + 72 x
E) 18x75x3+8x- 18 x ^ { 7 } - 5 x ^ { 3 } + 8 x
Question
Find an expression for the perimeter of the figure. Assume all angles are right angles. <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> 18z 6z

A) <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Perform the indicated operations and simplify. (5x2+3x+17)(3x5x2+17)- \left( - 5 x ^ { 2 } + 3 x + 17 \right) - \left( 3 x - 5 x ^ { 2 } + 17 \right) .

A) 10x26x3410 x ^ { 2 } - 6 x - 34
B)0
C)-34
D) 6x34- 6 x - 34
E) 10x23410 x ^ { 2 } - 34
Question
Find the height in feet of a free-falling object at time t=5 using the function s=16t2+76t+118s = - 16 t ^ { 2 } + 76 t + 118 .

A)138 feet
B)98 feet
C)20 feet
D)662 feet
E)898 feet
Question
Multiply: (7y4)(3y3)\left( - 7 y ^ { 4 } \right) \left( - 3 y ^ { 3 } \right)

A) 21y12- 21 y ^ { 12 }
B) 10y7- 10 y ^ { 7 }
C) 21y721 y ^ { 7 }
D) 10y12- 10 y ^ { 12 }
E) 21y1221 y ^ { 12 }
Question
Find h(x)=f(x)+g(x)h ( x ) = f ( x ) + g ( x ) where f(x)=8x39x2+8f ( x ) = 8 x ^ { 3 } - 9 x ^ { 2 } + 8 and g(x)=10xx29x3g ( x ) = 10 - x - x ^ { 2 } - 9 x ^ { 3 }

A) h(x)=x310x2x+18h ( x ) = - x ^ { 3 } - 10 x ^ { 2 } - x + 18
B) h(x)=x68x2x2h ( x ) = - x ^ { 6 } - 8 x ^ { 2 } - x - 2
C) h(x)=17x38x2x2h ( x ) = 17 x ^ { 3 } - 8 x ^ { 2 } - x - 2
D) h(x)=17x38x2x2h ( x ) = - 17 x ^ { 3 } - 8 x ^ { 2 } - x - 2
E) h(x)=x310x2+x+18h ( x ) = - x ^ { 3 } - 10 x ^ { 2 } + x + 18
Question
Find the height in feet of a free-falling object at time t=4 using the function s=16t2+63t+144s = - 16 t ^ { 2 } + 63 t + 144 .

A)652 feet
B)148 feet
C)4 feet
D)364 feet
E)140 feet
Question
Multiply: 9u(5u2+2)- 9 u \left( - 5 u ^ { 2 } + 2 \right)

A) 45u21845 u ^ { 2 } - 18
B) 45u3+245 u ^ { 3 } + 2
C) 45u2+2u45 u ^ { 2 } + 2 u
D) 45u31845 u ^ { 3 } - 18
E) 45u318u45 u ^ { 3 } - 18 u
Question
Find the height in feet of a free-falling object at time t=2 using the function s=16t2+57t+53s = - 16 t ^ { 2 } + 57 t + 53 .

A)125 feet
B)231 feet
C)50 feet
D)3 feet
E)103 feet
Question
Perform the indicated operations and simplify. (8x2+5x+6)[(6x3+3x219)+(7x+11)]\left( 8 x ^ { 2 } + 5 x + 6 \right) - \left[ \left( - 6 x ^ { 3 } + 3 x ^ { 2 } - 19 \right) + ( - 7 x + 11 ) \right]

A) 6x3+11x2+12x+14- 6 x ^ { 3 } + 11 x ^ { 2 } + 12 x + 14
B) 6x3+5x22x26 x ^ { 3 } + 5 x ^ { 2 } - 2 x - 2
C) 6x3+11x22x26 x ^ { 3 } + 11 x ^ { 2 } - 2 x - 2
D) 6x3+5x2+12x+146 x ^ { 3 } + 5 x ^ { 2 } + 12 x + 14
E) 6x3+5x22x2- 6 x ^ { 3 } + 5 x ^ { 2 } - 2 x - 2
Question
Multiply the two polynomials using the FOIL Method. (x+15)(15x10)\left( x + \frac { 1 } { 5 } \right) ( 15 x - 10 )

A) 15x27x215 x ^ { 2 } - 7 x - 2
B) 15x27x+215 x ^ { 2 } - 7 x + 2
C) 15x2+7x+215 x ^ { 2 } + 7 x + 2
D) 15x2+13x+215 x ^ { 2 } + 13 x + 2
E) 15x213x215 x ^ { 2 } - 13 x - 2
Question
Multiply (8x8)(3x4)( 8 x - 8 ) ( 3 x - 4 ) and simplify.

A) 24x256x+3224 x ^ { 2 } - 56 x + 32
B) 24x+3224 x + 32
C) 24x216x+3224 x ^ { 2 } - 16 x + 32
D) 24x2+11x+3224 x ^ { 2 } + 11 x + 32
E) 24x2+3224 x ^ { 2 } + 32
Question
Find the difference (9x2+4x10)(4x+9x210)\left( 9 x ^ { 2 } + 4 x - 10 \right) - \left( 4 x + 9 x ^ { 2 } - 10 \right) .

A)-20
B)0
C) 8x208 x - 20
D) 18x2018 x - 20
E) 8x2+8x208 x ^ { 2 } + 8 x - 20
Question
Find the height in feet of a free-falling object at time t=0 using the function s=16t2+11t+30s = - 16 t ^ { 2 } + 11 t + 30 .

A)30 feet
B)32 feet
C)22 feet
D)60 feet
E)16 feet
Question
Perform the indicated operations and simplify. (7x4+3x2)+3(5x45x2)\left( 7 x ^ { 4 } + 3 x ^ { 2 } \right) + 3 \left( - 5 x ^ { 4 } - 5 x ^ { 2 } \right)

A) 8x412x2- 8 x ^ { 4 } - 12 x ^ { 2 }
B) 22x4+18x222 x ^ { 4 } + 18 x ^ { 2 }
C) 22x42x222 x ^ { 4 } - 2 x ^ { 2 }
D) 22x412x222 x ^ { 4 } - 12 x ^ { 2 }
E) 8x42x2- 8 x ^ { 4 } - 2 x ^ { 2 }
Question
Use a special product pattern to find the product (x+9)(x9)( x + 9 ) ( x - 9 ) .

A) x218x+81x ^ { 2 } - 18 x + 81
B) x281x ^ { 2 } - 81
C) x2+81x ^ { 2 } + 81
D) x2+18x+81x ^ { 2 } + 18 x + 81
E) x218x ^ { 2 } - 18
Question
Use a special product pattern to find the product (9x2+8)(9x28)\left( 9 x ^ { 2 } + 8 \right) \left( 9 x ^ { 2 } - 8 \right) .

A) 81x26481 x ^ { 2 } - 64
B) 81x272x+6481 x ^ { 2 } - 72 x + 64
C) 81x4144x2+6481 x ^ { 4 } - 144 x ^ { 2 } + 64
D) 81x417x26481 x ^ { 4 } - 17 x ^ { 2 } - 64
E) 81x46481 x ^ { 4 } - 64
Question
Use a vertical format to find the product of the two polynomials. (3x24x4)(3x24x1)\left( 3 x ^ { 2 } - 4 x - 4 \right) \left( 3 x ^ { 2 } - 4 x - 1 \right)

A) 9x524x3+x2+20x+49 x ^ { 5 } - 24 x ^ { 3 } + x ^ { 2 } + 20 x + 4
B) 9x424x3+x2+20x+49 x ^ { 4 } - 24 x ^ { 3 } + x ^ { 2 } + 20 x + 4
C) 9x424x3+20x+49 x ^ { 4 } - 24 x ^ { 3 } + 20 x + 4
D) 9x424x3+x2+49 x ^ { 4 } - 24 x ^ { 3 } + x ^ { 2 } + 4
E) 9x424x3+x2+20x9 x ^ { 4 } - 24 x ^ { 3 } + x ^ { 2 } + 20 x
Question
Use a special product pattern to find the product (7x+1)2( 7 x + 1 ) ^ { 2 } .

A) 49x2149 x ^ { 2 } - 1
B) 49x2+16x+149 x ^ { 2 } + 16 x + 1
C) 49x2+149 x ^ { 2 } + 1
D) 49x2+7x+149 x ^ { 2 } + 7 x + 1
E) 49x2+14x+149 x ^ { 2 } + 14 x + 1
Question
A closed rectangular box has dimensions of length n inches, width n+6 inches, and height n+2 inches. Write a polynomial function A(n)A ( n ) for the area of the largest side of the box.

A) A(n)=n22n+12A ( n ) = n ^ { 2 } - 2 n + 12
B) A(n)=n2+6n+12A ( n ) = - n ^ { 2 } + 6 n + 12
C) A(n)=n24n+12A ( n ) = n ^ { 2 } - 4 n + 12
D) A(n)=n2+4n+12A ( n ) = n ^ { 2 } + 4 n + 12
E) A(n)=n2+8n+12A ( n ) = n ^ { 2 } + 8 n + 12
Question
Simplify the expression. Assume that all variables represent positive integers. (xy+5)y5\left( x ^ { y + 5 } \right) ^ { y - 5 }

A) xy2s2x ^ { y^ { 2 } - s ^ { 2 } }
B) xy2+2y5+52x ^ { y ^ { 2 } + 2 y 5 + 5 ^ { 2 } }
C) xy2+s2x ^ { y ^ { 2 } + s ^ { 2 } }
D) xy22y552x ^ { y ^ { 2 } - 2y5 - 5 ^ { 2 } }
E) xy2+2y552x ^ { y ^ { 2 } + 2y5 - 5 ^ { 2 } }
Question
A closed rectangular box has dimensions of length n inches, width <strong>A closed rectangular box has dimensions of length n inches, width   inches, and height   inches. What is the volume if the shortest side is 7 inches long?</strong> A)189 cubic inches B)495 cubic inches C)320 cubic inches D)96 cubic inches E)1001 cubic inches <div style=padding-top: 35px> inches, and height <strong>A closed rectangular box has dimensions of length n inches, width   inches, and height   inches. What is the volume if the shortest side is 7 inches long?</strong> A)189 cubic inches B)495 cubic inches C)320 cubic inches D)96 cubic inches E)1001 cubic inches <div style=padding-top: 35px> inches. What is the volume if the shortest side is 7 inches long?

A)189 cubic inches
B)495 cubic inches
C)320 cubic inches
D)96 cubic inches
E)1001 cubic inches
Question
Multiply the polynomials and simplify. x2+5x6×3x+4\begin{array} { r } x ^ { 2 } + 5 x - 6 \\\times \quad 3 x + 4 \\\hline\end{array}

A) 3x3+19x2+5x63 x ^ { 3 } + 19 x ^ { 2 } + 5 x - 6
B) 3x3+4x2+2x243 x ^ { 3 } + 4 x ^ { 2 } + 2 x - 24
C) 3x3+19x2+2x243 x ^ { 3 } + 19 x ^ { 2 } + 2 x - 24
D) 3x3+4x2+20x63 x ^ { 3 } + 4 x ^ { 2 } + 20 x - 6
E) 3x3+20x263 x ^ { 3 } + 20 x ^ { 2 } - 6
Question
Write a simplified expression for the area of the shaded region of the figure below.
 <strong>Write a simplified expression for the area of the shaded region of the figure below.  </strong> A)  \text { 3. } 5 x ^ { 2 } + 14 x  B)  4.5 x ^ { 2 } + 14.5 x  C)  3.5 x ^ { 2 } + 10.5 x  D)  4.5 x ^ { 2 } + 9 x  E)  3.5 x ^ { 2 } + 7 x  <div style=padding-top: 35px>

A)  3. 5x2+14x\text { 3. } 5 x ^ { 2 } + 14 x
B) 4.5x2+14.5x4.5 x ^ { 2 } + 14.5 x
C) 3.5x2+10.5x3.5 x ^ { 2 } + 10.5 x
D) 4.5x2+9x4.5 x ^ { 2 } + 9 x
E) 3.5x2+7x3.5 x ^ { 2 } + 7 x
Question
Expand (x3)3( x - 3 ) ^ { 3 } and simplify.

A) x327x ^ { 3 } - 27
B) x39x2+27x27x ^ { 3 } - 9 x ^ { 2 } + 27 x - 27
C) x3+27x29x27x ^ { 3 } + 27 x ^ { 2 } - 9 x - 27
D) x327x2+9x27x ^ { 3 } - 27 x ^ { 2 } + 9 x - 27
E) x33x2+9x27x ^ { 3 } - 3 x ^ { 2 } + 9 x - 27
Question
Use a special product formula to find the product. (0.1x+0.4)(0.1x0.4)( 0.1 x + 0.4 ) ( 0.1 x - 0.4 )

A) 0.01x20.160.01 x ^ { 2 } - 0.16
B) 0.01x20.08x+0.160.01 x ^ { 2 } - 0.08 x + 0.16
C) 0.01x2+0.160.01 x ^ { 2 } + 0.16
D) 0.01x2+0.08x0.160.01 x ^ { 2 } + 0.08 x - 0.16
E) 0.01x20.04x+0.160.01 x ^ { 2 } - 0.04 x + 0.16
Question
Use a special product pattern to find the product (x8)2( x - 8 ) ^ { 2 } .

A) x216x+64x ^ { 2 } - 16 x + 64
B) x264x ^ { 2 } - 64
C) x2+64x ^ { 2 } + 64
D) x2+16x+64x ^ { 2 } + 16 x + 64
E) x28x+64x ^ { 2 } - 8 x + 64
Question
A closed rectangular box has dimensions of length n inches, width n-4 inches, and height n+2 inches. Write a polynomial function V(n)V ( n ) that represents the volume of the box.

A) V(n)=n3+2n28V ( n ) = n ^ { 3 } + 2 n ^ { 2 } - 8
B) V(n)=n3+2n28nV ( n ) = n ^ { 3 } + 2 n ^ { 2 } - 8 n
C) V(n)=n32n28nV ( n ) = n ^ { 3 } - 2 n ^ { 2 } - 8 n
D) V(n)=n34n28nV ( n ) = n ^ { 3 } - 4 n ^ { 2 } - 8 n
E) V(n)=n3+6n28nV ( n ) = n ^ { 3 } + 6 n ^ { 2 } - 8 n
Question
Use a special product pattern to find the product [9u+(v+10)]2[ 9 u + ( v + 10 ) ] ^ { 2 } .

A) 81u2+v2+18uv+180u+20v+10081 u ^ { 2 } + v ^ { 2 } + 18 u v + 180 u + 20 v + 100
B) 81u2+v2+20v+10081 u ^ { 2 } + v ^ { 2 } + 20 v + 100
C) 81u2+v2+180u+20v+10081 u ^ { 2 } + v ^ { 2 } + 180 u + 20 v + 100
D) 81u2+v2+10081 u ^ { 2 } + v ^ { 2 } + 100
E) 81u2+v2+18uv+20v+10081 u ^ { 2 } + v ^ { 2 } + 18 u v + 20 v + 100
Question
A closed rectangular box has dimensions of length n inches, width n+4 inches, and height n+5 inches. Write a polynomial function A(n)A ( n ) for the area of the largest side of the box if dimensions increase by 6 inches.

A) A(n)=n2+4n116A ( n ) = n ^ { 2 } + 4 n - 116
B) A(n)=n211n+110A ( n ) = n ^ { 2 } - 11 n + 110
C) A(n)=n2+4n+110A ( n ) = n ^ { 2 } + 4 n + 110
D) A(n)=n2+21n+110A ( n ) = n ^ { 2 } + 21 n + 110
E) A(n)=n2+11n+110A ( n ) = n ^ { 2 } + 11 n + 110
Question
Multiply (3x+5)(x2+9x2)( 3 x + 5 ) \left( x ^ { 2 } + 9 x - 2 \right) and simplify.

A) 3x3+32x2+9x23 x ^ { 3 } + 32 x ^ { 2 } + 9 x - 2
B) 3x3+5x2+45x23 x ^ { 3 } + 5 x ^ { 2 } + 45 x - 2
C) 3x3+45x223 x ^ { 3 } + 45 x ^ { 2 } - 2
D) 3x3+5x2+39x103 x ^ { 3 } + 5 x ^ { 2 } + 39 x - 10
E) 3x3+32x2+39x103 x ^ { 3 } + 32 x ^ { 2 } + 39 x - 10
Question
Use a special product pattern to find the product. (u(v2))(u+(v2))( u - ( v - 2 ) ) ( u + ( v - 2 ) )

A) u2+(v2)2u ^ { 2 } + ( v - 2 ) ^ { 2 }
B) u2(v2)2u ^ { 2 } - ( v - 2 ) ^ { 2 }
C) u22u(v2)+(v2)2u ^ { 2 } - 2 u ( v - 2 ) + ( v - 2 ) ^ { 2 }
D) u22u(v2)(v2)2u ^ { 2 } - 2 u ( v - 2 ) - ( v - 2 ) ^ { 2 }
E) u2+2u(v2)(v2)2u ^ { 2 } + 2 u ( v - 2 ) - ( v - 2 ) ^ { 2 }
Question
Multiply (x2+4x4)(5x2+2)\left( x ^ { 2 } + 4 x - 4 \right) \left( 5 x ^ { 2 } + 2 \right) and simplify.

A) 5x4+8x85 x ^ { 4 } + 8 x - 8
B) 5x4+24x3+8x85 x ^ { 4 } + 24 x ^ { 3 } + 8 x - 8
C) 5x4+20x318x2+8x85 x ^ { 4 } + 20 x ^ { 3 } - 18 x ^ { 2 } + 8 x - 8
D) 5x4+20x3+2x285 x ^ { 4 } + 20 x ^ { 3 } + 2 x ^ { 2 } - 8
E) 5x4+24x320x2+8x85 x ^ { 4 } + 24 x ^ { 3 } - 20 x ^ { 2 } + 8 x - 8
Question
After 2 years, an investment of $1500 compounded annually at interest rate r will yield 1500(1+r)21500 ( 1 + r ) ^ { 2 } . Find this product.

A) r2+2r+1500r ^ { 2 } + 2 r + 1500
B) 1500r2+3000r+15001500 r ^ { 2 } + 3000 r + 1500
C) 1500r2+1500r+15001500 r ^ { 2 } + 1500 r + 1500
D) 1500r2+15001500 r ^ { 2 } + 1500
E) 3000r2+1500r+15003000 r ^ { 2 } + 1500 r + 1500
Question
Use a special product pattern to find the product (7x+2)(7x2)( 7 x + 2 ) ( 7 x - 2 ) .

A) 49x2449 x ^ { 2 } - 4
B) 49x228x+449 x ^ { 2 } - 28 x + 4
C) 49x2+449 x ^ { 2 } + 4
D) 49x29x449 x ^ { 2 } - 9 x - 4
E) 49x214x+449 x ^ { 2 } - 14 x + 4
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/158
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Polynomials and Factoring
1
Rewrite the expression 12z5\frac { 1 } { 2 z ^ { - 5 } } using only positive exponents. Assume that z is not zero.

A) 32z532 z ^ { 5 }
B) z52- \frac { z ^ { 5 } } { 2 }
C) z52\frac { z ^ { 5 } } { 2 }
D) 2z52 z ^ { 5 }
E) - 2z52 z ^ { 5 }
z52\frac { z ^ { 5 } } { 2 }
2
Simplify the expression (st)8(s6t)2( s t ) ^ { 8 } \left( s ^ { 6 } t \right) ^ { 2 } .

A) s44t32s ^ { 44 } t ^ { 32 }
B) s37t16s ^ { 37 } t ^ { 16 }
C) s16t10s ^ { 16 } t ^ { 10 }
D) s96t16s ^ { 96 } t ^ { 16 }
E) s20t10s ^ { 20 } t ^ { 10 }
s20t10s ^ { 20 } t ^ { 10 }
3
Rewrite the expression 3x43 x ^ { - 4 } using only positive exponents. Assume that x is not zero.

A) 181x4\frac { 1 } { 81 x ^ { 4 } }
B) 3x4\frac { 3 } { x ^ { 4 } }
C) 13x4\frac { 1 } { 3 x ^ { 4 } }
D) 3x4- \frac { 3 } { x ^ { 4 } }
E) 181x4- \frac { 1 } { 81 x ^ { 4 } }
3x4\frac { 3 } { x ^ { 4 } }
4
Simplify the expression 56u9v958u9v3\frac { 5 ^ { 6 } u ^ { 9 } v ^ { 9 } } { 5 ^ { 8 } u ^ { 9 } v ^ { 3 } } . Assume that neither u nor v is zero.

A) uv610\frac { u v ^ { 6 } } { 10 }
B) v625\frac { v ^ { 6 } } { 25 }
C) v610\frac { v ^ { 6 } } { 10 }
D) v325\frac { v ^ { 3 } } { 25 }
E) uv310\frac { u v ^ { 3 } } { 10 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
5
Use the rules of exponents to simplify the expression below. x4n+4y5n5x3n+2yn2\frac { x ^ { 4 n + 4 } y ^ { 5 n - 5 } } { x ^ { 3 n + 2 } y ^ { n - 2 } }

A) xn+2y4n7x ^ { n + 2 } y ^ { 4 n - 7 }
B) xn+6y4n3x ^ { n + 6 } y ^ { 4 n - 3 }
C) x7n+2y4x3x ^ { 7 n + 2 } y ^ { 4 x - 3 }
D) xn+2y4n3x ^ { n + 2 } y ^ { 4 n - 3 }
E) x7n+2y4n7x ^ { 7n+ 2 } y ^ { 4 n - 7 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
6
Use the rules of exponents to simplify the expression below. [(2x2)(2x)2(2x2)(2x)]2\left[ \frac { \left( 2 x ^ { 2 } \right) ( 2 x ) ^ { 2 } } { \left( - 2 x ^ { 2 } \right) ( 2 x ) } \right] ^ { 2 }

A) 4x24 x ^ { 2 }
B) 6x5- 6 x ^ { 5 }
C) 3x23 x ^ { 2 }
D) 14x714 x ^ { 7 }
E) 5x65 x ^ { 6 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
7
Use the rules of exponents to simplify the expression (2x5y5)3(2x5y5)3\left( 2 x ^ { - 5 } y ^ { 5 } \right) ^ { - 3 } \left( 2 x ^ { - 5 } y ^ { 5 } \right) ^ { 3 } using only positive exponents. Assume that no variable is zero.

A) 64y30x30\frac { 64 y ^ { 30 } } { x ^ { 30 } }
B)1
C) 64x30y30\frac { 64 x ^ { 30 } } { y ^ { 30 } }
D) 4y30x30\frac { - 4 y ^ { 30 } } { x ^ { 30 } }
E) 64
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
8
Find the value of (67)2\left( \frac { 6 } { 7 } \right) ^ { - 2 } .

A) 4936- \frac { 49 } { 36 }
B) 4936\frac { 49 } { 36 }
C) 3649\frac { 36 } { 49 }
D) 367\frac { 36 } { 7 }
E) - 3649\frac { 36 } { 49 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
9
Use the rules of exponents to simplify the expression below.
[(3x2)(3x)2(3x2)(3x)]3\left[ \frac { \left( 3 x ^ { 2 } \right) ( 3 x ) ^ { 2 } } { \left( - 3 x ^ { 2 } \right) ( 3 x ) } \right] ^ { 3 }

A) 26x7- 26 x ^ { 7 }
B) 28x3- 28 x ^ { 3 }
C) 27x3- 27 x ^ { 3 }
D) 37x6- 37 x ^ { 6 }
E) 17x8- 17 x ^ { 8 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
10
Rewrite the expression 3w35z3\frac { 3 w ^ { 3 } } { 5 z ^ { - 3 } } using only positive exponents. Assume that z is not zero.

A) 27w3z35\frac { 27 w ^ { 3 } z ^ { 3 } } { 5 }
B) 375w3z3375 w ^ { 3 } z ^ { 3 }
C) 15w3z315 w ^ { 3 } z ^ { 3 }
D) 3w9z95\frac { 3 w ^ { 9 } z ^ { 9 } } { 5 }
E) 3w3z35\frac { 3 w ^ { 3 } z ^ { 3 } } { 5 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
11
Evaluate the expression (5x3y)1\left( \frac { 5 x } { 3 y } \right) ^ { - 1 } when x=-8 and y=9 .

A) 2740- \frac { 27 } { 40 }
B) 4027\frac { 40 } { 27 }
C) 2740\frac { 27 } { 40 }
D) 4027- \frac { 40 } { 27 }
E) 158- \frac { 15 } { 8 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
12
Find the value of (2)5( - 2 ) ^ { - 5 } .

A) 132\frac { 1 } { 32 }
B) -10
C) 10
D) 7,57,5
E) - 132\frac { 1 } { 32 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
13
Simplify the expression 64u64u2\frac { 64 u ^ { 6 } } { 4 u ^ { 2 } } . Assume that u is not zero.

A) 16u316 u ^ { 3 }
B) 8u48 u ^ { 4 }
C) 16u416 u ^ { 4 }
D) 8u38 u ^ { 3 }
E) 8u88 u ^ { 8 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
14
Rewrite the expression using only positive exponents, and simplify. Assume that any variables in the expression are nonzero. s1+r1s1r1\frac { s ^ { - 1 } + r ^ { - 1 } } { s ^ { - 1 } - r ^ { - 1 } }

A) rsr+s\frac { r - s } { r + s }
B) s2+r2s ^ { 2 } + r ^ { 2 }
C) r+srs\frac { r + s } { r - s }
D) s+rsr\frac { s + r } { s - r }
E) srs+r\frac { s - r } { s + r }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
15
Use the rules of exponents to simplify the expression below. x4ny3xn1xnyn4\frac { x ^ { 4 n } y ^ { 3 xn - 1 } } { x ^ { n } y ^ { n - 4 } }

A) x3y2x ^ { 3 } y ^ { 2 }
B) x3y2n+3x ^ { 3 } y ^ { 2 n + 3 }
C) x3ny2n+3x ^ { 3 n } y ^ { 2 n + 3 }
D) x2y2n+3x ^ { 2 } y ^ { 2 n + 3 }
E) x2ny2n+3x ^ { 2 n } y ^ { 2 n + 3 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
16
Evaluate the expression (9+34)0\left( 9 + 3 ^ { - 4 } \right) ^ { 0 } .

A) 73081\frac { 730 } { 81 }
B)0
C) 9
D)1
E) 181\frac { 1 } { 81 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
17
Simplify the expression 10(uv2)3(5u)3v4\frac { 10 \left( u v ^ { 2 } \right) ^ { 3 } } { ( 5 u ) ^ { 3 } v ^ { 4 } } . Assume that neither u nor v is zero.

A) 2v225u2\frac { 2 v ^ { 2 } } { 25 u ^ { 2 } }
B) 2v225\frac { 2 v ^ { 2 } } { 25 }
C) 2v45u2\frac { 2 v ^ { 4 } } { 5 u ^ { 2 } }
D) 2v5\frac { 2 v } { 5 }
E) 2v2\frac { 2 } { v ^ { 2 } }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
18
Simplify the expression (9x8)x4\left( - 9 x ^ { 8 } \right) x ^ { 4 } .

A) 9x32- 9 x ^ { 32 }
B) 9x16- 9 x ^ { 16 }
C) 9x129 x ^ { - 12 }
D) 9x12- 9 x ^ { 12 }
E) 9x329 x ^ { - 32 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
19
Rewrite the expression using only positive exponents, and simplify. Assume that any variables in the expression are nonzero.
(2a3b2)3b(10a4b)4\frac { \left( 2 a ^ { - 3 } b ^ { 2 } \right) ^ { 3 } b } { \left( 10 a ^ { 4 } b \right) ^ { 4 } }

A) b35a25\frac { b ^ { 3 } } { 5 a ^ { 25 } }
B) b31,250a25\frac { b ^ { 3 } } { 1,250 a ^ { 25 } }
C) b35a24\frac { b ^ { 3 } } { 5 a ^ { 24 } }
D) b25a24\frac { b ^ { 2 } } { 5 a ^ { 24 } }
E) b21,250a25\frac { b ^ { 2 } } { 1,250 a ^ { 25 } }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
20
Use the rules of exponents to simplify the expression (2x4y6)2\left( 2 x ^ { 4 } y ^ { 6 } \right) ^ { - 2 } using only positive exponents. Assume that neither x nor y is 0.

A) 2x2y42 x ^ { 2 } y ^ { 4 }
B) 14x8y12\frac { 1 } { 4 x ^ { 8 } y ^ { 12 } }
C) 12x8y12\frac { 1 } { 2 x ^ { 8 } y ^ { 12 } }
D) 4x2y44 x ^ { 2 } y ^ { 4 }
E) 2x8y12\frac { 2 } { x ^ { 8 } y ^ { 12 } }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
21
The masses of Mercury and the sun are approximately 3.3×10233.3 \times 10 ^ { 23 } kilograms and 1.99×10301.99 \times 10 ^ { 30 } kilograms, respectively. The mass of the sun is approximately how many times that of Mercury?

A) 3,030 times
B) 6,030,3036,030,303 times
C) 16,470 times
D) 3,919 times
E) 84,200 times
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
22
Write 9×1059 \times 10 ^ { - 5 } in decimal notation.

A) 0.000090.00009
B) 900,000900,000
C) 9,000,0009,000,000
D) 0.0000090.000009
E) 0.00090.0009
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
23
Find the sum (9x28x+12)+(2x35x212)\left( - 9 x ^ { 2 } - 8 x + 12 \right) + \left( - 2 x ^ { 3 } - 5 x ^ { 2 } - 12 \right) .

A) 2x314x28x- 2 x ^ { 3 } - 14 x ^ { 2 } - 8 x
B) 11x513x3- 11 x ^ { 5 } - 13 x ^ { 3 }
C) 24x8- 24 x ^ { 8 }
D) 11x513x3+24- 11 x ^ { 5 } - 13 x ^ { 3 } + 24
E) 11x313x2+24- 11 x ^ { 3 } - 13 x ^ { 2 } + 24
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
24
Find the difference (9x+8)(2x+4)( - 9 x + 8 ) - ( 2 x + 4 ) .

A) -11 x+2
B) -7x+12
C) 7x2+12- 7 x ^ { 2 } + 12
D) -11 x+4
E) 7x2+4- 7 x ^ { 2 } + 4
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
25
Is the polynomial below a monomial, binomial, trinomial, or none of these? 4x34 x ^ { 3 }

A)binomial
B)monomial
C)none of these
D)trinomial
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
26
Find the sum of the polynomials. 6x2+7x27x2+2x26x2\begin{array} { r } 6 x ^ { 2 } + 7 x - 2 \\7 x ^ { 2 } + 2 x - 2 \\- 6 x - 2 \\\hline\end{array}

A) 13x4+3x2613 x ^ { 4 } + 3 x ^ { 2 } - 6
B) 13x2+3x213 x ^ { 2 } + 3 x - 2
C) 16x7616 x ^ { 7 } - 6
D) 13x4+3x2213 x ^ { 4 } + 3 x ^ { 2 } - 2
E) 13x2+3x613 x ^ { 2 } + 3 x - 6
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
27
Find the sum of the polynomials. x4+9x3+5x+78x32x7\begin{array} { r } x ^ { 4 } + 9 x ^ { 3 } + 5 x + 7 \\8 x ^ { 3 } - 2 x - 7\\\hline\end{array}

A) x4+17x3+3xx ^ { 4 } + 17 x ^ { 3 } + 3 x
B) 17x3+3x17 x ^ { 3 } + 3 x
C) 17x6+x4+3x217 x ^ { 6 } + x ^ { 4 } + 3 x ^ { 2 }
D) x4+17x3+3x+14x ^ { 4 } + 17 x ^ { 3 } + 3 x + 14
E) 17x6+x4+3x21417 x ^ { 6 } + x ^ { 4 } + 3 x ^ { 2 } - 14
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
28
Find the difference 2(6u28)- 2 - \left( - 6 u ^ { 2 } - 8 \right) .

A) 6u2106 u ^ { 2 } - 10
B) 6u2+66 u ^ { 2 } + 6
C) 4u2104 u ^ { 2 } - 10
D) 4u2+64 u ^ { 2 } + 6
E) 6u210- 6 u ^ { 2 } - 10
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
29
Write the number 5.92×1035.92 \times 10 ^ { - 3 } in decimal notation.

A) 59,20059,200
B) 59.2
C) 0.005920.00592
D) 592,000592,000
E) 0.592
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
30
Find the difference of the polynomials. x4+7x3+5x7(3x3+2x+7)\begin{array} { l } x ^ { 4 } + 7 x ^ { 3 } + 5 x - 7 \\- \left( - 3 x ^ { 3 } + 2 x + 7 \right)\\\hline\end{array}

A) x4+10x3+3x14x ^ { 4 } + 10 x ^ { 3 } + 3 x - 14
B) x4+10x3+7x14x ^ { 4 } + 10 x ^ { 3 } + 7 x - 14
C) x4+10x3+3x+14x ^ { 4 } + 10 x ^ { 3 } + 3 x + 14
D) x4+4x3+3x+14x ^ { 4 } + 4 x ^ { 3 } + 3 x + 14
E) x4+4x3+7x+14x ^ { 4 } + 4 x ^ { 3 } + 7 x + 14
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
31
Find the difference (6x2+4x12)(4x3+2x212)\left( - 6 x ^ { 2 } + 4 x - 12 \right) - \left( 4 x ^ { 3 } + 2 x ^ { 2 } - 12 \right) .

A) 4x38x2+4x- 4 x ^ { 3 } - 8 x ^ { 2 } + 4 x
B) 4x34x2+4x- 4 x ^ { 3 } - 4 x ^ { 2 } + 4 x
C) 10x3+2x224- 10 x ^ { 3 } + 2 x ^ { 2 } - 24
D) 10x3+2x2- 10 x ^ { 3 } + 2 x ^ { 2 }
E) 4x34x224- 4 x ^ { 3 } - 4 x ^ { 2 } - 24
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
32
Find the sum (58x3+2)+(516x35)\left( \frac { 5 } { 8 } x ^ { 3 } + 2 \right) + \left( \frac { 5 } { 16 } x ^ { 3 } - 5 \right) .

A) 1516x33\frac { 15 } { 16 } x ^ { 3 } - 3
B) 1516x63\frac { 15 } { 16 } x ^ { 6 } - 3
C) 15x34815 x ^ { 3 } - 48
D) 15x64815 x ^ { 6 } - 48
E) 1516x93\frac { 15 } { 16 } x ^ { 9 } - 3
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
33
Which of the following polynomials is a binomial of degree 3?

A) 3x3+9x3 x ^ { 3 } + 9 x
B) 3x3+9x2+6x+23 x ^ { 3 } + 9 x ^ { 2 } + 6 x + 2
C) 3x2+9x+63 x ^ { 2 } + 9 x + 6
D) 3x2+3x3 x ^ { 2 } + 3 x
E) 3x3+9x+63 x ^ { 3 } + 9 x + 6
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
34
Evaluate the expression 2.6×1051.3×103\frac { 2.6 \times 10 ^ { 5 } } { 1.3 \times 10 ^ { 3 } } . Write the answer in scientific notation.

A) 2×1042 \times 10 ^ { 4 }
B) 2×1012 \times 10 ^ { 1 }
C) 2×1022 \times 10 ^ { 2 }
D) 2×1032 \times 10 ^ { 3 }
E) 2×1022 \times 10 ^ { - 2 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
35
Find the sum (6x+2)+(8x6)( 6 x + 2 ) + ( 8 x - 6 ) .

A) 48x448 x - 4
B) 10x
C) 14x-4
D) 14x2414 x ^ { 2 } - 4
E) 10x210 x ^ { 2 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
36
Evaluate the expression below without a calculator. 680000.00001\frac { 68000 } { 0.00001 }

A) 6,800,0006,800,000
B) 68,000,00068,000,000
C) 68,000,000,00068,000,000,000
D) 6,800,000,0006,800,000,000
E) 680,000,000,000680,000,000,000
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
37
Add 5z4z2 to 6z2+6z5 z - 4 z ^ { 2 } \text { to } 6 z ^ { 2 } + 6 z .

A) 11z4+2z211 z ^ { 4 } + 2 z ^ { 2 }
B) 13z613 z ^ { 6 }
C) 2z2+11z2 z ^ { 2 } + 11 z
D) 11z2+2z11 z ^ { 2 } + 2 z
E) 2z4+11z22 z ^ { 4 } + 11 z ^ { 2 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
38
Subtract 3y23y3 from 9y5+9y33 y ^ { 2 } - 3 y ^ { 3 } \text { from } 9 y ^ { 5 } + 9 y ^ { 3 } .

A) 6y3+126 y ^ { 3 } + 12
B) 9y512y3+3y2- 9 y ^ { 5 } - 12 y ^ { 3 } + 3 y ^ { 2 }
C) 6y312- 6 y ^ { 3 } - 12
D) 9y5+12y33y29 y ^ { 5 } + 12 y ^ { 3 } - 3 y ^ { 2 }
E) 6y5+12y36 y ^ { 5 } + 12 y ^ { 3 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
39
Write the polynomial 2x6x4+4x2+7- 2 x - 6 x ^ { 4 } + 4 x ^ { 2 } + 7 in standard form. Find the leading coefficient of the polynomial.

A) 7+4x22x6x47 + 4 x ^ { 2 } - 2 x - 6 x ^ { 4 } leading coefficient: 2
B) 6x4+4x22x+7- 6 x ^ { 4 } + 4 x ^ { 2 } - 2 x + 7 leading coefficient: 7
C) 7+4x22x6x47 + 4 x ^ { 2 } - 2 x - 6 x ^ { 4 } leading coefficient: 7
D) 6x4+4x22x+7- 6 x ^ { 4 } + 4 x ^ { 2 } - 2 x + 7 leading coefficient: 6
E) 6x4+4x22x+7- 6 x ^ { 4 } + 4 x ^ { 2 } - 2 x + 7 leading coefficient: 2
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
40
Write the number 0.001610.00161 in scientific notation.

A) 1.61×1041.61 \times 10 ^ { - 4 }
B) 1.61×1021.61 \times 10 ^ { - 2 }
C) 1.61×1031.61 \times 10 ^ { - 3 }
D) 1.61×1031.61 \times 10 ^ { 3 }
E) 1.61×1021.61 \times 10 ^ { 2 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
41
An object is thrown upwards from the top of a building, which is 1296 feet tall. The initial velocity is 3 feet per second. Use the position function below to find the height of the object when t=2 seconds. s=16t2+3t+1296s = - 16 t ^ { 2 } + 3 t + 1296

A)58 feet
B)1354 feet
C)1226 feet
D)1238 feet
E)1366 feet
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
42
Perform the indicated operations and simplify. Assume that all exponents represent positive integers. (2x3n+2x2n4xn)(5x2n+3xn2)\left( - 2 x ^ { 3 n } + 2 x ^ { 2 n } - 4 x ^ { n } \right) - \left( 5 x ^ { 2 n } + 3 x ^ { n } - 2 \right)

A) 2x3n3x2n7xn+2- 2 x ^ { 3 n } - 3 x ^ { 2 n } - 7 x ^ { n } + 2
B) 7x3n3x2n7xn+2- 7 x ^ { 3 n } - 3 x ^ { 2 n } - 7 x ^ { n } + 2
C) 7x3nx2n2xn2- 7 x ^ { 3 n } - x ^ { 2 n } - 2 x ^ { n } - 2
D) 2x3n+7x2nxn2- 2 x ^ { 3 n } + 7 x ^ { 2 n } - x ^ { n } - 2
E) 7x3nx2n2xn- 7 x ^ { 3 n } - x ^ { 2 n } - 2 x ^ { n }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
43
Perform the indicated operations and simplify. 2(4t2+7)8(t2+7)+6(6t2+7)2 \left( 4 t ^ { 2 } + 7 \right) - 8 \left( t ^ { 2 } + 7 \right) + 6 \left( 6 t ^ { 2 } + 7 \right)

A) 36t28436 t ^ { 2 } - 84
B) 36t236 t ^ { 2 }
C) 52t2+2852 t ^ { 2 } + 28
D) 36t284- 36 t ^ { 2 } - 84
E) 52t2+11252 t ^ { 2 } + 112
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
44
Multiply: 9y(8y)9 y ( 8 y )

A) 72y272 y ^ { 2 }
B) 144y144 y
C) 72y
D) 17y
E) 17y217 y ^ { 2 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
45
Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)   4.5 x 3 x

A) <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)
B) <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)
C) <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)
D) <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)
E) <strong>Find an expression for the area of the figure. Assume all angles are right angles. 6 x 9 x   4.5 x 3 x</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
46
Multiply: 9x(2x65x3+8)- 9 x \left( 2 x ^ { 6 } - 5 x ^ { 3 } + 8 \right)

A) 18x7+45x472x- 18 x ^ { 7 } + 45 x ^ { 4 } - 72 x
B) 18x7+5x38x- 18 x ^ { 7 } + 5 x ^ { 3 } - 8 x
C) 18x745x4+72x- 18 x ^ { 7 } - 45 x ^ { 4 } + 72 x
D) 18x7+45x4+72x- 18 x ^ { 7 } + 45 x ^ { 4 } + 72 x
E) 18x75x3+8x- 18 x ^ { 7 } - 5 x ^ { 3 } + 8 x
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
47
Find an expression for the perimeter of the figure. Assume all angles are right angles. <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)   18z 6z

A) <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)
B) <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)
C) <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)
D) <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)
E) <strong>Find an expression for the perimeter of the figure. Assume all angles are right angles.   18z 6z</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
48
Perform the indicated operations and simplify. (5x2+3x+17)(3x5x2+17)- \left( - 5 x ^ { 2 } + 3 x + 17 \right) - \left( 3 x - 5 x ^ { 2 } + 17 \right) .

A) 10x26x3410 x ^ { 2 } - 6 x - 34
B)0
C)-34
D) 6x34- 6 x - 34
E) 10x23410 x ^ { 2 } - 34
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
49
Find the height in feet of a free-falling object at time t=5 using the function s=16t2+76t+118s = - 16 t ^ { 2 } + 76 t + 118 .

A)138 feet
B)98 feet
C)20 feet
D)662 feet
E)898 feet
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
50
Multiply: (7y4)(3y3)\left( - 7 y ^ { 4 } \right) \left( - 3 y ^ { 3 } \right)

A) 21y12- 21 y ^ { 12 }
B) 10y7- 10 y ^ { 7 }
C) 21y721 y ^ { 7 }
D) 10y12- 10 y ^ { 12 }
E) 21y1221 y ^ { 12 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
51
Find h(x)=f(x)+g(x)h ( x ) = f ( x ) + g ( x ) where f(x)=8x39x2+8f ( x ) = 8 x ^ { 3 } - 9 x ^ { 2 } + 8 and g(x)=10xx29x3g ( x ) = 10 - x - x ^ { 2 } - 9 x ^ { 3 }

A) h(x)=x310x2x+18h ( x ) = - x ^ { 3 } - 10 x ^ { 2 } - x + 18
B) h(x)=x68x2x2h ( x ) = - x ^ { 6 } - 8 x ^ { 2 } - x - 2
C) h(x)=17x38x2x2h ( x ) = 17 x ^ { 3 } - 8 x ^ { 2 } - x - 2
D) h(x)=17x38x2x2h ( x ) = - 17 x ^ { 3 } - 8 x ^ { 2 } - x - 2
E) h(x)=x310x2+x+18h ( x ) = - x ^ { 3 } - 10 x ^ { 2 } + x + 18
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
52
Find the height in feet of a free-falling object at time t=4 using the function s=16t2+63t+144s = - 16 t ^ { 2 } + 63 t + 144 .

A)652 feet
B)148 feet
C)4 feet
D)364 feet
E)140 feet
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
53
Multiply: 9u(5u2+2)- 9 u \left( - 5 u ^ { 2 } + 2 \right)

A) 45u21845 u ^ { 2 } - 18
B) 45u3+245 u ^ { 3 } + 2
C) 45u2+2u45 u ^ { 2 } + 2 u
D) 45u31845 u ^ { 3 } - 18
E) 45u318u45 u ^ { 3 } - 18 u
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
54
Find the height in feet of a free-falling object at time t=2 using the function s=16t2+57t+53s = - 16 t ^ { 2 } + 57 t + 53 .

A)125 feet
B)231 feet
C)50 feet
D)3 feet
E)103 feet
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
55
Perform the indicated operations and simplify. (8x2+5x+6)[(6x3+3x219)+(7x+11)]\left( 8 x ^ { 2 } + 5 x + 6 \right) - \left[ \left( - 6 x ^ { 3 } + 3 x ^ { 2 } - 19 \right) + ( - 7 x + 11 ) \right]

A) 6x3+11x2+12x+14- 6 x ^ { 3 } + 11 x ^ { 2 } + 12 x + 14
B) 6x3+5x22x26 x ^ { 3 } + 5 x ^ { 2 } - 2 x - 2
C) 6x3+11x22x26 x ^ { 3 } + 11 x ^ { 2 } - 2 x - 2
D) 6x3+5x2+12x+146 x ^ { 3 } + 5 x ^ { 2 } + 12 x + 14
E) 6x3+5x22x2- 6 x ^ { 3 } + 5 x ^ { 2 } - 2 x - 2
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
56
Multiply the two polynomials using the FOIL Method. (x+15)(15x10)\left( x + \frac { 1 } { 5 } \right) ( 15 x - 10 )

A) 15x27x215 x ^ { 2 } - 7 x - 2
B) 15x27x+215 x ^ { 2 } - 7 x + 2
C) 15x2+7x+215 x ^ { 2 } + 7 x + 2
D) 15x2+13x+215 x ^ { 2 } + 13 x + 2
E) 15x213x215 x ^ { 2 } - 13 x - 2
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
57
Multiply (8x8)(3x4)( 8 x - 8 ) ( 3 x - 4 ) and simplify.

A) 24x256x+3224 x ^ { 2 } - 56 x + 32
B) 24x+3224 x + 32
C) 24x216x+3224 x ^ { 2 } - 16 x + 32
D) 24x2+11x+3224 x ^ { 2 } + 11 x + 32
E) 24x2+3224 x ^ { 2 } + 32
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
58
Find the difference (9x2+4x10)(4x+9x210)\left( 9 x ^ { 2 } + 4 x - 10 \right) - \left( 4 x + 9 x ^ { 2 } - 10 \right) .

A)-20
B)0
C) 8x208 x - 20
D) 18x2018 x - 20
E) 8x2+8x208 x ^ { 2 } + 8 x - 20
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
59
Find the height in feet of a free-falling object at time t=0 using the function s=16t2+11t+30s = - 16 t ^ { 2 } + 11 t + 30 .

A)30 feet
B)32 feet
C)22 feet
D)60 feet
E)16 feet
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
60
Perform the indicated operations and simplify. (7x4+3x2)+3(5x45x2)\left( 7 x ^ { 4 } + 3 x ^ { 2 } \right) + 3 \left( - 5 x ^ { 4 } - 5 x ^ { 2 } \right)

A) 8x412x2- 8 x ^ { 4 } - 12 x ^ { 2 }
B) 22x4+18x222 x ^ { 4 } + 18 x ^ { 2 }
C) 22x42x222 x ^ { 4 } - 2 x ^ { 2 }
D) 22x412x222 x ^ { 4 } - 12 x ^ { 2 }
E) 8x42x2- 8 x ^ { 4 } - 2 x ^ { 2 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
61
Use a special product pattern to find the product (x+9)(x9)( x + 9 ) ( x - 9 ) .

A) x218x+81x ^ { 2 } - 18 x + 81
B) x281x ^ { 2 } - 81
C) x2+81x ^ { 2 } + 81
D) x2+18x+81x ^ { 2 } + 18 x + 81
E) x218x ^ { 2 } - 18
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
62
Use a special product pattern to find the product (9x2+8)(9x28)\left( 9 x ^ { 2 } + 8 \right) \left( 9 x ^ { 2 } - 8 \right) .

A) 81x26481 x ^ { 2 } - 64
B) 81x272x+6481 x ^ { 2 } - 72 x + 64
C) 81x4144x2+6481 x ^ { 4 } - 144 x ^ { 2 } + 64
D) 81x417x26481 x ^ { 4 } - 17 x ^ { 2 } - 64
E) 81x46481 x ^ { 4 } - 64
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
63
Use a vertical format to find the product of the two polynomials. (3x24x4)(3x24x1)\left( 3 x ^ { 2 } - 4 x - 4 \right) \left( 3 x ^ { 2 } - 4 x - 1 \right)

A) 9x524x3+x2+20x+49 x ^ { 5 } - 24 x ^ { 3 } + x ^ { 2 } + 20 x + 4
B) 9x424x3+x2+20x+49 x ^ { 4 } - 24 x ^ { 3 } + x ^ { 2 } + 20 x + 4
C) 9x424x3+20x+49 x ^ { 4 } - 24 x ^ { 3 } + 20 x + 4
D) 9x424x3+x2+49 x ^ { 4 } - 24 x ^ { 3 } + x ^ { 2 } + 4
E) 9x424x3+x2+20x9 x ^ { 4 } - 24 x ^ { 3 } + x ^ { 2 } + 20 x
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
64
Use a special product pattern to find the product (7x+1)2( 7 x + 1 ) ^ { 2 } .

A) 49x2149 x ^ { 2 } - 1
B) 49x2+16x+149 x ^ { 2 } + 16 x + 1
C) 49x2+149 x ^ { 2 } + 1
D) 49x2+7x+149 x ^ { 2 } + 7 x + 1
E) 49x2+14x+149 x ^ { 2 } + 14 x + 1
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
65
A closed rectangular box has dimensions of length n inches, width n+6 inches, and height n+2 inches. Write a polynomial function A(n)A ( n ) for the area of the largest side of the box.

A) A(n)=n22n+12A ( n ) = n ^ { 2 } - 2 n + 12
B) A(n)=n2+6n+12A ( n ) = - n ^ { 2 } + 6 n + 12
C) A(n)=n24n+12A ( n ) = n ^ { 2 } - 4 n + 12
D) A(n)=n2+4n+12A ( n ) = n ^ { 2 } + 4 n + 12
E) A(n)=n2+8n+12A ( n ) = n ^ { 2 } + 8 n + 12
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
66
Simplify the expression. Assume that all variables represent positive integers. (xy+5)y5\left( x ^ { y + 5 } \right) ^ { y - 5 }

A) xy2s2x ^ { y^ { 2 } - s ^ { 2 } }
B) xy2+2y5+52x ^ { y ^ { 2 } + 2 y 5 + 5 ^ { 2 } }
C) xy2+s2x ^ { y ^ { 2 } + s ^ { 2 } }
D) xy22y552x ^ { y ^ { 2 } - 2y5 - 5 ^ { 2 } }
E) xy2+2y552x ^ { y ^ { 2 } + 2y5 - 5 ^ { 2 } }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
67
A closed rectangular box has dimensions of length n inches, width <strong>A closed rectangular box has dimensions of length n inches, width   inches, and height   inches. What is the volume if the shortest side is 7 inches long?</strong> A)189 cubic inches B)495 cubic inches C)320 cubic inches D)96 cubic inches E)1001 cubic inches inches, and height <strong>A closed rectangular box has dimensions of length n inches, width   inches, and height   inches. What is the volume if the shortest side is 7 inches long?</strong> A)189 cubic inches B)495 cubic inches C)320 cubic inches D)96 cubic inches E)1001 cubic inches inches. What is the volume if the shortest side is 7 inches long?

A)189 cubic inches
B)495 cubic inches
C)320 cubic inches
D)96 cubic inches
E)1001 cubic inches
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
68
Multiply the polynomials and simplify. x2+5x6×3x+4\begin{array} { r } x ^ { 2 } + 5 x - 6 \\\times \quad 3 x + 4 \\\hline\end{array}

A) 3x3+19x2+5x63 x ^ { 3 } + 19 x ^ { 2 } + 5 x - 6
B) 3x3+4x2+2x243 x ^ { 3 } + 4 x ^ { 2 } + 2 x - 24
C) 3x3+19x2+2x243 x ^ { 3 } + 19 x ^ { 2 } + 2 x - 24
D) 3x3+4x2+20x63 x ^ { 3 } + 4 x ^ { 2 } + 20 x - 6
E) 3x3+20x263 x ^ { 3 } + 20 x ^ { 2 } - 6
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
69
Write a simplified expression for the area of the shaded region of the figure below.
 <strong>Write a simplified expression for the area of the shaded region of the figure below.  </strong> A)  \text { 3. } 5 x ^ { 2 } + 14 x  B)  4.5 x ^ { 2 } + 14.5 x  C)  3.5 x ^ { 2 } + 10.5 x  D)  4.5 x ^ { 2 } + 9 x  E)  3.5 x ^ { 2 } + 7 x

A)  3. 5x2+14x\text { 3. } 5 x ^ { 2 } + 14 x
B) 4.5x2+14.5x4.5 x ^ { 2 } + 14.5 x
C) 3.5x2+10.5x3.5 x ^ { 2 } + 10.5 x
D) 4.5x2+9x4.5 x ^ { 2 } + 9 x
E) 3.5x2+7x3.5 x ^ { 2 } + 7 x
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
70
Expand (x3)3( x - 3 ) ^ { 3 } and simplify.

A) x327x ^ { 3 } - 27
B) x39x2+27x27x ^ { 3 } - 9 x ^ { 2 } + 27 x - 27
C) x3+27x29x27x ^ { 3 } + 27 x ^ { 2 } - 9 x - 27
D) x327x2+9x27x ^ { 3 } - 27 x ^ { 2 } + 9 x - 27
E) x33x2+9x27x ^ { 3 } - 3 x ^ { 2 } + 9 x - 27
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
71
Use a special product formula to find the product. (0.1x+0.4)(0.1x0.4)( 0.1 x + 0.4 ) ( 0.1 x - 0.4 )

A) 0.01x20.160.01 x ^ { 2 } - 0.16
B) 0.01x20.08x+0.160.01 x ^ { 2 } - 0.08 x + 0.16
C) 0.01x2+0.160.01 x ^ { 2 } + 0.16
D) 0.01x2+0.08x0.160.01 x ^ { 2 } + 0.08 x - 0.16
E) 0.01x20.04x+0.160.01 x ^ { 2 } - 0.04 x + 0.16
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
72
Use a special product pattern to find the product (x8)2( x - 8 ) ^ { 2 } .

A) x216x+64x ^ { 2 } - 16 x + 64
B) x264x ^ { 2 } - 64
C) x2+64x ^ { 2 } + 64
D) x2+16x+64x ^ { 2 } + 16 x + 64
E) x28x+64x ^ { 2 } - 8 x + 64
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
73
A closed rectangular box has dimensions of length n inches, width n-4 inches, and height n+2 inches. Write a polynomial function V(n)V ( n ) that represents the volume of the box.

A) V(n)=n3+2n28V ( n ) = n ^ { 3 } + 2 n ^ { 2 } - 8
B) V(n)=n3+2n28nV ( n ) = n ^ { 3 } + 2 n ^ { 2 } - 8 n
C) V(n)=n32n28nV ( n ) = n ^ { 3 } - 2 n ^ { 2 } - 8 n
D) V(n)=n34n28nV ( n ) = n ^ { 3 } - 4 n ^ { 2 } - 8 n
E) V(n)=n3+6n28nV ( n ) = n ^ { 3 } + 6 n ^ { 2 } - 8 n
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
74
Use a special product pattern to find the product [9u+(v+10)]2[ 9 u + ( v + 10 ) ] ^ { 2 } .

A) 81u2+v2+18uv+180u+20v+10081 u ^ { 2 } + v ^ { 2 } + 18 u v + 180 u + 20 v + 100
B) 81u2+v2+20v+10081 u ^ { 2 } + v ^ { 2 } + 20 v + 100
C) 81u2+v2+180u+20v+10081 u ^ { 2 } + v ^ { 2 } + 180 u + 20 v + 100
D) 81u2+v2+10081 u ^ { 2 } + v ^ { 2 } + 100
E) 81u2+v2+18uv+20v+10081 u ^ { 2 } + v ^ { 2 } + 18 u v + 20 v + 100
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
75
A closed rectangular box has dimensions of length n inches, width n+4 inches, and height n+5 inches. Write a polynomial function A(n)A ( n ) for the area of the largest side of the box if dimensions increase by 6 inches.

A) A(n)=n2+4n116A ( n ) = n ^ { 2 } + 4 n - 116
B) A(n)=n211n+110A ( n ) = n ^ { 2 } - 11 n + 110
C) A(n)=n2+4n+110A ( n ) = n ^ { 2 } + 4 n + 110
D) A(n)=n2+21n+110A ( n ) = n ^ { 2 } + 21 n + 110
E) A(n)=n2+11n+110A ( n ) = n ^ { 2 } + 11 n + 110
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
76
Multiply (3x+5)(x2+9x2)( 3 x + 5 ) \left( x ^ { 2 } + 9 x - 2 \right) and simplify.

A) 3x3+32x2+9x23 x ^ { 3 } + 32 x ^ { 2 } + 9 x - 2
B) 3x3+5x2+45x23 x ^ { 3 } + 5 x ^ { 2 } + 45 x - 2
C) 3x3+45x223 x ^ { 3 } + 45 x ^ { 2 } - 2
D) 3x3+5x2+39x103 x ^ { 3 } + 5 x ^ { 2 } + 39 x - 10
E) 3x3+32x2+39x103 x ^ { 3 } + 32 x ^ { 2 } + 39 x - 10
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
77
Use a special product pattern to find the product. (u(v2))(u+(v2))( u - ( v - 2 ) ) ( u + ( v - 2 ) )

A) u2+(v2)2u ^ { 2 } + ( v - 2 ) ^ { 2 }
B) u2(v2)2u ^ { 2 } - ( v - 2 ) ^ { 2 }
C) u22u(v2)+(v2)2u ^ { 2 } - 2 u ( v - 2 ) + ( v - 2 ) ^ { 2 }
D) u22u(v2)(v2)2u ^ { 2 } - 2 u ( v - 2 ) - ( v - 2 ) ^ { 2 }
E) u2+2u(v2)(v2)2u ^ { 2 } + 2 u ( v - 2 ) - ( v - 2 ) ^ { 2 }
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
78
Multiply (x2+4x4)(5x2+2)\left( x ^ { 2 } + 4 x - 4 \right) \left( 5 x ^ { 2 } + 2 \right) and simplify.

A) 5x4+8x85 x ^ { 4 } + 8 x - 8
B) 5x4+24x3+8x85 x ^ { 4 } + 24 x ^ { 3 } + 8 x - 8
C) 5x4+20x318x2+8x85 x ^ { 4 } + 20 x ^ { 3 } - 18 x ^ { 2 } + 8 x - 8
D) 5x4+20x3+2x285 x ^ { 4 } + 20 x ^ { 3 } + 2 x ^ { 2 } - 8
E) 5x4+24x320x2+8x85 x ^ { 4 } + 24 x ^ { 3 } - 20 x ^ { 2 } + 8 x - 8
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
79
After 2 years, an investment of $1500 compounded annually at interest rate r will yield 1500(1+r)21500 ( 1 + r ) ^ { 2 } . Find this product.

A) r2+2r+1500r ^ { 2 } + 2 r + 1500
B) 1500r2+3000r+15001500 r ^ { 2 } + 3000 r + 1500
C) 1500r2+1500r+15001500 r ^ { 2 } + 1500 r + 1500
D) 1500r2+15001500 r ^ { 2 } + 1500
E) 3000r2+1500r+15003000 r ^ { 2 } + 1500 r + 1500
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
80
Use a special product pattern to find the product (7x+2)(7x2)( 7 x + 2 ) ( 7 x - 2 ) .

A) 49x2449 x ^ { 2 } - 4
B) 49x228x+449 x ^ { 2 } - 28 x + 4
C) 49x2+449 x ^ { 2 } + 4
D) 49x29x449 x ^ { 2 } - 9 x - 4
E) 49x214x+449 x ^ { 2 } - 14 x + 4
Unlock Deck
Unlock for access to all 158 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 158 flashcards in this deck.