Deck 5: Exponential and Logarithmic Functions

Full screen (f)
exit full mode
Question
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (f1g1)(1)\left( f ^ { - 1 } \circ g ^ { - 1 } \right) ( 1 )

A)32
B)35
C)33
D)37
E)30
Use Space or
up arrow
down arrow
to flip the card.
Question
Show that ff and gg are functions by using the definition of inverse functions. f(x)=1x,g(x)=1xf ( x ) = \frac { 1 } { x } , g ( x ) = \frac { 1 } { x }

A) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x - 1
B) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x - 1 , g ( f ( x ) ) = x
C) f(g(x))=x,g(f(x))=xf ( g ( x ) ) = x , g ( f ( x ) ) = x
D) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x ^ { - 1 }
E) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x ^ { - 1 } , g ( f ( x ) ) = x
Question
Use the functions given by f(x)=x+4f ( x ) = x + 4 and g(x)=2x6g ( x ) = 2 x - 6 to find the composition of functions g1f1g ^ { - 1 } \circ f ^ { - 1 }

A) x22\frac { x - 2 } { 2 }
B) x+22\frac { x + 2 } { - 2 }
C) x22\frac { x - 2 } { - 2 }
D) (x+2)2\frac { - ( x + 2 ) } { 2 }
E) x+22\frac { x + 2 } { 2 }
Question
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=x2,x2f ( x ) = | x - 2 | , x \leq 2

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function, f1(x)=2x,x0f ^ { - 1 } ( x ) = 2 - x , x \geq 0
C)Yes, ff has an inverse function, f1(x)=2x,x0f ^ { - 1 } ( x ) = - 2 - x , x \geq 0
D)Yes, ff has an inverse function, f1(x)=2+x,x0f ^ { - 1 } ( x ) = 2 + x , x \geq 0
E)Yes, ff has an inverse function, f1(x)=2+x,x0f ^ { - 1 } ( x ) = - 2 + x , x \geq 0
Question
Use the functions given by f(x)=x+4f ( x ) = x + 4 and g(x)=2x6g ( x ) = 2 x - 6 to find the composition of functions (gf)1(g\circ f)^{-1}

A) (x+2)2\frac { - ( x + 2 ) } { - 2 }
B) x+22\frac { - x + 2 } { 2 }
C) x22\frac { x - 2 } { 2 }
D) x22\frac { x - 2 } { - 2 }
E) x+22\frac { x + 2 } { 2 }
Question
Show that ff and gg are functions by using the definition of inverse functions. f(x)=5x+1,g(x)=x15f ( x ) = 5 x + 1 , g ( x ) = \frac { x - 1 } { 5 }

A) f(g(x))=x,g(f(x))=xf ( g ( x ) ) = x , g ( f ( x ) ) = x
B) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x ^ { - 1 } , g ( f ( x ) ) = x
C) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x ^ { - 1 }
D) f(g(x))=x+1,g(f(x))=xf ( g ( x ) ) = x + 1 , g ( f ( x ) ) = x
E) f(g(x))=x,g(f(x))=x+1f ( g ( x ) ) = x , g ( f ( x ) ) = x + 1
Question
Find the inverse function of the function f given by the set of ordered pairs. {(6,2),(5,3),(4,4),(3,5)}\{ ( 6,2 ) , ( 5,3 ) , ( 4,4 ) , ( 3,5 ) \}

A) f1={(2,6),(3,5),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,4 ) , ( 5,3 ) \}
B) f1={(2,6),(3,5),(4,4),(5,5)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,4 ) , ( 5,5 ) \}
C) f1={(2,6),(3,5),(4,2),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,2 ) , ( 5,3 ) \}
D) f1={(2,6),(3,3),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,3 ) , ( 4,4 ) , ( 5,3 ) \}
E) f1={(2,2),(3,5),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,2 ) , ( 3,5 ) , ( 4,4 ) , ( 5,3 ) \}
Question
Sketch the graphs of inverse functions f(x)=x52,f1(x)=x+25f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 } in the same coordinate plane and show that the graphs are reflections of each other in the line y=xy = x

A)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}  <div style=padding-top: 35px>  x101f(x)321x421f1(x)101\begin{array} { l l r r } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 4 & - 2 & - 1 \\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
B)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}  <div style=padding-top: 35px>  x101f(x)321x321f1(x)121\begin{array} { l lrr } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 2 & 1\end{array}
C)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}  <div style=padding-top: 35px>  x001f(x)321x321f1(x)101\begin{array} { l r rr } x & 0 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
D)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}  <div style=padding-top: 35px>  x101f(x)321x321f1(x)101\begin{array} { l l rr } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
E)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}  <div style=padding-top: 35px>
x101f(x)321x321f1(x)121\begin{array}{llrr}x & -1 & 0 & -1 \\f(x) & -3 & -2 & -1 \\\\x & -3& 2& -1 \\f^{-1}(x) & -1 & -2 & 1\end{array}
Question
Find the inverse function informally f(x)=x5f ( x ) = x - 5 . Verify that f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x and f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x

A) f1(x)=x+1f ^ { - 1 } ( x ) = x + 1 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
B) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
C) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=x1f ^ { - 1 } ( f ( x ) ) = x - 1
D) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=x+1f \left( f ^ { - 1 } ( x ) \right) = x + 1 , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
E) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=x1f ^ { - 1 } ( f ( x ) ) = x ^ { - 1 }
Question
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (g1f1)(3)\left( g ^ { - 1 } \circ f ^ { - 1 } \right) ( - 3 )

A)1
B)0
C)3
D)4
E)2
Question
Find the inverse function of the function f given by the set of ordered pairs. {(1,4),(2,5),(3,6),(4,7)}\{ ( 1,4 ) , ( 2,5 ) , ( 3,6 ) , ( 4,7 ) \}

A) f1={(4,4),(5,2),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,4 ) , ( 5,2 ) , ( 6,3 ) , ( 7,4 ) \}
B) f1={(4,1),(5,5),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,5 ) , ( 6,3 ) , ( 7,4 ) \}
C) f1={(4,1),(5,2),(6,6),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,6 ) , ( 7,4 ) \}
D) f1={(4,1),(5,2),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,3 ) , ( 7,4 ) \}
E) f1={(4,1),(5,2),(6,3),(7,7)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,3 ) , ( 7,7 ) \}
Question
Find the inverse function informally f(x)=2xf ( x ) = 2 x . Verify that f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x and f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x

A) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=x1f \left( f ^ { - 1 } ( x ) \right) = x ^ { - 1 } , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
B) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=2xf \left( f ^ { - 1 } ( x ) \right) = 2 x , f1(f(x))=3xf ^ { - 1 } ( f ( x ) ) = 3 x
C) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=2xf ^ { - 1 } ( f ( x ) ) = 2 x
D) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=3xf \left( f ^ { - 1 } ( x ) \right) = 3 x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
E) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
Question
Use the graph of ff to complete the table and to sketch the graph of f1f ^ { - 1 } x01234f1(x)\begin{array}{llllll}x & 0 & 1 & 2 & 3 & 4\\f^{-1}(x)\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>

A) x01234f1(x)04221\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>
B) x01234f1(x)42201\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>
C) x01234f1(x)20124\begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>
D) x01234f1(x)24201\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>
E) x01234f1(x)12240\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}    <div style=padding-top: 35px>
Question
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=36+x2,x0f ( x ) = 36 + x ^ { 2 } , x \leq 0

A)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = - \sqrt { x - 36 } , x \geq 36
B)No, ff does not have an inverse function.
C)Yes, ff has an inverse function, f1(x)=x+36,x36f ^ { - 1 } ( x ) = - \sqrt { x + 36 } , x \geq 36
D)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = \sqrt { x - 36 } , x \geq 36
E)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = - \sqrt { x - 36 } , x \leq 36
Question
Use the graph of ff to determine whether the function has an inverse function.  <strong>Use the graph of  f  to determine whether the function has an inverse function.  </strong> A)Yes,  f  has an inverse function. B)No,  f  does not have an inverse function. <div style=padding-top: 35px>

A)Yes, ff has an inverse function.
B)No, ff does not have an inverse function.
Question
A company's profit PP for producing xx units is given by P(x)=47x5736P ( x ) = 47 x - 5736 . Find the inverse function P1(x)P ^ { - 1 } ( x ) and explain what it represents. Describe the domains of P(x)P ( x ) and P1(x)P ^ { - 1 } ( x ) .

A) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,10)P ( x ) : [ 0,10 ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
B) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,5736)P ^ { - 1 } ( x ) : [ - 5736,5736 )
C) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
D) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[1,)P ( x ) : [ 1 , \infty ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
E) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,47)P ^ { - 1 } ( x ) : [ - 5736,47 )
Question
Sketch the graphs of inverse functions f(x)=x3,f1(x)=3xf ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x in the same coordinate plane and show that the graphs are reflections of each other in the line y=xy = x

A)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}  <div style=padding-top: 35px>  x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
B)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}  <div style=padding-top: 35px>  x203f(x)101\begin{array} { l l l l } x & - 2 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
C)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}  <div style=padding-top: 35px>  x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)323\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 2 & 3\end{array}
D)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}  <div style=padding-top: 35px>  x300f(x)101\begin{array} { l l l l } x & - 3 & 0 & 0 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
E)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}  <div style=padding-top: 35px>  x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)203\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 2 & 0 & 3\end{array}
Question
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=x4f ( x ) = x ^ { 4 }

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function, y=x4y = x ^ { 4 }
C)Yes, ff has an inverse function, y=x4y = - x ^ { - 4 }
D)Yes, ff has an inverse function, y=x4y = x ^ { - 4 }
E)Yes, ff has an inverse function, y=x4y = - x ^ { 4 }
Question
Use the graph of ff to determine whether the function has an inverse function.  <strong>Use the graph of  f  to determine whether the function has an inverse function.  </strong> A)No,  f  does not have an inverse function. B)Yes,  f  has an inverse function. <div style=padding-top: 35px>

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function.
Question
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (g1g1)(4)\left( g ^ { - 1 } \circ g ^ { - 1 } \right) ( - 4 )

A)16
B)-16
C)32
D)The value does not exist.
E)-32
Question
Use a calculator to evaluate (2.6)( 2.6 )  <strong>Use a calculator to evaluate  ( 2.6 )   . Round your result to three decimal places.</strong> A)  \approx 0.463  B)  \approx 4.463  C)  \approx 3.463  D)  \approx 1.463  E)  \approx 2.463  <div style=padding-top: 35px>  . Round your result to three decimal places.

A) 0.463\approx 0.463
B) 4.463\approx 4.463
C) 3.463\approx 3.463
D) 1.463\approx 1.463
E) 2.463\approx 2.463
Question
Sketch the graph of the function y=e0.1xy = e ^ { - 0.1 x }

A)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use a calculator to evaluate the function f(x)=exf ( x ) = e ^ { x } for the given value of xx , x=0.3x = 0.3 . Round your result to three decimal places.

A) e0.31.050e ^ { 0.3 } \approx 1.050
B) e0.30.050e ^ { 0.3 } \approx 0.050
C) e0.31.50e ^ { 0.3 } \approx 1.50
D) e0.30.350e ^ { 0.3 } \approx 0.350
E) e0.31.350e ^ { 0.3 } \approx 1.350
Question
You deposit a lump sum PP in a trust fund on the day your child is born. The fund earns 6.5% interest compounded continuously. Find the amount PP that will yield the given balance AA on your child's 25th birthday. A=$100,000A = \$ 100,000

A) P$10,691.17P \approx \$ 10,691.17
B) P$9,691.17P \approx \$ 9,691.17
C) P$14,691.17P \approx \$ 14,691.17
D) P$11,691.17P \approx \$ 11,691.17
E) P$19,691.17P \approx \$ 19,691.17
Question
Sketch the graph of the function f(x)=(15)xf ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x } .

A)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Evaluate the expression below. Round your results to three decimal places. e3e ^ { 3 }

A)2.718
B)20.086
C)0.135
D)54.598
E)7.389
Question
Match the function f(x)=2x3f ( x ) = 2 ^ { x - 3 } with its graph.

A)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Strontinum-90 has a half life of 29.1 years.The amount S of 100 kilograms of Strontinum6990 present after t years is given by S=100e0.0238tS = 100 e ^ { - 0.0238 t } How much of the 100 kilograms will remain after 50 years?

A)about 31.4 kilograms
B)about 35.4 kilograms
C)about 30.4 kilograms
D)about 37.4 kilograms
E)about 40.4 kilograms
Question
The present value of money is the principal PP you need to invest today so that it will grow to an amount AA at the end of specified time. The present value formula P=A(1+rn)ntP = A \left( 1 + \frac { r } { n } \right) ^ { - n t } is obtained by solving the compound interest formula A=P(1+rn)ntA = P \left( 1 + \frac { r } { n } \right) ^ { n t } for PP . Recall that tt is the number of years, rr is the interest rate per year, and nn is the number of compoundings per year. find the present value of amount AA invested at rate rr for tt years, compounded nn times per year. A=$10,000,r=6%,t=5 years ,n=4A = \$ 10,000 , r = 6 \% , t = 5 \text { years } , n = 4

A) P6424.70P \approx 6424.70
B) P3424.70P \approx 3424.70
C) P4424.70P \approx 4424.70
D) P7424.70P \approx 7424.70
E) P5424.70P \approx 5424.70
Question
The present value of money is the principal PP you need to invest today so that it will grow to an amount AA at the end of specified time. The present value formula P=A(1+rn)ntP = A \left( 1 + \frac { r } { n } \right) ^ { - n t } is obtained by solving the compound interest formula A=P(1+rn)ntA = P \left( 1 + \frac { r } { n } \right) ^ { n t } for PP . Recall that tt is the number of years, rr is the interest rate per year, and nn is the number of compoundings per year. find the present value of amount AA invested at rate rr for tt years, compounded nn times per year. A=$1,000,000,r=8%,t=20 years ,n=2A = \$ 1,000,000 , r = 8 \% , t = 20 \text { years }, n = 2

A) P$108,289.04P \approx \$ 108,289.04
B) P$208,289.04P \approx \$ 208,289.04
C) P$308,289.04P \approx \$ 308,289.04
D) P$20,289.04P \approx \$ 20,289.04
E) P$1008,289.04P \approx \$ 1008,289.04
Question
Use a calculator to evaluate 626 ^ { - \sqrt { 2 } } . Round your result to three decimal places.

A) 0.079\approx 0.079
B) 4.079\approx 4.079
C) 1.079\approx 1.079
D) 3.079\approx 3.079
E) 2.079\approx 2.079
Question
The demand function for a limited edition comic book is given by p=3000(155+e0.015x)p = 3000 \left( 1 - \frac { 5 } { 5 + e ^ { - 0.015 x } } \right) Find the price pp for a demand of x=45x = 45 units.

A)$5722.74
B)$277.26
C)$369.89
D)$340.13
E)$6369.89
Question
Sketch the graph of the function y=3x2y = 3 ^ { - x ^ { 2 } } .

A)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Sketch the graph of the function g(x)=4xg ( x ) = 4 ^ { x } .

A)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Sketch the graph of the function N(t)=2etN ( t ) = 2 - e ^ { t }

A)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The number of certain type of bacteria increases according to the model P(t)=100e0.01896tP ( t ) = 100 e ^ { 0.01896 t } where t is time (in hours)
a)Find P(0).
b)Find P(5).
c)Find P(10).
d)Find P(24).

A)a) P(0)=100P ( 0 ) = 100 b) P(5)109.94P ( 5 ) \approx 109.94 c) P(10)120.88P ( 10 ) \approx 120.88 d) P(24)157.62P ( 24 ) \approx 157.62
B)a) P(0)100P ( 0 ) \approx 100 b) P(5)&119.94P ( 5 ) \& 119.94 c) P(10)102.88P ( 10 ) \approx 102.88 d) P(24)257.62\mathrm { P } ( 24 ) \approx 257.62
C)a) P(0)=120.56\mathrm { P } ( 0 ) = 120.56 b) P(5)=100.94P ( 5 ) = 100.94 c) P(10)620.88P ( 10 ) \approx 620.88 d) P(24)517.62P ( 24 ) \approx 517.62
D)a) P(0)=109.78\mathrm { P } ( 0 ) = 109.78 b) P(5)100.94P ( 5 ) \approx 100.94 c) P(10)150.88P ( 10 ) \approx 150.88 d) P(24)357.62P ( 24 ) \approx 357.62
E)a) P(0)=105P ( 0 ) = 105 b) P(5)119.94P ( 5 ) \approx 119.94 c) P(10)120.08P ( 10 ) \approx 120.08 d) P(24)157.52P ( 24 ) \approx 157.52
Question
Determine whether e=271,80199,990e = \frac { 271,801 } { 99,990 } . Justify your answer.

A)Yes, e=271,80199,990e = \frac { 271,801 } { 99,990 } because ee is a rational number.
B)No, e271,80199,990e \neq \frac { 271,801 } { 99,990 } because ee is not a rational number.
Question
Match the function f(x)=2xf ( x ) = 2 ^ { - x } with its graph.

A)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Determine which of the following functions is graphed below. 2x1,2x1,2x+1,2x+2,2x+22 ^ { x } - 1,2 ^ { - x } - 1,2 ^ { - x } + 1,2 ^ { - x } + 2,2 ^ { x } + 2  <strong>Determine which of the following functions is graphed below.  2 ^ { x } - 1,2 ^ { - x } - 1,2 ^ { - x } + 1,2 ^ { - x } + 2,2 ^ { x } + 2   </strong> A)  2 ^ { x } - 1  B)  2 ^ { - x } - 1  C)  2 ^ { - x } + 1  D)  2 ^ { - x } + 2  E)  2 ^ { x } + 2  <div style=padding-top: 35px>

A) 2x12 ^ { x } - 1
B) 2x12 ^ { - x } - 1
C) 2x+12 ^ { - x } + 1
D) 2x+22 ^ { - x } + 2
E) 2x+22 ^ { x } + 2
Question
Use a calculator to evaluate the function f(x)=exf ( x ) = e ^ { x } for the given value of xx , x=4x = 4 . Round your result to three decimal places.

A) e454.598e ^ { 4 } \approx 54.598
B) e444.598e ^ { 4 } \approx 44.598
C) e450.598e ^ { 4 } \approx 50.598
D) e452.598e ^ { 4 } \approx 52.598
E) e445.598e ^ { 4 } \approx 45.598
Question
Find the domain of the function k(x)=log8(4x)k ( x ) = \log _ { 8 } ( 4 - x ) .

A) (4,)( 4 , \infty )
B) (,8)( - \infty , 8 )
C) (4,)( - 4 , \infty )
D) (,4)( - \infty , 4 )
E) (8,)( 8 , \infty )
Question
Rewrite the exponential equation 32=193 ^ { - 2 } = \frac { 1 } { 9 } in logarithmic form.

A) log319=2\log _ { 3 } \frac { 1 } { 9 } = - 2
B) log29=2\log _ { 2 } 9 = - 2
C) log39=2\log _ { 3 } 9 = - 2
D) log93=2\log _ { 9 } 3 = - 2
E) log319=2\log _ { 3 } \frac { 1 } { 9 } = 2
Question
Rewrite the logarithmic equation log6136=2\log _ { 6 } \frac { 1 } { 36 } = - 2 in exponential form.

A) 636=26 ^ { 36 } = - 2
B) 61/36=26 ^ { 1 / 36 } = - 2
C) 62=1366 ^ { - 2 } = \frac { 1 } { 36 }
D) (136)2=6\left( \frac { 1 } { 36 } \right) ^ { - 2 } = 6
E) 62=1366 ^ { - 2 } = - \frac { 1 } { 36 }
Question
Expand the given logarithmic expression. Assume all variable expressions represent positive real numbers. ln(x7/4y3/2)\ln \left( x ^ { 7 / 4 } y ^ { 3 / 2 } \right)

A) 218lnxy\frac { 21 } { 8 } \ln x y
B) 218lnxlny\frac { 21 } { 8 } \ln x \ln y
C) xln(74)+yln(32)x \ln \left( \frac { 7 } { 4 } \right) + y \ln \left( \frac { 3 } { 2 } \right)
D) 32lnx+74lny\frac { 3 } { 2 } \ln x + \frac { 7 } { 4 } \ln y
E) 74lnx+32lny\frac { 7 } { 4 } \ln x + \frac { 3 } { 2 } \ln y
Question
Evaluate the logarithm log7714\log _ { 7 } 714 using the change of base formula. Round to 3 decimal places.

A)6.571
B)0.296
C)3.377
D)12.786
E)2.854
Question
Expand the logarithmic expression ln(z6x4y45)\ln \left( \frac { z ^ { 6 } } { \sqrt [ 5 ] { x ^ { 4 } y ^ { 4 } } } \right) . Assume all variable expressions represent positive real numbers.

A) ln(6z20x+20y)\ln ( 6 z - 20 x + 20 y )
B) 6lnz45lnx45lny6 \ln z - \frac { 4 } { 5 } \ln x - \frac { 4 } { 5 } \ln y
C) 6lnz20lnx20lny6 \ln z - 20 \ln x - 20 \ln y
D) ln(6z45x45y)\ln \left( 6 z - \frac { 4 } { 5 } x - \frac { 4 } { 5 } y \right)
E) 6lnz45lnx+45lny6 \ln z - \frac { 4 } { 5 } \ln x + \frac { 4 } { 5 } \ln y
Question
Find the exact value of log5253\log _ { 5 } \sqrt [ 3 ] { 25 } without using a calculator.

A) 253\frac { 25 } { 3 }
B) 325\frac { 3 } { 25 }
C) 103\frac { 10 } { 3 }
D) 23\frac { 2 } { 3 }
E)-1
Question
Write the exponential equation e3/2=4.4817e ^ { 3 / 2 } = 4.4817 \ldots in logarithmic form.

A) 2.303log(32)=4.48172.303 \log \left( \frac { 3 } { 2 } \right) = 4.4817 \ldots
B) log10(4.4817)=32\log _ { 10 } ( 4.4817 \ldots ) = \frac { 3 } { 2 }
C) ln(32)=4.4817\ln \left( \frac { 3 } { 2 } \right) = 4.4817 \ldots
D) ln(4.4817)=32\ln ( 4.4817 \ldots ) = \frac { 3 } { 2 }
E) ln3=4.48172\ln 3 = \frac { 4.4817 \ldots } { 2 }
Question
Write the expression below as a single logarithm with a coefficient of 1. Assume all variable expressions represent positive real numbers. 5log2t16log2u+4log2v5 \log _ { 2 } t - \frac { 1 } { 6 } \log _ { 2 } u + 4 \log _ { 2 } v

A) log2(t5u6+v4)\log _ { 2 } \left( t ^ { 5 } - u ^ { - 6 } + v ^ { 4 } \right)
B) log2(t5+1u6+v4)\log _ { 2 } \left( t ^ { 5 } + \frac { 1 } { \sqrt [ 6 ] { u } } + v ^ { 4 } \right)
C) log2(t5v4u6)\log _ { 2 } \left( \frac { t ^ { 5 } v ^ { 4 } } { \sqrt [ 6 ] { u } } \right)
D) log2(t5v6u4)\log _ { 2 } \left( \frac { t ^ { 5 } v ^ { 6 } } { \sqrt [ 4 ] { u } } \right)
E) log2(t6v4u5)\log _ { 2 } \left( \frac { t ^ { 6 } v ^ { 4 } } { \sqrt [ 5 ] { u } } \right)
Question
Approximate the logarithm below using the properties of logarithms, given logb20.3562,\log _ { b } 2 \approx 0.3562, logb30.5646,\log _ { b } 3 \approx 0.5646, and logb50.8271.\log _ { b } 5 \approx 0.8271. logb32\log _ { b } \frac { 3 } { 2 }

A)-0.2084
B)-0.2625
C)0.2084
D)0.2625
E)0.4709
Question
Condense the expression 15[log5x+log56][log5y]\frac { 1 } { 5 } \left[ \log _ { 5 } x + \log _ { 5 } 6 \right] - \left[ \log _ { 5 } y \right] to the logarithm of a single term.

A) log5(6x)5y\log _ { 5 } \frac { ( 6 x ) ^ { 5 } } { y }
B) log56x5y\log _ { 5 } \frac { 6 x } { 5 y }
C) log56xy5\log _ { 5 } \sqrt [ 5 ] { \frac { 6 x } { y } }
D) log56x5y\log _ { 5 } \frac { \sqrt [ 5 ] { 6 x } } { y }
E) log56x5log5y\log _ { 5 } \sqrt[5] { 6 x } - \log _ { 5 } y
Question
Write the exponential equation 32=93 ^ { 2 } = 9 in its logarithmic form.

A) log29=3\log _ { 2 } 9 = 3
B) log32=9\log _ { 3 } 2 = 9
C) log93=2\log _ { 9 } 3 = 2
D) log23=9\log _ { 2 } 3 = 9
E) log39=2\log _ { 3 } 9 = 2
Question
Write the logarithmic equation 4=log2164 = \log _ { 2 } 16 in its exponential form.

A) 216=42 ^ { 16 } = 4
B) 24=162 ^ { 4 } = 16
C) 164=216 ^ { 4 } = 2
D) 42=164 ^ { 2 } = 16
E) 416=24 ^ { 16 } = 2
Question
Condense the expression log3x+log34\log _ { 3 } x + \log _ { 3 } 4 to the logarithm of a single term.

A) log(4x)3\log ( 4 x ) ^ { 3 }
B) log34x\log _ { 3 } 4 x
C) log34x\log _ { 3 } 4 ^ { x }
D) log3x4\log _ { 3 } x ^ { 4 }
E) log3(x+4)\log _ { 3 } ( x + 4 )
Question
Match the function below with its graph. f(x)=3lnx2f ( x ) = 3 \ln x - 2 Graph I :  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV <div style=padding-top: 35px>  Graph IV:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV <div style=padding-top: 35px>  Graph II:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV <div style=padding-top: 35px>  Graph V:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV <div style=padding-top: 35px>  Graph III:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV <div style=padding-top: 35px>

A)Graph III
B)Graph I
C)Graph II
D)Graph V
E)Graph IV
Question
Write 5ln(x+7)3lnx4ln(x2+8)5 \ln ( x + 7 ) - 3 \ln x - 4 \ln \left( x ^ { 2 } + 8 \right) as a single logarithm with a coefficient of 1. Assume all variable expressions represent positive real numbers.

A) ln(x3(x+7)5(x2+8)4)\ln \left( x ^ { 3 } ( x + 7 ) ^ { 5 } \left( x ^ { 2 } + 8 \right) ^ { 4 } \right)
B) ln(5(x+7)12x(x2+8))\ln \left( \frac { 5 ( x + 7 ) } { 12 x \left( x ^ { 2 } + 8 \right) } \right)
C) ln(60x(x+7)(x2+8))\ln \left( 60 x ( x + 7 ) \left( x ^ { 2 } + 8 \right) \right)
D) ln(4x2+2x+3)\ln \left( - 4 x ^ { 2 } + 2 x + 3 \right)
E) ln((x+7)5x3(x2+8)4)\ln \left( \frac { ( x + 7 ) ^ { 5 } } { x ^ { 3 } \left( x ^ { 2 } + 8 \right) ^ { 4 } } \right)
Question
Find the vertical asymptote of the logarithmic function below. f(x)=log2(x4)f ( x ) = \log _ { 2 } ( x - 4 )

A) x=5x = 5
B) x=2x = 2
C) x=5x = - 5
D) x=4x = - 4
E) x=4x = 4
Question
Use the properties of logarithms to simplify the logarithmic expression below. log5175\log _ { 5 } \sqrt { 175 }

A) 2log572 \log _ { 5 } 7
B) 1+12log571 + \frac { 1 } { 2 } \log _ { 5 } 7
C) 2+12log572 + \frac { 1 } { 2 } \log _ { 5 } 7
D) 2+log572 + \log _ { 5 } 7
E) 1+log571 + \log _ { 5 } 7
Question
Evaluate the logarithm log2132\log _ { 2 } \frac { 1 } { 32 } without using a calculator.

A) 5- 5
B) 44
C) 1616
D) 4- 4
E) 55
Question
Write the logarithmic equation ln6=1.792\ln 6 = 1.792 \ldots in exponential form.

A) e1.792=6e ^ { 1.792 \ldots } = 6
B) 106=1.79210 ^ { 6 } = 1.792 \ldots
C) 2.303e1.792=62.303 e ^ { 1.792 \ldots } = 6
D) 2.303×106=1.7922.303 \times 10 ^ { 6 } = 1.792 \ldots
E) e6=1.792e ^ { 6 } = 1.792 \ldots
Question
Approximate the solution to ln5x=3.2\ln 5 x = 3.2 . Round to 3 decimal places.

A)1.896
B)4.907
C)4.809
D)-0.446
E)316.979
Question
Solve for x.x. ln(6x11)=0\ln ( 6 x - 11 ) = 0

A) x=4x = 4
B) x=2x = 2
C) x=5x = 5
D) x=116x = \frac { 11 } { 6 }
E) x=72x = \frac { 7 } { 2 }
Question
Solve the exponential equation algebraically. Approximate the result to three decimal places. e2x5ex+4=0e ^ { 2 x } - 5 e ^ { x } + 4 = 0

A) x=0.000,1.000x = 0.000,1.000
B) x=0.000,1.386x = 0.000,1.386
C) x=0.000,4.000x = 0.000,4.000
D) x=1.000,4.000x = 1.000,4.000
E) x=1.386,4.000x = 1.386,4.000
Question
Use algebraic procedures to find the exact solution of the equation lnx=12ln(2x+199)+12ln9\ln x = \frac { 1 } { 2 } \ln \left( 2 x + \frac { 19 } { 9 } \right) + \frac { 1 } { 2 } \ln 9 .

A)-1, 19
B) 1914- \frac { 19 } { 14 }
C)2, 9
D)19
E)1
Question
Approximate the solution to ln(x+3)lnx=1\ln ( x + 3 ) - \ln x = 1 . Round to 3 decimal places.

A)-0.632
B)0.250
C)1.746
D)2.718
E)0.333
Question
Solve the exponential equation algebraically. Approximate the result to three decimal places. 4006+e6x=8\frac { 400 } { 6 + e ^ { 6 x } } = 8

A) x=0.671x = 0.671
B) x=infx = \inf
C) x=0.631x = 0.631
D) x=1.001x = 1.001
E) x=0.996x = 0.996
Question
Use algebraic procedures to find the exact solution of the equation log5x+log5(x20)=3\log _ { 5 } x + \log _ { 5 } ( x - 20 ) = 3 .

A)0, -20
B)25
C)3, 5
D)-5, 25
E)5
Question
Use algebraic procedures to find the exact solution(s) of the equation below. 69x+2=12166 ^ { 9 x + 2 } = \frac { 1 } { 216 }

A) x=59x = - \frac { 5 } { 9 }
B) x=19x = \frac { 1 } { 9 }
C) x=16x = \frac { 1 } { 6 }
D) x=56x = - \frac { 5 } { 6 }
E) x=56x = \frac { 5 } { 6 }
Question
Solve (12)x=8\left( \frac { 1 } { 2 } \right) ^ { x } = 8 for x.

A)1
B) 1- 1
C) 3- 3
D) 2- 2
E)no solution
Question
The approximate lengths and diameters (in inches) of common nails are shown in the table. Find a logarithmic equation that relates the diameter yy of a common nail to its length x.x.  Length, x Diameter, y10.09520.15630.208\begin{array} { | c | c | } \hline \text { Length, } x & \text { Diameter, } y \\\hline 1 & 0.095 \\\hline 2 & 0.156 \\\hline 3 & 0.208 \\\hline\end{array}  Length, x Diameter, y40.25650.30060.342\begin{array} { | c | c | } \hline \text { Length, } x & \text { Diameter, } y \\\hline 4 & 0.256 \\\hline 5 & 0.300 \\\hline 6 & 0.342 \\\hline\end{array}

A) lny=0.095lnx+ln0.715\ln y = - 0.095 \ln x + \ln 0.715
B) lny=0.095lnxln0.715\ln y = 0.095 \ln x - \ln 0.715
C) lny=0.715lnxln0.095\ln y = 0.715 \ln x - \ln 0.095
D) lny=0.095lnxln0.715\ln y = - 0.095 \ln x - \ln 0.715
E) lny=0.715lnx+ln0.095\ln y = 0.715 \ln x + \ln 0.095
Question
Use algebraic procedures to find the exact solution(s) of the equation below. 103x=37010 ^ { 3 - x } = 370

A) x=1+3log370x = 1 + 3 \log 370
B) x=13log370x = - 1 - 3 \log 370
C) x=1+3log370x = - 1 + 3 \log 370
D) x=3log370x = - 3 - \log 370
E) x=3log370x = 3 - \log 370
Question
An initial investment of $4000 grows at an annual interest rate of 4% compounded continuously. How long will it take to double the investment?

A)17.33 years
B)18.33 years
C)18.00 years
D)17.00 years
E)1 year
Question
Solve for x: 5x/3=0.00525 ^ { - x / 3 } = 0.0052 . Round to 3 decimal places.

A)9.803
B)15.777
C)20.606
D)-20.606
E)-3.268
Question
Solve for x: 9(10x3)=239 \left( 10 ^ { x - 3 } \right) = 23 . Round to 3 decimal places.

A)3.407
B)0.407
C)1.362
D)-1.362
E)no solution
Question
The average monthly sales yy (in billions of dollars) in retail trade in the United States from 1996 to 2005 can be approximated by the model y=22+117lnt,y = 22 + 117 \ln t, 6t156 \leq t \leq 15 where tt represents the year, with t=6t = 6 corresponding to 1996. Estimate the year in which the average monthly sales first exceeded $310 billion.

A)2001
B)2004
C)2002
D)2000
E)1996
Question
An industrial psychologist has determined that the average percent score for an employee on a test of the employee's knowledge of the company's product is given by P=1001+24e0.15tP = \frac { 100 } { 1 + 24 e ^ { - 0.15 t } } where t is the number of weeks on the job and P is the percent score. Estimate (to the nearest week) the expected number of weeks of employment that are necessary for an employee to earn a 85% score on the test.

A)38 weeks
B)37 weeks
C)42 weeks
D)60 weeks
E)33 weeks
Question
Apply the Inverse Property of logarithmic or exponential functions to simplify the expression below. log8642x+5\log _ { 8 } 64 ^ { 2 x + 5 }

A) 4x+104 x + 10
B) 16x+4016 x + 40
C) 82x+58 ^ { 2 x + 5 }
D) 2log8(2x+5)2 \log _ { 8 } ( 2 x + 5 )
E) 8log8(2x+5)8 \log _ { 8 } ( 2 x + 5 )
Question
Approximate the solution of 16e7x=2216 e ^ { 7 x } = 22 to 3 decimal places. (You may use a graphing utility.)

A)-6.682
B)0.164
C)-1.627
D)2.229
E)0.045
Question
Use a graphing utility to approximate the solution to log4x+log4(2x+1)=2\log _ { 4 } x + \log _ { 4 } ( 2 x + 1 ) = 2 . Round to 3 decimal places.

A)6.179
B)5.179
C)3.089
D)2.589
E)no solution
Question
Solve for x. 23x=1282 ^ { 3 x } = 128

A) 1283\frac { 128 } { 3 }
B) 643- \frac { 64 } { 3 }
C) 73\frac { 7 } { 3 }
D) 37\frac { 3 } { 7 }
E)2
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/94
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Exponential and Logarithmic Functions
1
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (f1g1)(1)\left( f ^ { - 1 } \circ g ^ { - 1 } \right) ( 1 )

A)32
B)35
C)33
D)37
E)30
32
2
Show that ff and gg are functions by using the definition of inverse functions. f(x)=1x,g(x)=1xf ( x ) = \frac { 1 } { x } , g ( x ) = \frac { 1 } { x }

A) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x - 1
B) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x - 1 , g ( f ( x ) ) = x
C) f(g(x))=x,g(f(x))=xf ( g ( x ) ) = x , g ( f ( x ) ) = x
D) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x ^ { - 1 }
E) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x ^ { - 1 } , g ( f ( x ) ) = x
f(g(x))=x,g(f(x))=xf ( g ( x ) ) = x , g ( f ( x ) ) = x
3
Use the functions given by f(x)=x+4f ( x ) = x + 4 and g(x)=2x6g ( x ) = 2 x - 6 to find the composition of functions g1f1g ^ { - 1 } \circ f ^ { - 1 }

A) x22\frac { x - 2 } { 2 }
B) x+22\frac { x + 2 } { - 2 }
C) x22\frac { x - 2 } { - 2 }
D) (x+2)2\frac { - ( x + 2 ) } { 2 }
E) x+22\frac { x + 2 } { 2 }
x+22\frac { x + 2 } { 2 }
4
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=x2,x2f ( x ) = | x - 2 | , x \leq 2

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function, f1(x)=2x,x0f ^ { - 1 } ( x ) = 2 - x , x \geq 0
C)Yes, ff has an inverse function, f1(x)=2x,x0f ^ { - 1 } ( x ) = - 2 - x , x \geq 0
D)Yes, ff has an inverse function, f1(x)=2+x,x0f ^ { - 1 } ( x ) = 2 + x , x \geq 0
E)Yes, ff has an inverse function, f1(x)=2+x,x0f ^ { - 1 } ( x ) = - 2 + x , x \geq 0
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
5
Use the functions given by f(x)=x+4f ( x ) = x + 4 and g(x)=2x6g ( x ) = 2 x - 6 to find the composition of functions (gf)1(g\circ f)^{-1}

A) (x+2)2\frac { - ( x + 2 ) } { - 2 }
B) x+22\frac { - x + 2 } { 2 }
C) x22\frac { x - 2 } { 2 }
D) x22\frac { x - 2 } { - 2 }
E) x+22\frac { x + 2 } { 2 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
6
Show that ff and gg are functions by using the definition of inverse functions. f(x)=5x+1,g(x)=x15f ( x ) = 5 x + 1 , g ( x ) = \frac { x - 1 } { 5 }

A) f(g(x))=x,g(f(x))=xf ( g ( x ) ) = x , g ( f ( x ) ) = x
B) f(g(x))=x1,g(f(x))=xf ( g ( x ) ) = x ^ { - 1 } , g ( f ( x ) ) = x
C) f(g(x))=x,g(f(x))=x1f ( g ( x ) ) = x , g ( f ( x ) ) = x ^ { - 1 }
D) f(g(x))=x+1,g(f(x))=xf ( g ( x ) ) = x + 1 , g ( f ( x ) ) = x
E) f(g(x))=x,g(f(x))=x+1f ( g ( x ) ) = x , g ( f ( x ) ) = x + 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
7
Find the inverse function of the function f given by the set of ordered pairs. {(6,2),(5,3),(4,4),(3,5)}\{ ( 6,2 ) , ( 5,3 ) , ( 4,4 ) , ( 3,5 ) \}

A) f1={(2,6),(3,5),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,4 ) , ( 5,3 ) \}
B) f1={(2,6),(3,5),(4,4),(5,5)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,4 ) , ( 5,5 ) \}
C) f1={(2,6),(3,5),(4,2),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,5 ) , ( 4,2 ) , ( 5,3 ) \}
D) f1={(2,6),(3,3),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,6 ) , ( 3,3 ) , ( 4,4 ) , ( 5,3 ) \}
E) f1={(2,2),(3,5),(4,4),(5,3)}f ^ { - 1 } = \{ ( 2,2 ) , ( 3,5 ) , ( 4,4 ) , ( 5,3 ) \}
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
8
Sketch the graphs of inverse functions f(x)=x52,f1(x)=x+25f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 } in the same coordinate plane and show that the graphs are reflections of each other in the line y=xy = x

A)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}   x101f(x)321x421f1(x)101\begin{array} { l l r r } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 4 & - 2 & - 1 \\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
B)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}   x101f(x)321x321f1(x)121\begin{array} { l lrr } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 2 & 1\end{array}
C)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}   x001f(x)321x321f1(x)101\begin{array} { l r rr } x & 0 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
D)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}   x101f(x)321x321f1(x)101\begin{array} { l l rr } x & - 1 & 0 & 1 \\f ( x ) & - 3 & - 2 & - 1 \\\\x & - 3 & - 2 & -1\\f ^ { - 1 } ( x ) & - 1 & 0 & 1\end{array}
E)  <strong>Sketch the graphs of inverse functions  f ( x ) = x ^ { 5 } - 2 , f ^ { - 1 } ( x ) = \sqrt [ 5 ] { x + 2 }  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l r r } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 4 & - 2 & - 1 \\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  B)    \begin{array} { l lrr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 2 &  1 \end{array}  C)    \begin{array} { l r rr } x & 0 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 &  1 \end{array}  D)    \begin{array} { l l rr } x & - 1 & 0 & 1 \\ f ( x ) & - 3 & - 2 & - 1 \\\\ x & - 3 & - 2 & -1\\ f ^ { - 1 } ( x ) & - 1 & 0 & 1 \end{array}  E)    \begin{array}{llrr} x & -1 & 0 & -1 \\ f(x) & -3 & -2 & -1 \\\\ x & -3& 2& -1 \\ f^{-1}(x) & -1 & -2 & 1 \end{array}
x101f(x)321x321f1(x)121\begin{array}{llrr}x & -1 & 0 & -1 \\f(x) & -3 & -2 & -1 \\\\x & -3& 2& -1 \\f^{-1}(x) & -1 & -2 & 1\end{array}
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
9
Find the inverse function informally f(x)=x5f ( x ) = x - 5 . Verify that f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x and f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x

A) f1(x)=x+1f ^ { - 1 } ( x ) = x + 1 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
B) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
C) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=x1f ^ { - 1 } ( f ( x ) ) = x - 1
D) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=x+1f \left( f ^ { - 1 } ( x ) \right) = x + 1 , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
E) f1(x)=x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=x1f ^ { - 1 } ( f ( x ) ) = x ^ { - 1 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
10
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (g1f1)(3)\left( g ^ { - 1 } \circ f ^ { - 1 } \right) ( - 3 )

A)1
B)0
C)3
D)4
E)2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
11
Find the inverse function of the function f given by the set of ordered pairs. {(1,4),(2,5),(3,6),(4,7)}\{ ( 1,4 ) , ( 2,5 ) , ( 3,6 ) , ( 4,7 ) \}

A) f1={(4,4),(5,2),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,4 ) , ( 5,2 ) , ( 6,3 ) , ( 7,4 ) \}
B) f1={(4,1),(5,5),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,5 ) , ( 6,3 ) , ( 7,4 ) \}
C) f1={(4,1),(5,2),(6,6),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,6 ) , ( 7,4 ) \}
D) f1={(4,1),(5,2),(6,3),(7,4)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,3 ) , ( 7,4 ) \}
E) f1={(4,1),(5,2),(6,3),(7,7)}f ^ { - 1 } = \{ ( 4,1 ) , ( 5,2 ) , ( 6,3 ) , ( 7,7 ) \}
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
12
Find the inverse function informally f(x)=2xf ( x ) = 2 x . Verify that f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x and f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x

A) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=x1f \left( f ^ { - 1 } ( x ) \right) = x ^ { - 1 } , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
B) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=2xf \left( f ^ { - 1 } ( x ) \right) = 2 x , f1(f(x))=3xf ^ { - 1 } ( f ( x ) ) = 3 x
C) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=2xf ^ { - 1 } ( f ( x ) ) = 2 x
D) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=3xf \left( f ^ { - 1 } ( x ) \right) = 3 x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
E) f1(x)=x2f ^ { - 1 } ( x ) = \frac { x } { 2 } , f(f1(x))=xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x))=xf ^ { - 1 } ( f ( x ) ) = x
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
13
Use the graph of ff to complete the table and to sketch the graph of f1f ^ { - 1 } x01234f1(x)\begin{array}{llllll}x & 0 & 1 & 2 & 3 & 4\\f^{-1}(x)\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}

A) x01234f1(x)04221\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}
B) x01234f1(x)42201\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}
C) x01234f1(x)20124\begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}
D) x01234f1(x)24201\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}
E) x01234f1(x)12240\begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0\end{array}  <strong>Use the graph of  f  to complete the table and to sketch the graph of  f ^ { - 1 }   \begin{array}{llllll} x & 0 & 1 & 2 & 3 & 4\\ f^{-1}(x) \end{array}   </strong> A)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 0 & 4 & - 2 & 2 & 1 \end{array}    B)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 4 & - 2 & 2 & 0 & 1 \end{array}    C)  \begin{array} { l l l l l l } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 1 & 2 & 4 \end{array}    D)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 2 & 4 & - 2 & 0 & 1 \end{array}    E)  \begin{array} { c c c c c c } x & 0 & 1 & 2 & 3 & 4 \\ f ^ { - 1 } ( x ) & 1 & 2 & - 2 & 4 & 0 \end{array}
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
14
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=36+x2,x0f ( x ) = 36 + x ^ { 2 } , x \leq 0

A)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = - \sqrt { x - 36 } , x \geq 36
B)No, ff does not have an inverse function.
C)Yes, ff has an inverse function, f1(x)=x+36,x36f ^ { - 1 } ( x ) = - \sqrt { x + 36 } , x \geq 36
D)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = \sqrt { x - 36 } , x \geq 36
E)Yes, ff has an inverse function, f1(x)=x36,x36f ^ { - 1 } ( x ) = - \sqrt { x - 36 } , x \leq 36
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
15
Use the graph of ff to determine whether the function has an inverse function.  <strong>Use the graph of  f  to determine whether the function has an inverse function.  </strong> A)Yes,  f  has an inverse function. B)No,  f  does not have an inverse function.

A)Yes, ff has an inverse function.
B)No, ff does not have an inverse function.
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
16
A company's profit PP for producing xx units is given by P(x)=47x5736P ( x ) = 47 x - 5736 . Find the inverse function P1(x)P ^ { - 1 } ( x ) and explain what it represents. Describe the domains of P(x)P ( x ) and P1(x)P ^ { - 1 } ( x ) .

A) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,10)P ( x ) : [ 0,10 ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
B) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,5736)P ^ { - 1 } ( x ) : [ - 5736,5736 )
C) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
D) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[1,)P ( x ) : [ 1 , \infty ) , Domain of P1(x):[5736,)P ^ { - 1 } ( x ) : [ - 5736 , \infty )
E) P1(x)=x+573647P ^ { - 1 } ( x ) = \frac { x + 5736 } { 47 } , P1(x)P ^ { - 1 } ( x ) represents the number of units that must be sold to obtain the profit of xx .Domain of P(x):[0,)P ( x ) : [ 0 , \infty ) , Domain of P1(x):[5736,47)P ^ { - 1 } ( x ) : [ - 5736,47 )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
17
Sketch the graphs of inverse functions f(x)=x3,f1(x)=3xf ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x in the same coordinate plane and show that the graphs are reflections of each other in the line y=xy = x

A)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}   x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
B)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}   x203f(x)101\begin{array} { l l l l } x & - 2 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
C)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}   x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)323\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 2 & 3\end{array}
D)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}   x300f(x)101\begin{array} { l l l l } x & - 3 & 0 & 0 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)303\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 3 & 0 & 3\end{array}
E)  <strong>Sketch the graphs of inverse functions  f ( x ) = \frac { x } { 3 } , f ^ { - 1 } ( x ) = 3 x  in the same coordinate plane and show that the graphs are reflections of each other in the line  y = x </strong> A)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  B)    \begin{array} { l l l l } x & - 2 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  C)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 2 & 3 \end{array}  D)    \begin{array} { l l l l } x & - 3 & 0 & 0 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 3 & 0 & 3 \end{array}  E)    \begin{array} { l l l l } x & - 3 & 0 & 3 \\ f ( x ) & - 1 & 0 & 1 \end{array}   \begin{array} { l l l l } x & - 1 & 0 & 1 \\ f ^ { - 1 } ( x ) & - 2 & 0 & 3 \end{array}   x303f(x)101\begin{array} { l l l l } x & - 3 & 0 & 3 \\f ( x ) & - 1 & 0 & 1\end{array} x101f1(x)203\begin{array} { l l l l } x & - 1 & 0 & 1 \\f ^ { - 1 } ( x ) & - 2 & 0 & 3\end{array}
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
18
Determine whether the function has an inverse function, If it does, find its inverse function. f(x)=x4f ( x ) = x ^ { 4 }

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function, y=x4y = x ^ { 4 }
C)Yes, ff has an inverse function, y=x4y = - x ^ { - 4 }
D)Yes, ff has an inverse function, y=x4y = x ^ { - 4 }
E)Yes, ff has an inverse function, y=x4y = - x ^ { 4 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
19
Use the graph of ff to determine whether the function has an inverse function.  <strong>Use the graph of  f  to determine whether the function has an inverse function.  </strong> A)No,  f  does not have an inverse function. B)Yes,  f  has an inverse function.

A)No, ff does not have an inverse function.
B)Yes, ff has an inverse function.
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
20
Use the functions given by f(x)=18x3f ( x ) = \frac { 1 } { 8 } x - 3 and g(x)=x2g ( x ) = x ^ { 2 } to find the value (g1g1)(4)\left( g ^ { - 1 } \circ g ^ { - 1 } \right) ( - 4 )

A)16
B)-16
C)32
D)The value does not exist.
E)-32
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
21
Use a calculator to evaluate (2.6)( 2.6 )  <strong>Use a calculator to evaluate  ( 2.6 )   . Round your result to three decimal places.</strong> A)  \approx 0.463  B)  \approx 4.463  C)  \approx 3.463  D)  \approx 1.463  E)  \approx 2.463   . Round your result to three decimal places.

A) 0.463\approx 0.463
B) 4.463\approx 4.463
C) 3.463\approx 3.463
D) 1.463\approx 1.463
E) 2.463\approx 2.463
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
22
Sketch the graph of the function y=e0.1xy = e ^ { - 0.1 x }

A)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  y = e ^ { - 0.1 x } </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
23
Use a calculator to evaluate the function f(x)=exf ( x ) = e ^ { x } for the given value of xx , x=0.3x = 0.3 . Round your result to three decimal places.

A) e0.31.050e ^ { 0.3 } \approx 1.050
B) e0.30.050e ^ { 0.3 } \approx 0.050
C) e0.31.50e ^ { 0.3 } \approx 1.50
D) e0.30.350e ^ { 0.3 } \approx 0.350
E) e0.31.350e ^ { 0.3 } \approx 1.350
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
24
You deposit a lump sum PP in a trust fund on the day your child is born. The fund earns 6.5% interest compounded continuously. Find the amount PP that will yield the given balance AA on your child's 25th birthday. A=$100,000A = \$ 100,000

A) P$10,691.17P \approx \$ 10,691.17
B) P$9,691.17P \approx \$ 9,691.17
C) P$14,691.17P \approx \$ 14,691.17
D) P$11,691.17P \approx \$ 11,691.17
E) P$19,691.17P \approx \$ 19,691.17
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
25
Sketch the graph of the function f(x)=(15)xf ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x } .

A)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
26
Evaluate the expression below. Round your results to three decimal places. e3e ^ { 3 }

A)2.718
B)20.086
C)0.135
D)54.598
E)7.389
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
27
Match the function f(x)=2x3f ( x ) = 2 ^ { x - 3 } with its graph.

A)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)
B)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)
C)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)
D)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)
E)  <strong>Match the function  f ( x ) = 2 ^ { x - 3 }  with its graph.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
28
Strontinum-90 has a half life of 29.1 years.The amount S of 100 kilograms of Strontinum6990 present after t years is given by S=100e0.0238tS = 100 e ^ { - 0.0238 t } How much of the 100 kilograms will remain after 50 years?

A)about 31.4 kilograms
B)about 35.4 kilograms
C)about 30.4 kilograms
D)about 37.4 kilograms
E)about 40.4 kilograms
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
29
The present value of money is the principal PP you need to invest today so that it will grow to an amount AA at the end of specified time. The present value formula P=A(1+rn)ntP = A \left( 1 + \frac { r } { n } \right) ^ { - n t } is obtained by solving the compound interest formula A=P(1+rn)ntA = P \left( 1 + \frac { r } { n } \right) ^ { n t } for PP . Recall that tt is the number of years, rr is the interest rate per year, and nn is the number of compoundings per year. find the present value of amount AA invested at rate rr for tt years, compounded nn times per year. A=$10,000,r=6%,t=5 years ,n=4A = \$ 10,000 , r = 6 \% , t = 5 \text { years } , n = 4

A) P6424.70P \approx 6424.70
B) P3424.70P \approx 3424.70
C) P4424.70P \approx 4424.70
D) P7424.70P \approx 7424.70
E) P5424.70P \approx 5424.70
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
30
The present value of money is the principal PP you need to invest today so that it will grow to an amount AA at the end of specified time. The present value formula P=A(1+rn)ntP = A \left( 1 + \frac { r } { n } \right) ^ { - n t } is obtained by solving the compound interest formula A=P(1+rn)ntA = P \left( 1 + \frac { r } { n } \right) ^ { n t } for PP . Recall that tt is the number of years, rr is the interest rate per year, and nn is the number of compoundings per year. find the present value of amount AA invested at rate rr for tt years, compounded nn times per year. A=$1,000,000,r=8%,t=20 years ,n=2A = \$ 1,000,000 , r = 8 \% , t = 20 \text { years }, n = 2

A) P$108,289.04P \approx \$ 108,289.04
B) P$208,289.04P \approx \$ 208,289.04
C) P$308,289.04P \approx \$ 308,289.04
D) P$20,289.04P \approx \$ 20,289.04
E) P$1008,289.04P \approx \$ 1008,289.04
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
31
Use a calculator to evaluate 626 ^ { - \sqrt { 2 } } . Round your result to three decimal places.

A) 0.079\approx 0.079
B) 4.079\approx 4.079
C) 1.079\approx 1.079
D) 3.079\approx 3.079
E) 2.079\approx 2.079
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
32
The demand function for a limited edition comic book is given by p=3000(155+e0.015x)p = 3000 \left( 1 - \frac { 5 } { 5 + e ^ { - 0.015 x } } \right) Find the price pp for a demand of x=45x = 45 units.

A)$5722.74
B)$277.26
C)$369.89
D)$340.13
E)$6369.89
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
33
Sketch the graph of the function y=3x2y = 3 ^ { - x ^ { 2 } } .

A)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  y = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
34
Sketch the graph of the function g(x)=4xg ( x ) = 4 ^ { x } .

A)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  g ( x ) = 4 ^ { x }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
35
Sketch the graph of the function N(t)=2etN ( t ) = 2 - e ^ { t }

A)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  N ( t ) = 2 - e ^ { t } </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
36
The number of certain type of bacteria increases according to the model P(t)=100e0.01896tP ( t ) = 100 e ^ { 0.01896 t } where t is time (in hours)
a)Find P(0).
b)Find P(5).
c)Find P(10).
d)Find P(24).

A)a) P(0)=100P ( 0 ) = 100 b) P(5)109.94P ( 5 ) \approx 109.94 c) P(10)120.88P ( 10 ) \approx 120.88 d) P(24)157.62P ( 24 ) \approx 157.62
B)a) P(0)100P ( 0 ) \approx 100 b) P(5)&119.94P ( 5 ) \& 119.94 c) P(10)102.88P ( 10 ) \approx 102.88 d) P(24)257.62\mathrm { P } ( 24 ) \approx 257.62
C)a) P(0)=120.56\mathrm { P } ( 0 ) = 120.56 b) P(5)=100.94P ( 5 ) = 100.94 c) P(10)620.88P ( 10 ) \approx 620.88 d) P(24)517.62P ( 24 ) \approx 517.62
D)a) P(0)=109.78\mathrm { P } ( 0 ) = 109.78 b) P(5)100.94P ( 5 ) \approx 100.94 c) P(10)150.88P ( 10 ) \approx 150.88 d) P(24)357.62P ( 24 ) \approx 357.62
E)a) P(0)=105P ( 0 ) = 105 b) P(5)119.94P ( 5 ) \approx 119.94 c) P(10)120.08P ( 10 ) \approx 120.08 d) P(24)157.52P ( 24 ) \approx 157.52
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
37
Determine whether e=271,80199,990e = \frac { 271,801 } { 99,990 } . Justify your answer.

A)Yes, e=271,80199,990e = \frac { 271,801 } { 99,990 } because ee is a rational number.
B)No, e271,80199,990e \neq \frac { 271,801 } { 99,990 } because ee is not a rational number.
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
38
Match the function f(x)=2xf ( x ) = 2 ^ { - x } with its graph.

A)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)
B)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)
C)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)
D)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)
E)  <strong>Match the function  f ( x ) = 2 ^ { - x }  with its graph.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
39
Determine which of the following functions is graphed below. 2x1,2x1,2x+1,2x+2,2x+22 ^ { x } - 1,2 ^ { - x } - 1,2 ^ { - x } + 1,2 ^ { - x } + 2,2 ^ { x } + 2  <strong>Determine which of the following functions is graphed below.  2 ^ { x } - 1,2 ^ { - x } - 1,2 ^ { - x } + 1,2 ^ { - x } + 2,2 ^ { x } + 2   </strong> A)  2 ^ { x } - 1  B)  2 ^ { - x } - 1  C)  2 ^ { - x } + 1  D)  2 ^ { - x } + 2  E)  2 ^ { x } + 2

A) 2x12 ^ { x } - 1
B) 2x12 ^ { - x } - 1
C) 2x+12 ^ { - x } + 1
D) 2x+22 ^ { - x } + 2
E) 2x+22 ^ { x } + 2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
40
Use a calculator to evaluate the function f(x)=exf ( x ) = e ^ { x } for the given value of xx , x=4x = 4 . Round your result to three decimal places.

A) e454.598e ^ { 4 } \approx 54.598
B) e444.598e ^ { 4 } \approx 44.598
C) e450.598e ^ { 4 } \approx 50.598
D) e452.598e ^ { 4 } \approx 52.598
E) e445.598e ^ { 4 } \approx 45.598
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
41
Find the domain of the function k(x)=log8(4x)k ( x ) = \log _ { 8 } ( 4 - x ) .

A) (4,)( 4 , \infty )
B) (,8)( - \infty , 8 )
C) (4,)( - 4 , \infty )
D) (,4)( - \infty , 4 )
E) (8,)( 8 , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
42
Rewrite the exponential equation 32=193 ^ { - 2 } = \frac { 1 } { 9 } in logarithmic form.

A) log319=2\log _ { 3 } \frac { 1 } { 9 } = - 2
B) log29=2\log _ { 2 } 9 = - 2
C) log39=2\log _ { 3 } 9 = - 2
D) log93=2\log _ { 9 } 3 = - 2
E) log319=2\log _ { 3 } \frac { 1 } { 9 } = 2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
43
Rewrite the logarithmic equation log6136=2\log _ { 6 } \frac { 1 } { 36 } = - 2 in exponential form.

A) 636=26 ^ { 36 } = - 2
B) 61/36=26 ^ { 1 / 36 } = - 2
C) 62=1366 ^ { - 2 } = \frac { 1 } { 36 }
D) (136)2=6\left( \frac { 1 } { 36 } \right) ^ { - 2 } = 6
E) 62=1366 ^ { - 2 } = - \frac { 1 } { 36 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
44
Expand the given logarithmic expression. Assume all variable expressions represent positive real numbers. ln(x7/4y3/2)\ln \left( x ^ { 7 / 4 } y ^ { 3 / 2 } \right)

A) 218lnxy\frac { 21 } { 8 } \ln x y
B) 218lnxlny\frac { 21 } { 8 } \ln x \ln y
C) xln(74)+yln(32)x \ln \left( \frac { 7 } { 4 } \right) + y \ln \left( \frac { 3 } { 2 } \right)
D) 32lnx+74lny\frac { 3 } { 2 } \ln x + \frac { 7 } { 4 } \ln y
E) 74lnx+32lny\frac { 7 } { 4 } \ln x + \frac { 3 } { 2 } \ln y
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
45
Evaluate the logarithm log7714\log _ { 7 } 714 using the change of base formula. Round to 3 decimal places.

A)6.571
B)0.296
C)3.377
D)12.786
E)2.854
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
46
Expand the logarithmic expression ln(z6x4y45)\ln \left( \frac { z ^ { 6 } } { \sqrt [ 5 ] { x ^ { 4 } y ^ { 4 } } } \right) . Assume all variable expressions represent positive real numbers.

A) ln(6z20x+20y)\ln ( 6 z - 20 x + 20 y )
B) 6lnz45lnx45lny6 \ln z - \frac { 4 } { 5 } \ln x - \frac { 4 } { 5 } \ln y
C) 6lnz20lnx20lny6 \ln z - 20 \ln x - 20 \ln y
D) ln(6z45x45y)\ln \left( 6 z - \frac { 4 } { 5 } x - \frac { 4 } { 5 } y \right)
E) 6lnz45lnx+45lny6 \ln z - \frac { 4 } { 5 } \ln x + \frac { 4 } { 5 } \ln y
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
47
Find the exact value of log5253\log _ { 5 } \sqrt [ 3 ] { 25 } without using a calculator.

A) 253\frac { 25 } { 3 }
B) 325\frac { 3 } { 25 }
C) 103\frac { 10 } { 3 }
D) 23\frac { 2 } { 3 }
E)-1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
48
Write the exponential equation e3/2=4.4817e ^ { 3 / 2 } = 4.4817 \ldots in logarithmic form.

A) 2.303log(32)=4.48172.303 \log \left( \frac { 3 } { 2 } \right) = 4.4817 \ldots
B) log10(4.4817)=32\log _ { 10 } ( 4.4817 \ldots ) = \frac { 3 } { 2 }
C) ln(32)=4.4817\ln \left( \frac { 3 } { 2 } \right) = 4.4817 \ldots
D) ln(4.4817)=32\ln ( 4.4817 \ldots ) = \frac { 3 } { 2 }
E) ln3=4.48172\ln 3 = \frac { 4.4817 \ldots } { 2 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
49
Write the expression below as a single logarithm with a coefficient of 1. Assume all variable expressions represent positive real numbers. 5log2t16log2u+4log2v5 \log _ { 2 } t - \frac { 1 } { 6 } \log _ { 2 } u + 4 \log _ { 2 } v

A) log2(t5u6+v4)\log _ { 2 } \left( t ^ { 5 } - u ^ { - 6 } + v ^ { 4 } \right)
B) log2(t5+1u6+v4)\log _ { 2 } \left( t ^ { 5 } + \frac { 1 } { \sqrt [ 6 ] { u } } + v ^ { 4 } \right)
C) log2(t5v4u6)\log _ { 2 } \left( \frac { t ^ { 5 } v ^ { 4 } } { \sqrt [ 6 ] { u } } \right)
D) log2(t5v6u4)\log _ { 2 } \left( \frac { t ^ { 5 } v ^ { 6 } } { \sqrt [ 4 ] { u } } \right)
E) log2(t6v4u5)\log _ { 2 } \left( \frac { t ^ { 6 } v ^ { 4 } } { \sqrt [ 5 ] { u } } \right)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
50
Approximate the logarithm below using the properties of logarithms, given logb20.3562,\log _ { b } 2 \approx 0.3562, logb30.5646,\log _ { b } 3 \approx 0.5646, and logb50.8271.\log _ { b } 5 \approx 0.8271. logb32\log _ { b } \frac { 3 } { 2 }

A)-0.2084
B)-0.2625
C)0.2084
D)0.2625
E)0.4709
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
51
Condense the expression 15[log5x+log56][log5y]\frac { 1 } { 5 } \left[ \log _ { 5 } x + \log _ { 5 } 6 \right] - \left[ \log _ { 5 } y \right] to the logarithm of a single term.

A) log5(6x)5y\log _ { 5 } \frac { ( 6 x ) ^ { 5 } } { y }
B) log56x5y\log _ { 5 } \frac { 6 x } { 5 y }
C) log56xy5\log _ { 5 } \sqrt [ 5 ] { \frac { 6 x } { y } }
D) log56x5y\log _ { 5 } \frac { \sqrt [ 5 ] { 6 x } } { y }
E) log56x5log5y\log _ { 5 } \sqrt[5] { 6 x } - \log _ { 5 } y
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
52
Write the exponential equation 32=93 ^ { 2 } = 9 in its logarithmic form.

A) log29=3\log _ { 2 } 9 = 3
B) log32=9\log _ { 3 } 2 = 9
C) log93=2\log _ { 9 } 3 = 2
D) log23=9\log _ { 2 } 3 = 9
E) log39=2\log _ { 3 } 9 = 2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
53
Write the logarithmic equation 4=log2164 = \log _ { 2 } 16 in its exponential form.

A) 216=42 ^ { 16 } = 4
B) 24=162 ^ { 4 } = 16
C) 164=216 ^ { 4 } = 2
D) 42=164 ^ { 2 } = 16
E) 416=24 ^ { 16 } = 2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
54
Condense the expression log3x+log34\log _ { 3 } x + \log _ { 3 } 4 to the logarithm of a single term.

A) log(4x)3\log ( 4 x ) ^ { 3 }
B) log34x\log _ { 3 } 4 x
C) log34x\log _ { 3 } 4 ^ { x }
D) log3x4\log _ { 3 } x ^ { 4 }
E) log3(x+4)\log _ { 3 } ( x + 4 )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
55
Match the function below with its graph. f(x)=3lnx2f ( x ) = 3 \ln x - 2 Graph I :  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV  Graph IV:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV  Graph II:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV  Graph V:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV  Graph III:  <strong>Match the function below with its graph.  f ( x ) = 3 \ln x - 2  Graph I :   Graph IV:   Graph II:   Graph V:   Graph III:  </strong> A)Graph III B)Graph I C)Graph II D)Graph V E)Graph IV

A)Graph III
B)Graph I
C)Graph II
D)Graph V
E)Graph IV
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
56
Write 5ln(x+7)3lnx4ln(x2+8)5 \ln ( x + 7 ) - 3 \ln x - 4 \ln \left( x ^ { 2 } + 8 \right) as a single logarithm with a coefficient of 1. Assume all variable expressions represent positive real numbers.

A) ln(x3(x+7)5(x2+8)4)\ln \left( x ^ { 3 } ( x + 7 ) ^ { 5 } \left( x ^ { 2 } + 8 \right) ^ { 4 } \right)
B) ln(5(x+7)12x(x2+8))\ln \left( \frac { 5 ( x + 7 ) } { 12 x \left( x ^ { 2 } + 8 \right) } \right)
C) ln(60x(x+7)(x2+8))\ln \left( 60 x ( x + 7 ) \left( x ^ { 2 } + 8 \right) \right)
D) ln(4x2+2x+3)\ln \left( - 4 x ^ { 2 } + 2 x + 3 \right)
E) ln((x+7)5x3(x2+8)4)\ln \left( \frac { ( x + 7 ) ^ { 5 } } { x ^ { 3 } \left( x ^ { 2 } + 8 \right) ^ { 4 } } \right)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
57
Find the vertical asymptote of the logarithmic function below. f(x)=log2(x4)f ( x ) = \log _ { 2 } ( x - 4 )

A) x=5x = 5
B) x=2x = 2
C) x=5x = - 5
D) x=4x = - 4
E) x=4x = 4
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
58
Use the properties of logarithms to simplify the logarithmic expression below. log5175\log _ { 5 } \sqrt { 175 }

A) 2log572 \log _ { 5 } 7
B) 1+12log571 + \frac { 1 } { 2 } \log _ { 5 } 7
C) 2+12log572 + \frac { 1 } { 2 } \log _ { 5 } 7
D) 2+log572 + \log _ { 5 } 7
E) 1+log571 + \log _ { 5 } 7
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
59
Evaluate the logarithm log2132\log _ { 2 } \frac { 1 } { 32 } without using a calculator.

A) 5- 5
B) 44
C) 1616
D) 4- 4
E) 55
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
60
Write the logarithmic equation ln6=1.792\ln 6 = 1.792 \ldots in exponential form.

A) e1.792=6e ^ { 1.792 \ldots } = 6
B) 106=1.79210 ^ { 6 } = 1.792 \ldots
C) 2.303e1.792=62.303 e ^ { 1.792 \ldots } = 6
D) 2.303×106=1.7922.303 \times 10 ^ { 6 } = 1.792 \ldots
E) e6=1.792e ^ { 6 } = 1.792 \ldots
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
61
Approximate the solution to ln5x=3.2\ln 5 x = 3.2 . Round to 3 decimal places.

A)1.896
B)4.907
C)4.809
D)-0.446
E)316.979
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
62
Solve for x.x. ln(6x11)=0\ln ( 6 x - 11 ) = 0

A) x=4x = 4
B) x=2x = 2
C) x=5x = 5
D) x=116x = \frac { 11 } { 6 }
E) x=72x = \frac { 7 } { 2 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
63
Solve the exponential equation algebraically. Approximate the result to three decimal places. e2x5ex+4=0e ^ { 2 x } - 5 e ^ { x } + 4 = 0

A) x=0.000,1.000x = 0.000,1.000
B) x=0.000,1.386x = 0.000,1.386
C) x=0.000,4.000x = 0.000,4.000
D) x=1.000,4.000x = 1.000,4.000
E) x=1.386,4.000x = 1.386,4.000
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
64
Use algebraic procedures to find the exact solution of the equation lnx=12ln(2x+199)+12ln9\ln x = \frac { 1 } { 2 } \ln \left( 2 x + \frac { 19 } { 9 } \right) + \frac { 1 } { 2 } \ln 9 .

A)-1, 19
B) 1914- \frac { 19 } { 14 }
C)2, 9
D)19
E)1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
65
Approximate the solution to ln(x+3)lnx=1\ln ( x + 3 ) - \ln x = 1 . Round to 3 decimal places.

A)-0.632
B)0.250
C)1.746
D)2.718
E)0.333
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
66
Solve the exponential equation algebraically. Approximate the result to three decimal places. 4006+e6x=8\frac { 400 } { 6 + e ^ { 6 x } } = 8

A) x=0.671x = 0.671
B) x=infx = \inf
C) x=0.631x = 0.631
D) x=1.001x = 1.001
E) x=0.996x = 0.996
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
67
Use algebraic procedures to find the exact solution of the equation log5x+log5(x20)=3\log _ { 5 } x + \log _ { 5 } ( x - 20 ) = 3 .

A)0, -20
B)25
C)3, 5
D)-5, 25
E)5
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
68
Use algebraic procedures to find the exact solution(s) of the equation below. 69x+2=12166 ^ { 9 x + 2 } = \frac { 1 } { 216 }

A) x=59x = - \frac { 5 } { 9 }
B) x=19x = \frac { 1 } { 9 }
C) x=16x = \frac { 1 } { 6 }
D) x=56x = - \frac { 5 } { 6 }
E) x=56x = \frac { 5 } { 6 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
69
Solve (12)x=8\left( \frac { 1 } { 2 } \right) ^ { x } = 8 for x.

A)1
B) 1- 1
C) 3- 3
D) 2- 2
E)no solution
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
70
The approximate lengths and diameters (in inches) of common nails are shown in the table. Find a logarithmic equation that relates the diameter yy of a common nail to its length x.x.  Length, x Diameter, y10.09520.15630.208\begin{array} { | c | c | } \hline \text { Length, } x & \text { Diameter, } y \\\hline 1 & 0.095 \\\hline 2 & 0.156 \\\hline 3 & 0.208 \\\hline\end{array}  Length, x Diameter, y40.25650.30060.342\begin{array} { | c | c | } \hline \text { Length, } x & \text { Diameter, } y \\\hline 4 & 0.256 \\\hline 5 & 0.300 \\\hline 6 & 0.342 \\\hline\end{array}

A) lny=0.095lnx+ln0.715\ln y = - 0.095 \ln x + \ln 0.715
B) lny=0.095lnxln0.715\ln y = 0.095 \ln x - \ln 0.715
C) lny=0.715lnxln0.095\ln y = 0.715 \ln x - \ln 0.095
D) lny=0.095lnxln0.715\ln y = - 0.095 \ln x - \ln 0.715
E) lny=0.715lnx+ln0.095\ln y = 0.715 \ln x + \ln 0.095
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
71
Use algebraic procedures to find the exact solution(s) of the equation below. 103x=37010 ^ { 3 - x } = 370

A) x=1+3log370x = 1 + 3 \log 370
B) x=13log370x = - 1 - 3 \log 370
C) x=1+3log370x = - 1 + 3 \log 370
D) x=3log370x = - 3 - \log 370
E) x=3log370x = 3 - \log 370
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
72
An initial investment of $4000 grows at an annual interest rate of 4% compounded continuously. How long will it take to double the investment?

A)17.33 years
B)18.33 years
C)18.00 years
D)17.00 years
E)1 year
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
73
Solve for x: 5x/3=0.00525 ^ { - x / 3 } = 0.0052 . Round to 3 decimal places.

A)9.803
B)15.777
C)20.606
D)-20.606
E)-3.268
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
74
Solve for x: 9(10x3)=239 \left( 10 ^ { x - 3 } \right) = 23 . Round to 3 decimal places.

A)3.407
B)0.407
C)1.362
D)-1.362
E)no solution
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
75
The average monthly sales yy (in billions of dollars) in retail trade in the United States from 1996 to 2005 can be approximated by the model y=22+117lnt,y = 22 + 117 \ln t, 6t156 \leq t \leq 15 where tt represents the year, with t=6t = 6 corresponding to 1996. Estimate the year in which the average monthly sales first exceeded $310 billion.

A)2001
B)2004
C)2002
D)2000
E)1996
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
76
An industrial psychologist has determined that the average percent score for an employee on a test of the employee's knowledge of the company's product is given by P=1001+24e0.15tP = \frac { 100 } { 1 + 24 e ^ { - 0.15 t } } where t is the number of weeks on the job and P is the percent score. Estimate (to the nearest week) the expected number of weeks of employment that are necessary for an employee to earn a 85% score on the test.

A)38 weeks
B)37 weeks
C)42 weeks
D)60 weeks
E)33 weeks
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
77
Apply the Inverse Property of logarithmic or exponential functions to simplify the expression below. log8642x+5\log _ { 8 } 64 ^ { 2 x + 5 }

A) 4x+104 x + 10
B) 16x+4016 x + 40
C) 82x+58 ^ { 2 x + 5 }
D) 2log8(2x+5)2 \log _ { 8 } ( 2 x + 5 )
E) 8log8(2x+5)8 \log _ { 8 } ( 2 x + 5 )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
78
Approximate the solution of 16e7x=2216 e ^ { 7 x } = 22 to 3 decimal places. (You may use a graphing utility.)

A)-6.682
B)0.164
C)-1.627
D)2.229
E)0.045
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
79
Use a graphing utility to approximate the solution to log4x+log4(2x+1)=2\log _ { 4 } x + \log _ { 4 } ( 2 x + 1 ) = 2 . Round to 3 decimal places.

A)6.179
B)5.179
C)3.089
D)2.589
E)no solution
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
80
Solve for x. 23x=1282 ^ { 3 x } = 128

A) 1283\frac { 128 } { 3 }
B) 643- \frac { 64 } { 3 }
C) 73\frac { 7 } { 3 }
D) 37\frac { 3 } { 7 }
E)2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 94 flashcards in this deck.