Deck 10: Further Applications of the Derivative

Full screen (f)
exit full mode
Question
Volume. A rectangular box with a square base is to be formed from a square piece of metal with 30-inch sides. If a square piece with side x is cut from each corner of the metal and the sides are folded up to form an open box, the volume of the box is V=(302x)2xV = ( 30 - 2 x ) ^ { 2 } x What value of x will maximize the volume of the box?  <strong>Volume. A rectangular box with a square base is to be formed from a square piece of metal with 30-inch sides. If a square piece with side x is cut from each corner of the metal and the sides are folded up to form an open box, the volume of the box is  V = ( 30 - 2 x ) ^ { 2 } x  What value of x will maximize the volume of the box?  </strong> A)15 B)3 C)5 D)7 E)4 <div style=padding-top: 35px>

A)15
B)3
C)5
D)7
E)4
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the point on the graph of f(x)=x2f ( x ) = x ^ { 2 } that is closest to the point (6, 0.5). Round your answer to two decimal places.

A)(1.44, 2.07)
B)(1.82, 3.31)
C)(2.29, 5.24)
D)(1.26, 1.59)
E)(1.14, 1.30)
Question
Find the dimensions of the rectangle of maximum area bounded by the x-axis and y-axis and the graph of y=4x2y = \frac { 4 - x } { 2 } .  <strong>Find the dimensions of the rectangle of maximum area bounded by the x-axis and y-axis and the graph of  y = \frac { 4 - x } { 2 }  .  </strong> A)length 1.5; width 1.25 B)length 2; width 1 C)length 0.5; width 1.75 D)length 1; width 1.5 E)none of the above <div style=padding-top: 35px>

A)length 1.5; width 1.25
B)length 2; width 1
C)length 0.5; width 1.75
D)length 1; width 1.5
E)none of the above
Question
If the total cost function for a product is C(x)=200+4x+0.09x2C ( x ) = 200 + 4 x + 0.09 x ^ { 2 } dollars. Find the minimum average cost.

A) $15.00\$ 15.00
B) $23.00\$ 23.00
C) $13.03\$ 13.03
D) $12.49\$ 12.49
E) $11.00\$ 11.00
Question
A firm can produce 100 units per week. If its total cost function is C=500+1400xC = 500 + 1400 x dollars, and its total revenue function is R=1500xx2R = 1500 x - x ^ { 2 } dollars, find the maximum profit.

A)$3886
B)$2000
C)$7007
D)$5503
E)$5836
Question
You are in a boat 2 miles from the nearest point on the coast. You are to go to point Q located 3 miles down the coast and 4 miles inland (see figure). You can row at a rate of 4 miles per hour and you can walk at a rate of 4 miles per hour. Toward what point on the coast should you row in order to reach point Q in the least time? <strong>You are in a boat 2 miles from the nearest point on the coast. You are to go to point Q located 3 miles down the coast and 4 miles inland (see figure). You can row at a rate of 4 miles per hour and you can walk at a rate of 4 miles per hour. Toward what point on the coast should you row in order to reach point Q in the least time?  </strong> A)3 miles B)8 miles C)4 miles D)1 mile E)5 miles <div style=padding-top: 35px>

A)3 miles
B)8 miles
C)4 miles
D)1 mile
E)5 miles
Question
A firm has total revenue given by R(x)=300x45.5x2x3 dollars R ( x ) = 300 x - 45.5 x ^ { 2 } - x ^ { 3 } \text { dollars } for x units of a product. Find the maximum revenue from sales of that product.

A)$600
B)$464
C)$303
D)$1100
E)$963
Question
If the total cost function for a product is C(x)=500+3x+0.08x2C ( x ) = 500 + 3 x + 0.08 x ^ { 2 } dollars, determine how many units x should be produced to minimize the average cost per unit?

A)18 units
B)500 units
C)55 units
D)79 units
E)88 units
Question
Find the length and width of a rectangle that has perimeter 3232 meters and a maximum area.

A)4, 12
B)1, 15
C)8, 8
D)9, 7
E)12, 4
Question
If the total revenue function for a blender is R(x)=35x0.25x2,R ( x ) = 35 x - 0.25 x ^ { 2 }, determine how many units x must be sold to provide the maximum total revenue in dollars.

A)1225
B)3000
C)35
D)200
E)70
Question
A rectangular page is to contain 3636 square inches of print. The margins on each side are 1 inch. Find the dimensions of the page such that the least amount of paper is used.

A) 8,88,8
B)6, 6
C)4, 4
D)7, 7
E)5, 5
Question
Average costs. Suppose the average costs of a mining operation depend on the number of machines used, and average costs, in dollars, are given by Cˉ(x)=5x+4500x,x>0\bar { C } ( x ) = 5 x + \frac { 4500 } { x } , \quad x > 0 , where x is the number of machines used. What is the minimum average cost?

A)$0
B)$30
C)$300
D)$150
E)$4505
Question
A rancher has 320 feet of fencing to enclose two adjacent rectangular corrals (see figure). What dimensions should be used so that the enclosed area will be a maximum?  <strong>A rancher has 320 feet of fencing to enclose two adjacent rectangular corrals (see figure). What dimensions should be used so that the enclosed area will be a maximum?  </strong> A)  x = 40.00  and  y = 53.33  B)  x = 8.00  and  y = 96.00  C)  x = 16.00  and  y = 106.67  D)  x = 53.33  and  y = 40.00  E)  x = 24.00  and  y = 64.00  <div style=padding-top: 35px>

A) x=40.00x = 40.00 and y=53.33y = 53.33
B) x=8.00x = 8.00 and y=96.00y = 96.00
C) x=16.00x = 16.00 and y=106.67y = 106.67
D) x=53.33x = 53.33 and y=40.00y = 40.00
E) x=24.00x = 24.00 and y=64.00y = 64.00
Question
A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window (see figure). Find the dimensions of a Norman window of maximum area if the total perimeter is 24 feet. Round yours answers to two decimal places. <strong>A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window (see figure). Find the dimensions of a Norman window of maximum area if the total perimeter is 24 feet. Round yours answers to two decimal places.  </strong> A)x = 6.72 feet and y = 3.36 feet B)x = 3.36 feet and y = 7.68 feet C)x = 2.24 feet and y = 9.12 feet D)x = 5.72 feet and y = 4.65 feet E)x = 7.72 feet and y = 2.08 feet <div style=padding-top: 35px>

A)x = 6.72 feet and y = 3.36 feet
B)x = 3.36 feet and y = 7.68 feet
C)x = 2.24 feet and y = 9.12 feet
D)x = 5.72 feet and y = 4.65 feet
E)x = 7.72 feet and y = 2.08 feet
Question
A wooden beam has a rectangular cross section of height h and width w (see figure). The strength S of the beam is directly proportional to the width and the square of the height. What are the dimensions of the strongest beam that can be cut from a round log of diameter d = 23 inches? Round your answers to two decimal places. [Hint: S=kwh2,S = k w h ^ { 2 }, where k>0k > 0 is the proportionality constant.]  <strong>A wooden beam has a rectangular cross section of height h and width w (see figure). The strength S of the beam is directly proportional to the width and the square of the height. What are the dimensions of the strongest beam that can be cut from a round log of diameter d = 23 inches? Round your answers to two decimal places. [Hint:  S = k w h  ^ { 2 },  where  k > 0  is the proportionality constant.]  </strong> A)w = 13.28 inches and h = 18.78 inches B)w = 7.67 inches and h = 21.68 inches C)w = 19.92 inches and h = 11.50 inches D)w = 16.26 inches and h = 16.27 inches E)w = 18.78 inches and h = 13.28 inches <div style=padding-top: 35px>

A)w = 13.28 inches and h = 18.78 inches
B)w = 7.67 inches and h = 21.68 inches
C)w = 19.92 inches and h = 11.50 inches
D)w = 16.26 inches and h = 16.27 inches
E)w = 18.78 inches and h = 13.28 inches
Question
Average costs. Suppose the average costs of a mining operation depend on the number of machines used, and average costs, in dollars, are given by Cˉ(x)=7x+1372x,x>0\bar { C } ( x ) = 7 x + \frac { 1372 } { x } , \quad x > 0 , where x is the number of machines used. How many machines give minimum average costs?

A)Using 14 machines gives the minimum average costs.
B)Using zero machines gives the minimum average costs.
C)Using 24 machines gives the minimum average costs.
D)Using 28 machines gives the minimum average costs.
E)Using 33 machines gives the minimum average costs.
Question
Minimum cost. From a tract of land, a developer plans to fence a rectangular region and then divide it into two identical rectangular lots by putting a fence down the middle. Suppose that the fence for the outside boundary costs $6\$ 6 per foot and the fence for the middle costs $4\$ 4 per foot. If each lot contains 22002200 square feet, find the dimensions of each lot that yield the minimum cost for the fence.

A)Dimensions are 61.86 ft for the side parallel to the divider and 35.56 ft for the other side.
B)Dimensions are 35.56 ft for the side parallel to the divider and 61.86 ft for the other side.
C)Dimensions are 46.90 ft for the side parallel to the divider and 46.90 ft for the other side.
D)Dimensions are 40.62 ft for the side parallel to the divider and 54.16 ft for the other side.
E)Dimensions are 54.16 ft for the side parallel to the divider and 40.62 ft for the other side.
Question
If the total revenue function for a blender is R(x)=40x0.25x2,R ( x ) = 40 x - 0.25 x ^ { 2 }, find the maximum revenue.

A)$80
B)$1500
C)$40
D)$100
E)$1600
Question
Determine the dimensions of a rectangular solid (with a square base) with maximum volume if its surface area is 400 square meters.

A)square base side 2063\frac { 20 \sqrt { 6 } } { 3 } ; height 2063\frac { 20 \sqrt { 6 } } { 3 }
B)square base side 2063\frac { 20 \sqrt { 6 } } { 3 } ; height 1063\frac { 10 \sqrt { 6 } } { 3 }
C)square base side 1063\frac { 10 \sqrt { 6 } } { 3 } ; height 2063\frac { 20 \sqrt { 6 } } { 3 }
D)square base side 1063\frac { 10 \sqrt { 6 } } { 3 } ; height 1063\frac { 10 \sqrt { 6 } } { 3 }
E)square base side 20063\frac { 200 \sqrt { 6 } } { 3 } ; height 1063\frac { 10 \sqrt { 6 } } { 3 }
Question
A firm can produce 100 units per week. If its total cost function is C=600+1200xC = 600 + 1200 x dollars, and its total revenue function is R=1300xx2R = 1300 x - x ^ { 2 } dollars, how many units x should it produce to maximize its profit?

A)1250 units
B)650 units
C)93 units
D)50 units
E)100 units
Question
This problem contains a function and its graph, where A=20A = 20 Use the graph to determine, as well as you can, the horizontal asymptote. Check your conclusion by using the function to determine the horizontal asymptote analytically. f(x)=4(x3)x2f ( x ) = \frac { 4 ( x - 3 ) } { x - 2 }  <strong>This problem contains a function and its graph, where  A = 20  Use the graph to determine, as well as you can, the horizontal asymptote. Check your conclusion by using the function to determine the horizontal asymptote analytically.  f ( x ) = \frac { 4 ( x - 3 ) } { x - 2 }   </strong> A)  y = - 3  B)  y = 0  C)  y = 4  D)  y = - 1  E)  y = - 20  <div style=padding-top: 35px>

A) y=3y = - 3
B) y=0y = 0
C) y=4y = 4
D) y=1y = - 1
E) y=20y = - 20
Question
Find any horizontal asymptotes for the given function. y=9x9x+5y = \frac { 9 x - 9 } { x + 5 }

A) y=1y = 1
B) y=5y = 5
C) y=0y = 0
D) y=9y = 9
E)no horizontal asymptotes
Question
Find any horizontal asymptotes for the given function. y=8x38x2+6y = \frac { 8 x ^ { 3 } } { 8 x ^ { 2 } + 6 }

A) y=1y = 1
B) y=8y = 8
C) y=6y = 6
D) y=0y = 0
E)no horizontal asymptotes
Question
A power station is on one side of a river that is 0.5 mile wide, and a factory is 6.00 miles downstream on the other side of the river. It costs $\$ 18 per foot to run overland power lines and $\$ 25 per foot to run underwater power lines. Estimate the value of x that minimizes the cost.

A)4.00
B)0.52
C)5.00
D)0.00
E)1.52
Question
Analytically determine the location(s) of any vertical asymptote(s). f(x)=800x+6000x238x2867f ( x ) = \frac { 800 x + 6000 } { x ^ { 2 } - 38 x - 2867 }

A) x=75.82x = 75.82
B) x=37.82x = - 37.82
C) x=75.82x = 75.82 , x=37.82x = - 37.82
D) x=0x = 0
E)no vertical asymptotes
Question
Analytically determine the location(s) of any horizontal asymptote(s). f(x)=100x+6000x217x1373f ( x ) = \frac { 100 x + 6000 } { x ^ { 2 } - 17 x - 1373 }

A) y=46.52y = 46.52
B) y=29.52y = - 29.52
C) y=46.52y = 46.52 , y=29.52y = - 29.52
D) y=0y = 0
E)no horizontal asymptotes
Question
A travel agency will plan a tour for groups of size 1313 or larger. If the group contains exactly 1313 people, the price is $800\$ 800 per person. However, each person's price is reduced by $10\$ 10 for each additional person above the 1313 . If the travel agency incurs a price of $150\$ 150 per person for the tour, what size group will give the agency the maximum profit?

A)26
B)14
C)39
D)22
E)32
Question
Find the speed v, in miles per hour, that will minimize costs on a 125-mile delivery trip. The cost per hour for fuel is C=v2800C = \frac { v ^ { 2 } } { 800 } dollars, and the driver is paid W=$8W = \$ 8 dollars per hour. (Assume there are no costs other than wages and fuel.)

A)675 mph
B)125 mph
C)800 mph
D)80 mph
E)40 mph
Question
A function and its graph are given. Use the graph to find the vertical asymptotes, if they exist, where A=51A = 51 Confirm your results analytically. f(x)=17x2(x2)2f ( x ) = \frac { 17 x ^ { 2 } } { ( x - 2 ) ^ { 2 } }  <strong>A function and its graph are given. Use the graph to find the vertical asymptotes, if they exist, where  A = 51  Confirm your results analytically.  f ( x ) = \frac { 17 x ^ { 2 } } { ( x - 2 ) ^ { 2 } }   </strong> A)  x = 1  B)  x = 2  C)  x = 0  D)  x = 5  E)no vertical asymptotes <div style=padding-top: 35px>

A) x=1x = 1
B) x=2x = 2
C) x=0x = 0
D) x=5x = 5
E)no vertical asymptotes
Question
This problem contains a function and its graph, where A=10\mathrm { A } = 10 Use the graph to determine, as well as you can, the vertical asymptote. Check your conclusion by using the function to determine the vertical asymptote analytically. f(x)=2(x3)x2f ( x ) = \frac { 2 ( x - 3 ) } { x - 2 }  <strong>This problem contains a function and its graph, where  \mathrm { A } = 10  Use the graph to determine, as well as you can, the vertical asymptote. Check your conclusion by using the function to determine the vertical asymptote analytically.  f ( x ) = \frac { 2 ( x - 3 ) } { x - 2 }   </strong> A)  x = - 5  B)  x = 0  C)  x = - 1  D)  x = 2  E)no vertical asymptote <div style=padding-top: 35px>

A) x=5x = - 5
B) x=0x = 0
C) x=1x = - 1
D) x=2x = 2
E)no vertical asymptote
Question
Find any horizontal asymptotes for the given function. y=18x9x2y = \frac { 18 x } { 9 - x ^ { 2 } }

A) y=2y = 2
B) y=18y = 18
C) y=9y = 9
D) y=0y = 0
E)no horizontal asymptotes
Question
A function and its graph are given. Use the graph to find the horizontal asymptotes, if they exist, where A=15A = 15 Confirm your results analytically. f(x)=5x2(x2)2f ( x ) = \frac { 5 x ^ { 2 } } { ( x - 2 ) ^ { 2 } }  <strong>A function and its graph are given. Use the graph to find the horizontal asymptotes, if they exist, where  A = 15  Confirm your results analytically.  f ( x ) = \frac { 5 x ^ { 2 } } { ( x - 2 ) ^ { 2 } }   </strong> A)  y = 2  B)  y = 5  C)  y = 1  D)  y = 0  E)no horizontal asymptotes <div style=padding-top: 35px>

A) y=2y = 2
B) y=5y = 5
C) y=1y = 1
D) y=0y = 0
E)no horizontal asymptotes
Question
Analytically determine the location of any vertical asymptotes. f(x)=x80x2+1800f ( x ) = \frac { x - 80 } { x ^ { 2 } + 1800 }

A) x=8.944272x = 8.944272
B) x=0.044444x = 0.044444
C) x=42.426407x = 42.426407
D) x=42.426407x = - 42.426407
E)no vertical asymptotes
Question
A function and its graph are given. Use the graph to find the horizontal asymptotes, if they exist. Confirm your results analytically. f(x)=24x+2f ( x ) = \frac { 24 } { x + 2 }  <strong>A function and its graph are given. Use the graph to find the horizontal asymptotes, if they exist. Confirm your results analytically.  f ( x ) = \frac { 24 } { x + 2 }   </strong> A)  y = 4  B)  y = - 2  C)  y = 0  D)  y = 2  E)no horizontal asymptotes <div style=padding-top: 35px>

A) y=4y = 4
B) y=2y = - 2
C) y=0y = 0
D) y=2y = 2
E)no horizontal asymptotes
Question
Analytically determine the location(s) of any horizontal asymptote(s). f(x)=x80x2+1100f ( x ) = \frac { x - 80 } { x ^ { 2 } + 1100 }

A) y=0y = 0
B) y=0.072727y = 0.072727
C) y=33.166248y = 33.166248
D) y=33.166248y = - 33.166248
E)no horizontal asymptotes
Question
A function and its graph are given. Use the graph to find the vertical asymptotes, if they exist. Confirm your results analytically. f(x)=8x+2f ( x ) = \frac { 8 } { x + 2 }  <strong>A function and its graph are given. Use the graph to find the vertical asymptotes, if they exist. Confirm your results analytically.  f ( x ) = \frac { 8 } { x + 2 }   </strong> A)  x = 2  B)  x = 8  C)  x = 6  D)  x = - 2  E)no vertical asymptotes <div style=padding-top: 35px>

A) x=2x = 2
B) x=8x = 8
C) x=6x = 6
D) x=2x = - 2
E)no vertical asymptotes
Question
p is in dollars and q is the number of units. Find the elasticity of the demand function 5p+4q=1525 p + 4 q = 152 at the price p=$30p = \$ 30 .

A)-75.00
B)1.00
C)75.00
D)-1.25
E)1.25
Question
Find any vertical asymptotes for the given function. y=5x5x+2y = \frac { 5 x - 5 } { x + 2 }

A) x=1x = 1
B) x=2x = 2
C) x=2x = - 2
D) x=0x = 0
E)no vertical asymptotes
Question
Suppose the sales S (in billions of dollars per year) for Proctor & Gamble for the years 1999 through 2004 can be modeled by S=2.5931t21.5682t+39.831,1999t2004S = 2.5931 t ^ { 2 } - 1.5682 t + 39.831,1999 \leq t \leq 2004 where t represents the year. During which year were the sales increasing at the lowest rate?

A)Sales are increasing at the lowest rate in the year 2004.
B)Sales are increasing at the lowest rate in the year 1999.
C)Sales are increasing at the lowest rate in the year 2000.
D)Sales are increasing at the lowest rate in the year 2002.
E)Sales are increasing at the lowest rate in the year 2001.
Question
Find all vertical asymptotes for the given function. y=5x4x2y = \frac { 5 x } { 4 - x ^ { 2 } }

A) x=0x = 0
B) x=±2x = \pm 2
C) x=2x = 2
D) x=2x = - 2
E)no vertical asymptotes
Question
Find the limit: limx2+x9x2\lim _ { x \rightarrow 2 ^ { + } } \frac { x - 9 } { x - 2 }

A) \infty
B) - \infty
C)0
D)-1
E)1
Question
For the function f(x)=x4x28f ( x ) = \frac { - x } { \sqrt { 4 x ^ { 2 } - 8 } } , use a graphing utility to complete the table and estimate the limit as x approaches infinity. x100101102103104105f(x)\begin{array}{lllllll}x & 10^{0} & 10^{1} & 10^{2} & 10^{3} & 10^{4} & 10^{5}\\f(x)\end{array}

A)-1.15
B)0.75
C)-0.5
D)1.93
E)does not exist
Question
Use analytic methods to find the limit as xx \rightarrow - \infty for the given function. f(x)=7000x33004xf ( x ) = \frac { 7000 x } { 3300 - 4 x }

A) 1750- 1750
B) 825825
C) 825- 825
D) 17501750
E)does not exist
Question
Sketch the graph of the relation x2y=1x ^ { 2 } y = 1 using any extrema, intercepts, symmetry, and asymptotes.

A)  <strong>Sketch the graph of the relation  x ^ { 2 } y = 1  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the relation  x ^ { 2 } y = 1  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the relation  x ^ { 2 } y = 1  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the relation  x ^ { 2 } y = 1  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the relation  x ^ { 2 } y = 1  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Match the function f(x)=4xx2+2f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 } with one of the following graphs.

A)  <strong>Match the function  f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the function  f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the function  f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the function  f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the function  f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The cost C (in millions of dollars) for the federal government to seize p% of a type of illegal drug as it enters the country is modeled by C=584/(100p)C = 584 / ( 100 - p ) , for 0p1000 \leq p \leq 100 . Find the limit of C as p100p \rightarrow 100 ^ { - } .

A)584
B) 100100
C) 100- 100
D) \infty
E) 00
Question
Sketch the graph of the relation xy2=4x y ^ { 2 } = 4 using any extrema, intercepts, symmetry, and asymptotes.

A)  <strong>Sketch the graph of the relation  x y ^ { 2 } = 4  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the relation  x y ^ { 2 } = 4  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the relation  x y ^ { 2 } = 4  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the relation  x y ^ { 2 } = 4  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the relation  x y ^ { 2 } = 4  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
For the function f(x)=4x+73x7f ( x ) = \frac { 4 x + 7 } { 3 x - 7 } , use a graphing utility to complete the table and estimate the limit as x approaches infinity. x100101102103104105f(x)\begin{array}{lllllll}x & 10^{0} & 10^{1} & 10^{2} & 10^{3} & 10^{4} & 10^{5}\\f(x)\end{array}

A)0.75
B)1.333333
C)2.333333
D)1.75
E)-0.25
Question
Find the limit. limx3x37x4\lim _ { x \rightarrow \infty } \frac { 3 x - 3 } { - 7 x - 4 }

A) 34\frac { 3 } { 4 }
B) 37- \frac { 3 } { 7 }
C)1
D)0
E)does not exist
Question
A business has a cost (in dollars) of C=0.8x+100C = 0.8 x + 100 for producing x units. What is the limit of Cˉ\bar { C } as x approaches infinity?

A) \infty
B)$0.80
C)$100.80
D)$100.00
E)$99.20
Question
Match the function f(x)=2x2x2+2f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 } with one of the following graphs.

A)  <strong>Match the function  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the function  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the function  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the function  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the function  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the limit. limx5x24x1413x6x2\lim _ { x \rightarrow \infty } \frac { 5 x ^ { 2 } - 4 x - 14 } { 1 - 3 x - 6 x ^ { 2 } }

A) 56- \frac { 5 } { 6 }
B)14
C)-14
D) 56\frac { 5 } { 6 }
E) 43\frac { 4 } { 3 }
Question
Sketch the graph of the function f(x)=2+x2xf ( x ) = \frac { 2 + x } { 2 - x } using any extrema, intercepts, symmetry, and asymptotes.

A)  <strong>Sketch the graph of the function  f ( x ) = \frac { 2 + x } { 2 - x }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  f ( x ) = \frac { 2 + x } { 2 - x }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  f ( x ) = \frac { 2 + x } { 2 - x }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  f ( x ) = \frac { 2 + x } { 2 - x }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  f ( x ) = \frac { 2 + x } { 2 - x }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Sketch the graph of the function f(x)=x2x24f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 } using any extrema, intercepts, symmetry, and asymptotes.

A)  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the limit: limx0(x1+1x)\lim _ { x \rightarrow 0 ^ { - } } \left( x ^ { 1 } + \frac { 1 } { x } \right)

A)0
B) \infty
C)1
D)-1
E) - \infty
Question
Find the limit. limx7x+48x2+8\lim _ { x \rightarrow \infty } \frac { 7 x + 4 } { 8 x ^ { 2 } + 8 }

A) \infty
B)1
C)0
D) 78\frac { 7 } { 8 }
E) 12\frac { 1 } { 2 }
Question
Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids. g(x)=2x26(x1)2g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } }

A)  <strong>Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids.  g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids.  g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids.  g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids.  g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids.  g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the limit. limx4x2x+3\lim _ { x \rightarrow -\infty } \frac { 4 x ^ { 2 } } { x + 3 }

A) 00
B) 43- \frac { 4 } { 3 }
C) 43\frac { 4 } { 3 }
D) \infty
E) - \infty
Question
Use a table utility with x-values larger than 10,000 to investigate limx+f(x)\lim _ { x \rightarrow + \infty } f ( x ) .What does the table indicate about limx+f(x)?\lim _ { x \rightarrow + \infty } f ( x ) ? f(x)=16x35x52x3f ( x ) = \frac { 16 x ^ { 3 } - 5 x } { 5 - 2 x ^ { 3 } }

A) 8- 8
B) 88
C) 1616
D)0
E)does not exist
Question
Use analytic methods to find the limit as x+x \rightarrow + \infty for the given function. f(x)=3000x390015xf ( x ) = \frac { 3000 x } { 3900 - 15 x }

A) 200200
B) 260260
C) 260- 260
D) 200- 200
E)does not exist
Question
Analyze and sketch a graph of the function f(x)=x4x4+1f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 } .

A)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph. y=x2+1x22y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 }

A)  <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)   <div style=padding-top: 35px>   <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)   <div style=padding-top: 35px>   <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)   <div style=padding-top: 35px>
Question
Analyze and sketch a graph of the function f(x)=xx4+1f ( x ) = \frac { x } { x ^ { 4 } + 1 } .

A)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Compare dy and Δy\Delta y for y=3x22y = 3 x ^ { 2 } - 2 at x = 0 with dx = -0.06. Give your answers to four decimal places.

A) dy=0.0100;Δy=0.0106d y = - 0.0100 ; \quad \Delta y = 0.0106
B) dy=0.0000;Δy=0.0108d y = 0.0000 ; \quad \Delta y = 0.0108
C) dy=0.0300,Δy=0.0107d y = - 0.0300 , \quad \Delta y = 0.0107
D) dy=0.0200;Δy=0.0105d y = 0.0200 ; \quad \Delta y = 0.0105
E) dy=0.0200;Δy=0.0107d y = 0.0200 ; \quad \Delta y = 0.0107
Question
Analyze and sketch a graph of the function y=x16xy = x \sqrt { 16 - x } .

A)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 16 - x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 16 - x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 16 - x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 16 - x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 16 - x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Analyze and sketch a graph of the function f(x)=x24x+12x+2f ( x ) = \frac { x ^ { 2 } - 4 x + 12 } { x + 2 } .

A)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 x + 12 } { x + 2 }  .</strong> A)   B)   C)   D)   E)none of the above <div style=padding-top: 35px>
B)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 x + 12 } { x + 2 }  .</strong> A)   B)   C)   D)   E)none of the above <div style=padding-top: 35px>
C)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 x + 12 } { x + 2 }  .</strong> A)   B)   C)   D)   E)none of the above <div style=padding-top: 35px>
D)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 x + 12 } { x + 2 }  .</strong> A)   B)   C)   D)   E)none of the above <div style=padding-top: 35px>
E)none of the above
Question
Complete the table for the function y=1xy = \frac { 1 } { x } . Let x = 4. dx=ΔxdyΔyΔydydy/Δy5.000002.500000.50000\begin{array} { l } d x=\Delta x & d y & \Delta y& \Delta y-d y & d y / \Delta y\\5.00000 \\2.50000 \\0.50000\end{array}

A) dx=ΔxdyΔyΔydydy/Δy5.000000.31250.138890.173612.249982.500000.156250.096150.06011.625070.500000.062350.027780.003471.12712\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\5.00000 & - 0.3125 & - 0.13889 & 0.17361 & 2.24998 \\2.50000 & - 0.15625 & - 0.09615 & 0.0601 & 1.62507 \\0.50000 & - 0.06235 & - 0.02778 & 0.00347 & 1.12712\end{array}
B) dx=ΔxdyΔyΔydydy/Δy5.000000.31250.138890.173612.249982.500000.156250.213850.06011.629280.500000.031250.027780.003471.12491\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\5.00000 & - 0.3125 & - 0.13889 & 0.17361 & 2.24998 \\2.50000 & - 0.15625 & 0.21385 & 0.0601 & 1.62928 \\0.50000 & - 0.03125 & - 0.02778 & 0.00347 & 1.12491\end{array}
C) dx=ΔxdyΔyΔydydy/Δy5.000000.31250.138890.173612.249982.500000.156250.096150.06011.625070.500000.031250.027780.003471.12491\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\5.00000 & - 0.3125 & - 0.13889 & 0.17361 & 2.24998 \\2.50000 & - 0.15625 & - 0.09615 & 0.0601 & 1.62507 \\0.50000 & - 0.03125 & - 0.02778 & 0.00347 & 1.12491\end{array}
D) dx=ΔxdyΔyΔydydy/Δy5.000000.26140.138890.173612.249982.500000.156250.096150.06011.625070.500000.062350.027780.003471.12712\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\5.00000 & - 0.2614 & - 0.13889 & 0.17361 & 2.24998 \\2.50000 & - 0.15625 & - 0.09615 & 0.0601 & 1.62507 \\0.50000 & - 0.06235 & - 0.02778 & 0.00347 & 1.12712\end{array}
E) dx=ΔxdyΔyΔydydy/Δy5.000000.26140.138890.173612.249982.500000.156250.213850.06011.629280.500000.062350.027780.003471.12712\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\5.00000 & - 0.2614 & - 0.13889 & 0.17361 & 2.24998 \\2.50000 & - 0.15625 & 0.21385 & 0.0601 & 1.62928 \\0.50000 & - 0.06235 & - 0.02778 & 0.00347 & 1.12712\end{array}
Question
The revenue R for a company selling x units is R=900x0.3x2R = 900 x - 0.3 x ^ { 2 } . Use differentials to approximate the change in revenue if sales increase from x=1000x = 1000 to x=1100x = 1100 units.

A)24,000 dollars
B)30,000 dollars
C)25,000 dollars
D)29,000 dollars
E)40,000 dollars
Question
Compare dy and Δy\Delta y for y=3x23y = 3 x ^ { 2 } - 3 at x = 2 with Δx=\Delta x = dx = -0.07. Give your answers to four decimal places.

A) dy=0.8500,Δy=0.8255d y = - 0.8500 , \quad \Delta y = - 0.8255
B) dy=0.8400;Δy=0.8253d y = - 0.8400 ; \quad \Delta y = - 0.8253
C) dy=0.8700,Δy=0.8254d y = - 0.8700 , \quad \Delta y = - 0.8254
D) dy=0.8200,Δy=0.8256d y = - 0.8200 , \quad \Delta y = - 0.8256
E) dy=0.8200,Δy=0.8254d y = - 0.8200 , \quad \Delta y = - 0.8254
Question
Analyze and sketch a graph of the function y=2xx3y = 2 - x - x ^ { 3 } .

A)  <strong>Analyze and sketch a graph of the function  y = 2 - x - x ^ { 3 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Analyze and sketch a graph of the function  y = 2 - x - x ^ { 3 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Analyze and sketch a graph of the function  y = 2 - x - x ^ { 3 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Analyze and sketch a graph of the function  y = 2 - x - x ^ { 3 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Analyze and sketch a graph of the function  y = 2 - x - x ^ { 3 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Analyze and sketch a graph of the function y=x1x2y = x \sqrt { 1 - x ^ { 2 } } .

A)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 1 - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 1 - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 1 - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 1 - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 1 - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph. y=x44x3+16xy = x ^ { 4 } - 4 x ^ { 3 } + 16 x

A)  <strong>Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = x ^ { 4 } - 4 x ^ { 3 } + 16 x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = x ^ { 4 } - 4 x ^ { 3 } + 16 x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = x ^ { 4 } - 4 x ^ { 3 } + 16 x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = x ^ { 4 } - 4 x ^ { 3 } + 16 x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = x ^ { 4 } - 4 x ^ { 3 } + 16 x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use the graph ff ^ { \prime \prime } to sketch the graph of ff .  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A)  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Compare dy and Δy\Delta y for y=3x4+1y = 3 x ^ { 4 } + 1 at x = 1 with dx = 0.03. Give your answers to four decimal places.

A)dy = 0.3800 ; Δy\Delta y = 0.3762
B)dy = 0.3500 ; Δy\Delta y = 0.3763
C)dy = 0.3300 ; Δy\Delta y = 0.3764
D)dy = 0.3600 ; Δy\Delta y = 0.3765
E)dy = 0.3800 ; Δy\Delta y = 0.3764
Question
Complete the table for the function y=xy = \sqrt { x } . Let x = 4. dx=ΔxdyΔyΔydydy/Δy1.000000.500000.10000\begin{array} { l } d x=\Delta x \quad d y \quad \Delta y \quad \Delta y-d y \quad d y / \Delta y\\1.00000 \\0.50000 \\0.10000\end{array}

A) dx=ΔxdyΔyΔydydy/Δy1.000000.250.236070.013931.059010.500000.1250.121320.003681.030330.100000.00610.024850.000151.00825\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\1.00000 & 0.25 & 0.23607 & - 0.01393 & 1.05901 \\0.50000 & 0.125 & 0.12132 & - 0.00368 & 1.03033 \\0.10000 & - 0.0061 & 0.02485 & - 0.00015 & 1.00825\end{array}
B) dx=ΔxdyΔyΔydydy/Δy1.000000.250.236070.013931.059010.500000.1250.431320.003681.034540.100000.0250.024850.000151.00604\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\1.00000 & 0.25 & 0.23607 & - 0.01393 & 1.05901 \\0.50000 & 0.125 & 0.43132 & - 0.00368 & 1.03454 \\0.10000 & 0.025 & 0.02485 & - 0.00015 & 1.00604\end{array}
C) dx=ΔxdyΔyΔydydy/Δy1.000000.30110.236070.013931.059010.500000.1250.431320.003681.034540.100000.00610.024850.000151.00825\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\1.00000 & 0.3011 & 0.23607 & - 0.01393 & 1.05901 \\0.50000 & 0.125 & 0.43132 & - 0.00368 & 1.03454 \\0.10000 & - 0.0061 & 0.02485 & - 0.00015 & 1.00825\end{array}
D) dx=ΔxdyΔyΔydydy/Δy1.000000.30110.236070.013931.059010.500000.1250.121320.003681.030330.100000.00610.024850.000151.00825\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\1.00000 & 0.3011 & 0.23607 & - 0.01393 & 1.05901 \\0.50000 & 0.125 & 0.12132 & - 0.00368 & 1.03033 \\0.10000 & - 0.0061 & 0.02485 & - 0.00015 & 1.00825\end{array}
E) dx=ΔxdyΔyΔydydy/Δy1.000000.250.236070.013931.059010.500000.1250.121320.003681.030330.100000.0250.024850.000151.00604\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\1.00000 & 0.25 & 0.23607 & - 0.01393 & 1.05901 \\0.50000 & 0.125 & 0.12132 & - 0.00368 & 1.03033 \\0.10000 & 0.025 & 0.02485 & - 0.00015 & 1.00604\end{array}
Question
Find the differential dy of the function y=2x23x+2y = 2 x ^ { 2 } - 3 x + 2 .

A) (4x23x+2)dx\left( 4 x ^ { 2 } - 3 x + 2 \right) d x
B) (2x3)dx( 2 x - 3 ) d x
C) (23x332x2+2x)dx\left( \frac { 2 } { 3 } x ^ { 3 } - \frac { 3 } { 2 } x ^ { 2 } + 2 x \right) d x
D) (2x33x2+2x)dx\left( 2 x ^ { 3 } - 3 x ^ { 2 } + 2 x \right) d x
E) (4x3)dx( 4 x - 3 ) d x
Question
Use the graph ff ^ { \prime } to sketch the graph of ff .  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A)  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Analyze and sketch a graph of the function y=x312x2+3y = x ^ { 3 } - 12 x ^ { 2 } + 3 .

A)  <strong>Analyze and sketch a graph of the function  y = x ^ { 3 } - 12 x ^ { 2 } + 3  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Analyze and sketch a graph of the function  y = x ^ { 3 } - 12 x ^ { 2 } + 3  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Analyze and sketch a graph of the function  y = x ^ { 3 } - 12 x ^ { 2 } + 3  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Analyze and sketch a graph of the function  y = x ^ { 3 } - 12 x ^ { 2 } + 3  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Analyze and sketch a graph of the function  y = x ^ { 3 } - 12 x ^ { 2 } + 3  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the differential dy of the function y=2x5/6y = - 2 x ^ { 5 / 6 } .

A) x5/6ln(2)x ^ { 5 / 6 } \ln ( - 2 )
B) 56x1/6dx\frac { 5 } { 6 } x ^ { - 1 / 6 } d x
C) 2x1/6dx- 2 x ^ { - 1 / 6 } d x
D) 53x1/6dx- \frac { 5 } { 3 } x ^ { - 1 / 6 } d x
E) 56x1/6dx- \frac { 5 } { 6 } x ^ { - 1 / 6 } d x
Question
An employee of a delivery company earns $\$ 25.00 per hour driving a delivery van in an area where gasoline costs $\$ 2.90 per gallon. When the van is driven at a constant speed s (in miles per hour, with 45s6045 \leq s \leq 60 ), the van gets 290s\frac { 290 } { s } miles per gallon. Determine the most economical speed s for a 100-mile trip on an interstate highway.

A)The most economical speed is 52.0 mph.
B)The most economical speed is 48.0 mph.
C)The most economical speed is 25.0 mph.
D)The most economical speed is 50.0 mph.
E)The most economical speed is 53.0 mph.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/83
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Further Applications of the Derivative
1
Volume. A rectangular box with a square base is to be formed from a square piece of metal with 30-inch sides. If a square piece with side x is cut from each corner of the metal and the sides are folded up to form an open box, the volume of the box is V=(302x)2xV = ( 30 - 2 x ) ^ { 2 } x What value of x will maximize the volume of the box?  <strong>Volume. A rectangular box with a square base is to be formed from a square piece of metal with 30-inch sides. If a square piece with side x is cut from each corner of the metal and the sides are folded up to form an open box, the volume of the box is  V = ( 30 - 2 x ) ^ { 2 } x  What value of x will maximize the volume of the box?  </strong> A)15 B)3 C)5 D)7 E)4

A)15
B)3
C)5
D)7
E)4
5
2
Find the point on the graph of f(x)=x2f ( x ) = x ^ { 2 } that is closest to the point (6, 0.5). Round your answer to two decimal places.

A)(1.44, 2.07)
B)(1.82, 3.31)
C)(2.29, 5.24)
D)(1.26, 1.59)
E)(1.14, 1.30)
(1.44, 2.07)
3
Find the dimensions of the rectangle of maximum area bounded by the x-axis and y-axis and the graph of y=4x2y = \frac { 4 - x } { 2 } .  <strong>Find the dimensions of the rectangle of maximum area bounded by the x-axis and y-axis and the graph of  y = \frac { 4 - x } { 2 }  .  </strong> A)length 1.5; width 1.25 B)length 2; width 1 C)length 0.5; width 1.75 D)length 1; width 1.5 E)none of the above

A)length 1.5; width 1.25
B)length 2; width 1
C)length 0.5; width 1.75
D)length 1; width 1.5
E)none of the above
length 2; width 1
4
If the total cost function for a product is C(x)=200+4x+0.09x2C ( x ) = 200 + 4 x + 0.09 x ^ { 2 } dollars. Find the minimum average cost.

A) $15.00\$ 15.00
B) $23.00\$ 23.00
C) $13.03\$ 13.03
D) $12.49\$ 12.49
E) $11.00\$ 11.00
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
5
A firm can produce 100 units per week. If its total cost function is C=500+1400xC = 500 + 1400 x dollars, and its total revenue function is R=1500xx2R = 1500 x - x ^ { 2 } dollars, find the maximum profit.

A)$3886
B)$2000
C)$7007
D)$5503
E)$5836
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
6
You are in a boat 2 miles from the nearest point on the coast. You are to go to point Q located 3 miles down the coast and 4 miles inland (see figure). You can row at a rate of 4 miles per hour and you can walk at a rate of 4 miles per hour. Toward what point on the coast should you row in order to reach point Q in the least time? <strong>You are in a boat 2 miles from the nearest point on the coast. You are to go to point Q located 3 miles down the coast and 4 miles inland (see figure). You can row at a rate of 4 miles per hour and you can walk at a rate of 4 miles per hour. Toward what point on the coast should you row in order to reach point Q in the least time?  </strong> A)3 miles B)8 miles C)4 miles D)1 mile E)5 miles

A)3 miles
B)8 miles
C)4 miles
D)1 mile
E)5 miles
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
7
A firm has total revenue given by R(x)=300x45.5x2x3 dollars R ( x ) = 300 x - 45.5 x ^ { 2 } - x ^ { 3 } \text { dollars } for x units of a product. Find the maximum revenue from sales of that product.

A)$600
B)$464
C)$303
D)$1100
E)$963
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
8
If the total cost function for a product is C(x)=500+3x+0.08x2C ( x ) = 500 + 3 x + 0.08 x ^ { 2 } dollars, determine how many units x should be produced to minimize the average cost per unit?

A)18 units
B)500 units
C)55 units
D)79 units
E)88 units
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
9
Find the length and width of a rectangle that has perimeter 3232 meters and a maximum area.

A)4, 12
B)1, 15
C)8, 8
D)9, 7
E)12, 4
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
10
If the total revenue function for a blender is R(x)=35x0.25x2,R ( x ) = 35 x - 0.25 x ^ { 2 }, determine how many units x must be sold to provide the maximum total revenue in dollars.

A)1225
B)3000
C)35
D)200
E)70
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
11
A rectangular page is to contain 3636 square inches of print. The margins on each side are 1 inch. Find the dimensions of the page such that the least amount of paper is used.

A) 8,88,8
B)6, 6
C)4, 4
D)7, 7
E)5, 5
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
12
Average costs. Suppose the average costs of a mining operation depend on the number of machines used, and average costs, in dollars, are given by Cˉ(x)=5x+4500x,x>0\bar { C } ( x ) = 5 x + \frac { 4500 } { x } , \quad x > 0 , where x is the number of machines used. What is the minimum average cost?

A)$0
B)$30
C)$300
D)$150
E)$4505
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
13
A rancher has 320 feet of fencing to enclose two adjacent rectangular corrals (see figure). What dimensions should be used so that the enclosed area will be a maximum?  <strong>A rancher has 320 feet of fencing to enclose two adjacent rectangular corrals (see figure). What dimensions should be used so that the enclosed area will be a maximum?  </strong> A)  x = 40.00  and  y = 53.33  B)  x = 8.00  and  y = 96.00  C)  x = 16.00  and  y = 106.67  D)  x = 53.33  and  y = 40.00  E)  x = 24.00  and  y = 64.00

A) x=40.00x = 40.00 and y=53.33y = 53.33
B) x=8.00x = 8.00 and y=96.00y = 96.00
C) x=16.00x = 16.00 and y=106.67y = 106.67
D) x=53.33x = 53.33 and y=40.00y = 40.00
E) x=24.00x = 24.00 and y=64.00y = 64.00
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
14
A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window (see figure). Find the dimensions of a Norman window of maximum area if the total perimeter is 24 feet. Round yours answers to two decimal places. <strong>A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window (see figure). Find the dimensions of a Norman window of maximum area if the total perimeter is 24 feet. Round yours answers to two decimal places.  </strong> A)x = 6.72 feet and y = 3.36 feet B)x = 3.36 feet and y = 7.68 feet C)x = 2.24 feet and y = 9.12 feet D)x = 5.72 feet and y = 4.65 feet E)x = 7.72 feet and y = 2.08 feet

A)x = 6.72 feet and y = 3.36 feet
B)x = 3.36 feet and y = 7.68 feet
C)x = 2.24 feet and y = 9.12 feet
D)x = 5.72 feet and y = 4.65 feet
E)x = 7.72 feet and y = 2.08 feet
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
15
A wooden beam has a rectangular cross section of height h and width w (see figure). The strength S of the beam is directly proportional to the width and the square of the height. What are the dimensions of the strongest beam that can be cut from a round log of diameter d = 23 inches? Round your answers to two decimal places. [Hint: S=kwh2,S = k w h ^ { 2 }, where k>0k > 0 is the proportionality constant.]  <strong>A wooden beam has a rectangular cross section of height h and width w (see figure). The strength S of the beam is directly proportional to the width and the square of the height. What are the dimensions of the strongest beam that can be cut from a round log of diameter d = 23 inches? Round your answers to two decimal places. [Hint:  S = k w h  ^ { 2 },  where  k > 0  is the proportionality constant.]  </strong> A)w = 13.28 inches and h = 18.78 inches B)w = 7.67 inches and h = 21.68 inches C)w = 19.92 inches and h = 11.50 inches D)w = 16.26 inches and h = 16.27 inches E)w = 18.78 inches and h = 13.28 inches

A)w = 13.28 inches and h = 18.78 inches
B)w = 7.67 inches and h = 21.68 inches
C)w = 19.92 inches and h = 11.50 inches
D)w = 16.26 inches and h = 16.27 inches
E)w = 18.78 inches and h = 13.28 inches
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
16
Average costs. Suppose the average costs of a mining operation depend on the number of machines used, and average costs, in dollars, are given by Cˉ(x)=7x+1372x,x>0\bar { C } ( x ) = 7 x + \frac { 1372 } { x } , \quad x > 0 , where x is the number of machines used. How many machines give minimum average costs?

A)Using 14 machines gives the minimum average costs.
B)Using zero machines gives the minimum average costs.
C)Using 24 machines gives the minimum average costs.
D)Using 28 machines gives the minimum average costs.
E)Using 33 machines gives the minimum average costs.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
17
Minimum cost. From a tract of land, a developer plans to fence a rectangular region and then divide it into two identical rectangular lots by putting a fence down the middle. Suppose that the fence for the outside boundary costs $6\$ 6 per foot and the fence for the middle costs $4\$ 4 per foot. If each lot contains 22002200 square feet, find the dimensions of each lot that yield the minimum cost for the fence.

A)Dimensions are 61.86 ft for the side parallel to the divider and 35.56 ft for the other side.
B)Dimensions are 35.56 ft for the side parallel to the divider and 61.86 ft for the other side.
C)Dimensions are 46.90 ft for the side parallel to the divider and 46.90 ft for the other side.
D)Dimensions are 40.62 ft for the side parallel to the divider and 54.16 ft for the other side.
E)Dimensions are 54.16 ft for the side parallel to the divider and 40.62 ft for the other side.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
18
If the total revenue function for a blender is R(x)=40x0.25x2,R ( x ) = 40 x - 0.25 x ^ { 2 }, find the maximum revenue.

A)$80
B)$1500
C)$40
D)$100
E)$1600
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
19
Determine the dimensions of a rectangular solid (with a square base) with maximum volume if its surface area is 400 square meters.

A)square base side 2063\frac { 20 \sqrt { 6 } } { 3 } ; height 2063\frac { 20 \sqrt { 6 } } { 3 }
B)square base side 2063\frac { 20 \sqrt { 6 } } { 3 } ; height 1063\frac { 10 \sqrt { 6 } } { 3 }
C)square base side 1063\frac { 10 \sqrt { 6 } } { 3 } ; height 2063\frac { 20 \sqrt { 6 } } { 3 }
D)square base side 1063\frac { 10 \sqrt { 6 } } { 3 } ; height 1063\frac { 10 \sqrt { 6 } } { 3 }
E)square base side 20063\frac { 200 \sqrt { 6 } } { 3 } ; height 1063\frac { 10 \sqrt { 6 } } { 3 }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
20
A firm can produce 100 units per week. If its total cost function is C=600+1200xC = 600 + 1200 x dollars, and its total revenue function is R=1300xx2R = 1300 x - x ^ { 2 } dollars, how many units x should it produce to maximize its profit?

A)1250 units
B)650 units
C)93 units
D)50 units
E)100 units
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
21
This problem contains a function and its graph, where A=20A = 20 Use the graph to determine, as well as you can, the horizontal asymptote. Check your conclusion by using the function to determine the horizontal asymptote analytically. f(x)=4(x3)x2f ( x ) = \frac { 4 ( x - 3 ) } { x - 2 }  <strong>This problem contains a function and its graph, where  A = 20  Use the graph to determine, as well as you can, the horizontal asymptote. Check your conclusion by using the function to determine the horizontal asymptote analytically.  f ( x ) = \frac { 4 ( x - 3 ) } { x - 2 }   </strong> A)  y = - 3  B)  y = 0  C)  y = 4  D)  y = - 1  E)  y = - 20

A) y=3y = - 3
B) y=0y = 0
C) y=4y = 4
D) y=1y = - 1
E) y=20y = - 20
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
22
Find any horizontal asymptotes for the given function. y=9x9x+5y = \frac { 9 x - 9 } { x + 5 }

A) y=1y = 1
B) y=5y = 5
C) y=0y = 0
D) y=9y = 9
E)no horizontal asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
23
Find any horizontal asymptotes for the given function. y=8x38x2+6y = \frac { 8 x ^ { 3 } } { 8 x ^ { 2 } + 6 }

A) y=1y = 1
B) y=8y = 8
C) y=6y = 6
D) y=0y = 0
E)no horizontal asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
24
A power station is on one side of a river that is 0.5 mile wide, and a factory is 6.00 miles downstream on the other side of the river. It costs $\$ 18 per foot to run overland power lines and $\$ 25 per foot to run underwater power lines. Estimate the value of x that minimizes the cost.

A)4.00
B)0.52
C)5.00
D)0.00
E)1.52
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
25
Analytically determine the location(s) of any vertical asymptote(s). f(x)=800x+6000x238x2867f ( x ) = \frac { 800 x + 6000 } { x ^ { 2 } - 38 x - 2867 }

A) x=75.82x = 75.82
B) x=37.82x = - 37.82
C) x=75.82x = 75.82 , x=37.82x = - 37.82
D) x=0x = 0
E)no vertical asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
26
Analytically determine the location(s) of any horizontal asymptote(s). f(x)=100x+6000x217x1373f ( x ) = \frac { 100 x + 6000 } { x ^ { 2 } - 17 x - 1373 }

A) y=46.52y = 46.52
B) y=29.52y = - 29.52
C) y=46.52y = 46.52 , y=29.52y = - 29.52
D) y=0y = 0
E)no horizontal asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
27
A travel agency will plan a tour for groups of size 1313 or larger. If the group contains exactly 1313 people, the price is $800\$ 800 per person. However, each person's price is reduced by $10\$ 10 for each additional person above the 1313 . If the travel agency incurs a price of $150\$ 150 per person for the tour, what size group will give the agency the maximum profit?

A)26
B)14
C)39
D)22
E)32
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
28
Find the speed v, in miles per hour, that will minimize costs on a 125-mile delivery trip. The cost per hour for fuel is C=v2800C = \frac { v ^ { 2 } } { 800 } dollars, and the driver is paid W=$8W = \$ 8 dollars per hour. (Assume there are no costs other than wages and fuel.)

A)675 mph
B)125 mph
C)800 mph
D)80 mph
E)40 mph
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
29
A function and its graph are given. Use the graph to find the vertical asymptotes, if they exist, where A=51A = 51 Confirm your results analytically. f(x)=17x2(x2)2f ( x ) = \frac { 17 x ^ { 2 } } { ( x - 2 ) ^ { 2 } }  <strong>A function and its graph are given. Use the graph to find the vertical asymptotes, if they exist, where  A = 51  Confirm your results analytically.  f ( x ) = \frac { 17 x ^ { 2 } } { ( x - 2 ) ^ { 2 } }   </strong> A)  x = 1  B)  x = 2  C)  x = 0  D)  x = 5  E)no vertical asymptotes

A) x=1x = 1
B) x=2x = 2
C) x=0x = 0
D) x=5x = 5
E)no vertical asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
30
This problem contains a function and its graph, where A=10\mathrm { A } = 10 Use the graph to determine, as well as you can, the vertical asymptote. Check your conclusion by using the function to determine the vertical asymptote analytically. f(x)=2(x3)x2f ( x ) = \frac { 2 ( x - 3 ) } { x - 2 }  <strong>This problem contains a function and its graph, where  \mathrm { A } = 10  Use the graph to determine, as well as you can, the vertical asymptote. Check your conclusion by using the function to determine the vertical asymptote analytically.  f ( x ) = \frac { 2 ( x - 3 ) } { x - 2 }   </strong> A)  x = - 5  B)  x = 0  C)  x = - 1  D)  x = 2  E)no vertical asymptote

A) x=5x = - 5
B) x=0x = 0
C) x=1x = - 1
D) x=2x = 2
E)no vertical asymptote
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
31
Find any horizontal asymptotes for the given function. y=18x9x2y = \frac { 18 x } { 9 - x ^ { 2 } }

A) y=2y = 2
B) y=18y = 18
C) y=9y = 9
D) y=0y = 0
E)no horizontal asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
32
A function and its graph are given. Use the graph to find the horizontal asymptotes, if they exist, where A=15A = 15 Confirm your results analytically. f(x)=5x2(x2)2f ( x ) = \frac { 5 x ^ { 2 } } { ( x - 2 ) ^ { 2 } }  <strong>A function and its graph are given. Use the graph to find the horizontal asymptotes, if they exist, where  A = 15  Confirm your results analytically.  f ( x ) = \frac { 5 x ^ { 2 } } { ( x - 2 ) ^ { 2 } }   </strong> A)  y = 2  B)  y = 5  C)  y = 1  D)  y = 0  E)no horizontal asymptotes

A) y=2y = 2
B) y=5y = 5
C) y=1y = 1
D) y=0y = 0
E)no horizontal asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
33
Analytically determine the location of any vertical asymptotes. f(x)=x80x2+1800f ( x ) = \frac { x - 80 } { x ^ { 2 } + 1800 }

A) x=8.944272x = 8.944272
B) x=0.044444x = 0.044444
C) x=42.426407x = 42.426407
D) x=42.426407x = - 42.426407
E)no vertical asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
34
A function and its graph are given. Use the graph to find the horizontal asymptotes, if they exist. Confirm your results analytically. f(x)=24x+2f ( x ) = \frac { 24 } { x + 2 }  <strong>A function and its graph are given. Use the graph to find the horizontal asymptotes, if they exist. Confirm your results analytically.  f ( x ) = \frac { 24 } { x + 2 }   </strong> A)  y = 4  B)  y = - 2  C)  y = 0  D)  y = 2  E)no horizontal asymptotes

A) y=4y = 4
B) y=2y = - 2
C) y=0y = 0
D) y=2y = 2
E)no horizontal asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
35
Analytically determine the location(s) of any horizontal asymptote(s). f(x)=x80x2+1100f ( x ) = \frac { x - 80 } { x ^ { 2 } + 1100 }

A) y=0y = 0
B) y=0.072727y = 0.072727
C) y=33.166248y = 33.166248
D) y=33.166248y = - 33.166248
E)no horizontal asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
36
A function and its graph are given. Use the graph to find the vertical asymptotes, if they exist. Confirm your results analytically. f(x)=8x+2f ( x ) = \frac { 8 } { x + 2 }  <strong>A function and its graph are given. Use the graph to find the vertical asymptotes, if they exist. Confirm your results analytically.  f ( x ) = \frac { 8 } { x + 2 }   </strong> A)  x = 2  B)  x = 8  C)  x = 6  D)  x = - 2  E)no vertical asymptotes

A) x=2x = 2
B) x=8x = 8
C) x=6x = 6
D) x=2x = - 2
E)no vertical asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
37
p is in dollars and q is the number of units. Find the elasticity of the demand function 5p+4q=1525 p + 4 q = 152 at the price p=$30p = \$ 30 .

A)-75.00
B)1.00
C)75.00
D)-1.25
E)1.25
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
38
Find any vertical asymptotes for the given function. y=5x5x+2y = \frac { 5 x - 5 } { x + 2 }

A) x=1x = 1
B) x=2x = 2
C) x=2x = - 2
D) x=0x = 0
E)no vertical asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
39
Suppose the sales S (in billions of dollars per year) for Proctor & Gamble for the years 1999 through 2004 can be modeled by S=2.5931t21.5682t+39.831,1999t2004S = 2.5931 t ^ { 2 } - 1.5682 t + 39.831,1999 \leq t \leq 2004 where t represents the year. During which year were the sales increasing at the lowest rate?

A)Sales are increasing at the lowest rate in the year 2004.
B)Sales are increasing at the lowest rate in the year 1999.
C)Sales are increasing at the lowest rate in the year 2000.
D)Sales are increasing at the lowest rate in the year 2002.
E)Sales are increasing at the lowest rate in the year 2001.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
40
Find all vertical asymptotes for the given function. y=5x4x2y = \frac { 5 x } { 4 - x ^ { 2 } }

A) x=0x = 0
B) x=±2x = \pm 2
C) x=2x = 2
D) x=2x = - 2
E)no vertical asymptotes
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
41
Find the limit: limx2+x9x2\lim _ { x \rightarrow 2 ^ { + } } \frac { x - 9 } { x - 2 }

A) \infty
B) - \infty
C)0
D)-1
E)1
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
42
For the function f(x)=x4x28f ( x ) = \frac { - x } { \sqrt { 4 x ^ { 2 } - 8 } } , use a graphing utility to complete the table and estimate the limit as x approaches infinity. x100101102103104105f(x)\begin{array}{lllllll}x & 10^{0} & 10^{1} & 10^{2} & 10^{3} & 10^{4} & 10^{5}\\f(x)\end{array}

A)-1.15
B)0.75
C)-0.5
D)1.93
E)does not exist
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
43
Use analytic methods to find the limit as xx \rightarrow - \infty for the given function. f(x)=7000x33004xf ( x ) = \frac { 7000 x } { 3300 - 4 x }

A) 1750- 1750
B) 825825
C) 825- 825
D) 17501750
E)does not exist
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
44
Sketch the graph of the relation x2y=1x ^ { 2 } y = 1 using any extrema, intercepts, symmetry, and asymptotes.

A)  <strong>Sketch the graph of the relation  x ^ { 2 } y = 1  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the relation  x ^ { 2 } y = 1  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the relation  x ^ { 2 } y = 1  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the relation  x ^ { 2 } y = 1  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the relation  x ^ { 2 } y = 1  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
45
Match the function f(x)=4xx2+2f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 } with one of the following graphs.

A)  <strong>Match the function  f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)
B)  <strong>Match the function  f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)
C)  <strong>Match the function  f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)
D)  <strong>Match the function  f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)
E)  <strong>Match the function  f ( x ) = \frac { 4 x } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
46
The cost C (in millions of dollars) for the federal government to seize p% of a type of illegal drug as it enters the country is modeled by C=584/(100p)C = 584 / ( 100 - p ) , for 0p1000 \leq p \leq 100 . Find the limit of C as p100p \rightarrow 100 ^ { - } .

A)584
B) 100100
C) 100- 100
D) \infty
E) 00
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
47
Sketch the graph of the relation xy2=4x y ^ { 2 } = 4 using any extrema, intercepts, symmetry, and asymptotes.

A)  <strong>Sketch the graph of the relation  x y ^ { 2 } = 4  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the relation  x y ^ { 2 } = 4  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the relation  x y ^ { 2 } = 4  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the relation  x y ^ { 2 } = 4  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the relation  x y ^ { 2 } = 4  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
48
For the function f(x)=4x+73x7f ( x ) = \frac { 4 x + 7 } { 3 x - 7 } , use a graphing utility to complete the table and estimate the limit as x approaches infinity. x100101102103104105f(x)\begin{array}{lllllll}x & 10^{0} & 10^{1} & 10^{2} & 10^{3} & 10^{4} & 10^{5}\\f(x)\end{array}

A)0.75
B)1.333333
C)2.333333
D)1.75
E)-0.25
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
49
Find the limit. limx3x37x4\lim _ { x \rightarrow \infty } \frac { 3 x - 3 } { - 7 x - 4 }

A) 34\frac { 3 } { 4 }
B) 37- \frac { 3 } { 7 }
C)1
D)0
E)does not exist
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
50
A business has a cost (in dollars) of C=0.8x+100C = 0.8 x + 100 for producing x units. What is the limit of Cˉ\bar { C } as x approaches infinity?

A) \infty
B)$0.80
C)$100.80
D)$100.00
E)$99.20
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
51
Match the function f(x)=2x2x2+2f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 } with one of the following graphs.

A)  <strong>Match the function  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)
B)  <strong>Match the function  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)
C)  <strong>Match the function  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)
D)  <strong>Match the function  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)
E)  <strong>Match the function  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } + 2 }  with one of the following graphs.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
52
Find the limit. limx5x24x1413x6x2\lim _ { x \rightarrow \infty } \frac { 5 x ^ { 2 } - 4 x - 14 } { 1 - 3 x - 6 x ^ { 2 } }

A) 56- \frac { 5 } { 6 }
B)14
C)-14
D) 56\frac { 5 } { 6 }
E) 43\frac { 4 } { 3 }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
53
Sketch the graph of the function f(x)=2+x2xf ( x ) = \frac { 2 + x } { 2 - x } using any extrema, intercepts, symmetry, and asymptotes.

A)  <strong>Sketch the graph of the function  f ( x ) = \frac { 2 + x } { 2 - x }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  f ( x ) = \frac { 2 + x } { 2 - x }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  f ( x ) = \frac { 2 + x } { 2 - x }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  f ( x ) = \frac { 2 + x } { 2 - x }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  f ( x ) = \frac { 2 + x } { 2 - x }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
54
Sketch the graph of the function f(x)=x2x24f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 } using any extrema, intercepts, symmetry, and asymptotes.

A)  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 4 }  using any extrema, intercepts, symmetry, and asymptotes.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
55
Find the limit: limx0(x1+1x)\lim _ { x \rightarrow 0 ^ { - } } \left( x ^ { 1 } + \frac { 1 } { x } \right)

A)0
B) \infty
C)1
D)-1
E) - \infty
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
56
Find the limit. limx7x+48x2+8\lim _ { x \rightarrow \infty } \frac { 7 x + 4 } { 8 x ^ { 2 } + 8 }

A) \infty
B)1
C)0
D) 78\frac { 7 } { 8 }
E) 12\frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
57
Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids. g(x)=2x26(x1)2g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } }

A)  <strong>Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids.  g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } } </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids.  g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } } </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids.  g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } } </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids.  g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } } </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the equation given below. Use intercepts, extrema, and asymptotes as sketching aids.  g ( x ) = \frac { 2 x ^ { 2 } - 6 } { ( x - 1 ) ^ { 2 } } </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
58
Find the limit. limx4x2x+3\lim _ { x \rightarrow -\infty } \frac { 4 x ^ { 2 } } { x + 3 }

A) 00
B) 43- \frac { 4 } { 3 }
C) 43\frac { 4 } { 3 }
D) \infty
E) - \infty
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
59
Use a table utility with x-values larger than 10,000 to investigate limx+f(x)\lim _ { x \rightarrow + \infty } f ( x ) .What does the table indicate about limx+f(x)?\lim _ { x \rightarrow + \infty } f ( x ) ? f(x)=16x35x52x3f ( x ) = \frac { 16 x ^ { 3 } - 5 x } { 5 - 2 x ^ { 3 } }

A) 8- 8
B) 88
C) 1616
D)0
E)does not exist
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
60
Use analytic methods to find the limit as x+x \rightarrow + \infty for the given function. f(x)=3000x390015xf ( x ) = \frac { 3000 x } { 3900 - 15 x }

A) 200200
B) 260260
C) 260- 260
D) 200- 200
E)does not exist
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
61
Analyze and sketch a graph of the function f(x)=x4x4+1f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 } .

A)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 4 } } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
62
Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph. y=x2+1x22y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 }

A)  <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)
B)  <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)
C)  <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)     <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)     <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)
D)  <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)
E)  <strong>Sketch the graph of the function given below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 2 } </strong> A)   B)   C)       D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
63
Analyze and sketch a graph of the function f(x)=xx4+1f ( x ) = \frac { x } { x ^ { 4 } + 1 } .

A)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x } { x ^ { 4 } + 1 }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
64
Compare dy and Δy\Delta y for y=3x22y = 3 x ^ { 2 } - 2 at x = 0 with dx = -0.06. Give your answers to four decimal places.

A) dy=0.0100;Δy=0.0106d y = - 0.0100 ; \quad \Delta y = 0.0106
B) dy=0.0000;Δy=0.0108d y = 0.0000 ; \quad \Delta y = 0.0108
C) dy=0.0300,Δy=0.0107d y = - 0.0300 , \quad \Delta y = 0.0107
D) dy=0.0200;Δy=0.0105d y = 0.0200 ; \quad \Delta y = 0.0105
E) dy=0.0200;Δy=0.0107d y = 0.0200 ; \quad \Delta y = 0.0107
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
65
Analyze and sketch a graph of the function y=x16xy = x \sqrt { 16 - x } .

A)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 16 - x }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 16 - x }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 16 - x }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 16 - x }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 16 - x }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
66
Analyze and sketch a graph of the function f(x)=x24x+12x+2f ( x ) = \frac { x ^ { 2 } - 4 x + 12 } { x + 2 } .

A)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 x + 12 } { x + 2 }  .</strong> A)   B)   C)   D)   E)none of the above
B)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 x + 12 } { x + 2 }  .</strong> A)   B)   C)   D)   E)none of the above
C)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 x + 12 } { x + 2 }  .</strong> A)   B)   C)   D)   E)none of the above
D)  <strong>Analyze and sketch a graph of the function  f ( x ) = \frac { x ^ { 2 } - 4 x + 12 } { x + 2 }  .</strong> A)   B)   C)   D)   E)none of the above
E)none of the above
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
67
Complete the table for the function y=1xy = \frac { 1 } { x } . Let x = 4. dx=ΔxdyΔyΔydydy/Δy5.000002.500000.50000\begin{array} { l } d x=\Delta x & d y & \Delta y& \Delta y-d y & d y / \Delta y\\5.00000 \\2.50000 \\0.50000\end{array}

A) dx=ΔxdyΔyΔydydy/Δy5.000000.31250.138890.173612.249982.500000.156250.096150.06011.625070.500000.062350.027780.003471.12712\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\5.00000 & - 0.3125 & - 0.13889 & 0.17361 & 2.24998 \\2.50000 & - 0.15625 & - 0.09615 & 0.0601 & 1.62507 \\0.50000 & - 0.06235 & - 0.02778 & 0.00347 & 1.12712\end{array}
B) dx=ΔxdyΔyΔydydy/Δy5.000000.31250.138890.173612.249982.500000.156250.213850.06011.629280.500000.031250.027780.003471.12491\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\5.00000 & - 0.3125 & - 0.13889 & 0.17361 & 2.24998 \\2.50000 & - 0.15625 & 0.21385 & 0.0601 & 1.62928 \\0.50000 & - 0.03125 & - 0.02778 & 0.00347 & 1.12491\end{array}
C) dx=ΔxdyΔyΔydydy/Δy5.000000.31250.138890.173612.249982.500000.156250.096150.06011.625070.500000.031250.027780.003471.12491\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\5.00000 & - 0.3125 & - 0.13889 & 0.17361 & 2.24998 \\2.50000 & - 0.15625 & - 0.09615 & 0.0601 & 1.62507 \\0.50000 & - 0.03125 & - 0.02778 & 0.00347 & 1.12491\end{array}
D) dx=ΔxdyΔyΔydydy/Δy5.000000.26140.138890.173612.249982.500000.156250.096150.06011.625070.500000.062350.027780.003471.12712\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\5.00000 & - 0.2614 & - 0.13889 & 0.17361 & 2.24998 \\2.50000 & - 0.15625 & - 0.09615 & 0.0601 & 1.62507 \\0.50000 & - 0.06235 & - 0.02778 & 0.00347 & 1.12712\end{array}
E) dx=ΔxdyΔyΔydydy/Δy5.000000.26140.138890.173612.249982.500000.156250.213850.06011.629280.500000.062350.027780.003471.12712\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\5.00000 & - 0.2614 & - 0.13889 & 0.17361 & 2.24998 \\2.50000 & - 0.15625 & 0.21385 & 0.0601 & 1.62928 \\0.50000 & - 0.06235 & - 0.02778 & 0.00347 & 1.12712\end{array}
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
68
The revenue R for a company selling x units is R=900x0.3x2R = 900 x - 0.3 x ^ { 2 } . Use differentials to approximate the change in revenue if sales increase from x=1000x = 1000 to x=1100x = 1100 units.

A)24,000 dollars
B)30,000 dollars
C)25,000 dollars
D)29,000 dollars
E)40,000 dollars
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
69
Compare dy and Δy\Delta y for y=3x23y = 3 x ^ { 2 } - 3 at x = 2 with Δx=\Delta x = dx = -0.07. Give your answers to four decimal places.

A) dy=0.8500,Δy=0.8255d y = - 0.8500 , \quad \Delta y = - 0.8255
B) dy=0.8400;Δy=0.8253d y = - 0.8400 ; \quad \Delta y = - 0.8253
C) dy=0.8700,Δy=0.8254d y = - 0.8700 , \quad \Delta y = - 0.8254
D) dy=0.8200,Δy=0.8256d y = - 0.8200 , \quad \Delta y = - 0.8256
E) dy=0.8200,Δy=0.8254d y = - 0.8200 , \quad \Delta y = - 0.8254
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
70
Analyze and sketch a graph of the function y=2xx3y = 2 - x - x ^ { 3 } .

A)  <strong>Analyze and sketch a graph of the function  y = 2 - x - x ^ { 3 }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Analyze and sketch a graph of the function  y = 2 - x - x ^ { 3 }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Analyze and sketch a graph of the function  y = 2 - x - x ^ { 3 }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Analyze and sketch a graph of the function  y = 2 - x - x ^ { 3 }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Analyze and sketch a graph of the function  y = 2 - x - x ^ { 3 }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
71
Analyze and sketch a graph of the function y=x1x2y = x \sqrt { 1 - x ^ { 2 } } .

A)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 1 - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 1 - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 1 - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 1 - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Analyze and sketch a graph of the function  y = x \sqrt { 1 - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
72
Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph. y=x44x3+16xy = x ^ { 4 } - 4 x ^ { 3 } + 16 x

A)  <strong>Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = x ^ { 4 } - 4 x ^ { 3 } + 16 x </strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = x ^ { 4 } - 4 x ^ { 3 } + 16 x </strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = x ^ { 4 } - 4 x ^ { 3 } + 16 x </strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = x ^ { 4 } - 4 x ^ { 3 } + 16 x </strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function below. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph.  y = x ^ { 4 } - 4 x ^ { 3 } + 16 x </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
73
Use the graph ff ^ { \prime \prime } to sketch the graph of ff .  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)

A)  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)
B)  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)
C)  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)
D)  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)
E)  <strong>Use the graph  f ^ { \prime \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
74
Compare dy and Δy\Delta y for y=3x4+1y = 3 x ^ { 4 } + 1 at x = 1 with dx = 0.03. Give your answers to four decimal places.

A)dy = 0.3800 ; Δy\Delta y = 0.3762
B)dy = 0.3500 ; Δy\Delta y = 0.3763
C)dy = 0.3300 ; Δy\Delta y = 0.3764
D)dy = 0.3600 ; Δy\Delta y = 0.3765
E)dy = 0.3800 ; Δy\Delta y = 0.3764
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
75
Complete the table for the function y=xy = \sqrt { x } . Let x = 4. dx=ΔxdyΔyΔydydy/Δy1.000000.500000.10000\begin{array} { l } d x=\Delta x \quad d y \quad \Delta y \quad \Delta y-d y \quad d y / \Delta y\\1.00000 \\0.50000 \\0.10000\end{array}

A) dx=ΔxdyΔyΔydydy/Δy1.000000.250.236070.013931.059010.500000.1250.121320.003681.030330.100000.00610.024850.000151.00825\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\1.00000 & 0.25 & 0.23607 & - 0.01393 & 1.05901 \\0.50000 & 0.125 & 0.12132 & - 0.00368 & 1.03033 \\0.10000 & - 0.0061 & 0.02485 & - 0.00015 & 1.00825\end{array}
B) dx=ΔxdyΔyΔydydy/Δy1.000000.250.236070.013931.059010.500000.1250.431320.003681.034540.100000.0250.024850.000151.00604\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\1.00000 & 0.25 & 0.23607 & - 0.01393 & 1.05901 \\0.50000 & 0.125 & 0.43132 & - 0.00368 & 1.03454 \\0.10000 & 0.025 & 0.02485 & - 0.00015 & 1.00604\end{array}
C) dx=ΔxdyΔyΔydydy/Δy1.000000.30110.236070.013931.059010.500000.1250.431320.003681.034540.100000.00610.024850.000151.00825\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\1.00000 & 0.3011 & 0.23607 & - 0.01393 & 1.05901 \\0.50000 & 0.125 & 0.43132 & - 0.00368 & 1.03454 \\0.10000 & - 0.0061 & 0.02485 & - 0.00015 & 1.00825\end{array}
D) dx=ΔxdyΔyΔydydy/Δy1.000000.30110.236070.013931.059010.500000.1250.121320.003681.030330.100000.00610.024850.000151.00825\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\1.00000 & 0.3011 & 0.23607 & - 0.01393 & 1.05901 \\0.50000 & 0.125 & 0.12132 & - 0.00368 & 1.03033 \\0.10000 & - 0.0061 & 0.02485 & - 0.00015 & 1.00825\end{array}
E) dx=ΔxdyΔyΔydydy/Δy1.000000.250.236070.013931.059010.500000.1250.121320.003681.030330.100000.0250.024850.000151.00604\begin{array} { l l l l l } d x = \Delta x & d y & \Delta y & \Delta y - d y & d y / \Delta y \\1.00000 & 0.25 & 0.23607 & - 0.01393 & 1.05901 \\0.50000 & 0.125 & 0.12132 & - 0.00368 & 1.03033 \\0.10000 & 0.025 & 0.02485 & - 0.00015 & 1.00604\end{array}
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
76
Find the differential dy of the function y=2x23x+2y = 2 x ^ { 2 } - 3 x + 2 .

A) (4x23x+2)dx\left( 4 x ^ { 2 } - 3 x + 2 \right) d x
B) (2x3)dx( 2 x - 3 ) d x
C) (23x332x2+2x)dx\left( \frac { 2 } { 3 } x ^ { 3 } - \frac { 3 } { 2 } x ^ { 2 } + 2 x \right) d x
D) (2x33x2+2x)dx\left( 2 x ^ { 3 } - 3 x ^ { 2 } + 2 x \right) d x
E) (4x3)dx( 4 x - 3 ) d x
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
77
Use the graph ff ^ { \prime } to sketch the graph of ff .  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)

A)  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)
B)  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)
C)  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)
D)  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)
E)  <strong>Use the graph  f ^ { \prime }  to sketch the graph of  f  .  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
78
Analyze and sketch a graph of the function y=x312x2+3y = x ^ { 3 } - 12 x ^ { 2 } + 3 .

A)  <strong>Analyze and sketch a graph of the function  y = x ^ { 3 } - 12 x ^ { 2 } + 3  .</strong> A)   B)   C)   D)   E)
B)  <strong>Analyze and sketch a graph of the function  y = x ^ { 3 } - 12 x ^ { 2 } + 3  .</strong> A)   B)   C)   D)   E)
C)  <strong>Analyze and sketch a graph of the function  y = x ^ { 3 } - 12 x ^ { 2 } + 3  .</strong> A)   B)   C)   D)   E)
D)  <strong>Analyze and sketch a graph of the function  y = x ^ { 3 } - 12 x ^ { 2 } + 3  .</strong> A)   B)   C)   D)   E)
E)  <strong>Analyze and sketch a graph of the function  y = x ^ { 3 } - 12 x ^ { 2 } + 3  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
79
Find the differential dy of the function y=2x5/6y = - 2 x ^ { 5 / 6 } .

A) x5/6ln(2)x ^ { 5 / 6 } \ln ( - 2 )
B) 56x1/6dx\frac { 5 } { 6 } x ^ { - 1 / 6 } d x
C) 2x1/6dx- 2 x ^ { - 1 / 6 } d x
D) 53x1/6dx- \frac { 5 } { 3 } x ^ { - 1 / 6 } d x
E) 56x1/6dx- \frac { 5 } { 6 } x ^ { - 1 / 6 } d x
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
80
An employee of a delivery company earns $\$ 25.00 per hour driving a delivery van in an area where gasoline costs $\$ 2.90 per gallon. When the van is driven at a constant speed s (in miles per hour, with 45s6045 \leq s \leq 60 ), the van gets 290s\frac { 290 } { s } miles per gallon. Determine the most economical speed s for a 100-mile trip on an interstate highway.

A)The most economical speed is 52.0 mph.
B)The most economical speed is 48.0 mph.
C)The most economical speed is 25.0 mph.
D)The most economical speed is 50.0 mph.
E)The most economical speed is 53.0 mph.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 83 flashcards in this deck.