Deck 13: Techniques of Integration

Full screen (f)
exit full mode
Question
Identify u and dv for finding the integral using integration by parts. x4e7xdx\int x ^ { 4 } e ^ { 7 x } d x

A) u=x4;dv=e7xdxu = x ^ { 4 } ; d v = e ^ { 7 x } d x
B) u=x4;dv=e7xdxu = \int x ^ { 4 } ; d v = \int e ^ { 7 x } d x
C) u=x4dx,dv=e7xdxu = \int x ^ { 4 } d x , d v = e ^ { 7 x } d x
D) u=x4dx;dv=e7xdxu = \int x ^ { 4 } d x ; d v = \int e ^ { 7 x } d x
E) u=x4dx,dv=e7xdxu = x ^ { 4 } d x , d v = \int e ^ { 7 x } d x
Use Space or
up arrow
down arrow
to flip the card.
Question
Use integration by parts to evaluate 4xe5xdx\int 4 x e ^ { - 5 x } d x

A) (5x+1)(4e5x)25+C- \frac { ( 5 x + 1 ) \left( 4 e ^ { - 5 x } \right) } { 25 } + C
B) e5x5+C- \frac { e ^ { - 5 x } } { 5 } + C
C) (4e5x)25+C- \frac { \left( 4 e ^ { - 5 x } \right) } { 25 } + C
D) x(4e5x)5+C- \frac { x \left( 4 e ^ { - 5 x } \right) } { 5 } + C
E) e5x5+C\frac { e ^ { - 5 x } } { 5 } + C
Question
Find the indefinite integral. t1+7tdt\int \frac { t } { \sqrt { 1 + 7 t } } d t

A) (7t2)7t+149+C\frac { ( 7 t - 2 ) \sqrt { 7 t + 1 } } { 49 } + C
B) 2(7t2)7t+1147+C\frac { 2 ( 7 t - 2 ) \sqrt { 7 t + 1 } } { 147 } + C
C) 2(27t)7t+1147+C\frac { 2 ( 2 - 7 t ) \sqrt { 7 t + 1 } } { 147 } + C
D) 2(7t2)7t+121+C\frac { 2 ( 7 t - 2 ) \sqrt { 7 t + 1 } } { 21 } + C
E)none of the above
Question
Use integration by parts to find the integral below. 5xnlnaxdx(a0,n1)\int 5 x ^ { n } \ln a x d x ( a \neq 0 , n \neq - 1 )

A) 5xnnlnax5n2xn+C\frac { 5 x ^ { n } } { n } \ln a x - \frac { 5 } { n ^ { 2 } } x ^ { n } + C
B) 6xn+1n+1lnax6(n+1)2xn+1+C\frac { 6 x ^ { n + 1 } } { n + 1 } \ln a x - \frac { 6 } { ( n + 1 ) ^ { 2 } } x ^ { n + 1 } + C
C) 5xnn5(n+1)2lnax+C\frac { 5 x ^ { n } } { n } - \frac { 5 } { ( n + 1 ) ^ { 2 } } \ln a x + C
D) 5xn+1n+1lnax5(n+1)2xn+1+C\frac { 5 x ^ { n + 1 } } { n + 1 } \ln a x - \frac { 5 } { ( n + 1 ) ^ { 2 } } x ^ { n + 1 } + C
E) 6xn+1n+16n2lnax+C\frac { 6 x ^ { n + 1 } } { n + 1 } - \frac { 6 } { n ^ { 2 } } \ln a x + C
Question
A model for the ability M of a child to memorize, measured on a scale from 0 to 10, is M=1+1.6tlnt,0<t3M = 1 + 1.6 t \ln t , 0 < t \leq 3 where t is the child's age in years. Find the average value predicted by the model for a child's ability to memorize between second and third birthdays. Round your answer to three decimal places.

A)5.992
B)4.892
C)6.792
D)3.992
E)4.692
Question
Find the integral below using an integral table. 664x2dx\int \frac { 6 } { 64 - x ^ { 2 } } d x

A) 38ln8+x8x+C\frac { 3 } { 8 } \ln \left| \frac { 8 + x } { 8 - x } \right| + C
B) 38ln64+x64x+C\frac { 3 } { 8 } \ln \left| \frac { 64 + x } { 64 - x } \right| + C  <strong>Find the integral below using an integral table.  \int \frac { 6 } { 64 - x ^ { 2 } } d x </strong> A)  \frac { 3 } { 8 } \ln \left| \frac { 8 + x } { 8 - x } \right| + C  B)  \frac { 3 } { 8 } \ln \left| \frac { 64 + x } { 64 - x } \right| + C    C)  \frac { 3 } { 8 } \ln \left| \frac { 64 - x } { 64 + x } \right| + C  D)  \frac { 1 } { 8 } \ln \left| \frac { 8 - x } { 8 + x } \right| + C  E)  \frac { 3 } { 8 } \ln \left| \frac { 8 - x } { 8 + x } \right| + C  <div style=padding-top: 35px>
C) 38ln64x64+x+C\frac { 3 } { 8 } \ln \left| \frac { 64 - x } { 64 + x } \right| + C
D) 18ln8x8+x+C\frac { 1 } { 8 } \ln \left| \frac { 8 - x } { 8 + x } \right| + C
E) 38ln8x8+x+C\frac { 3 } { 8 } \ln \left| \frac { 8 - x } { 8 + x } \right| + C
Question
Find the indefinite integral. lnv9v3dv\int \frac { \ln v } { 9 v ^ { 3 } } d v

A) 118v2(2lnv+1)+C- \frac { 1 } { 18 v ^ { 2 } } ( 2 \ln v + 1 ) + C
B) 118v2(2lnv+1)+C)\left. \frac { 1 } { 18 v ^ { 2 } } ( 2 \ln v + 1 ) + C \right)
C) 136v2(2lnv1)+C\frac { 1 } { 36 v ^ { 2 } } ( 2 \ln v - 1 ) + C
D) 136v2(2lnv1)+C- \frac { 1 } { 36 v ^ { 2 } } ( 2 \ln v - 1 ) + C
E) 136v2(2lnv+1)+C- \frac { 1 } { 36 v ^ { 2 } } ( 2 \ln v + 1 ) + C
Question
Present Value of a Continuous Stream of Income. An electronics company generates a continuous stream of income of 4t4 t million dollars per year, where t is the number of years that the company has been in operation. Find the present value of this stream of income over the first 9 years at a continuous interest rate of 12%. Round answer to one decimal place.

A)$143.7 million
B)$81.6 million
C)$182.7 million
D)$343.2 million
E)$85.8 million
Question
Find the indefinite integral. vln(v+2)dv\int v \ln ( v + 2 ) d v

A) (v242)ln(v+2)v24v4+C\left( \frac { v ^ { 2 } - 4 } { 2 } \right) \ln ( v + 2 ) - \frac { v ^ { 2 } - 4 v } { 4 } + C
B) (v242)ln(v+2)+v24v4+C\left( \frac { v ^ { 2 } - 4 } { 2 } \right) \ln ( v + 2 ) + \frac { v ^ { 2 } - 4 v } { 4 } + C
C) (v2+42)ln(v+2)v2+2v4+C\left( \frac { v ^ { 2 } + 4 } { 2 } \right) \ln ( v + 2 ) - \frac { v ^ { 2 } + 2 v } { 4 } + C
D) (v242)ln(v+2)v24v2+C\left( \frac { v ^ { 2 } - 4 } { 2 } \right) \ln ( v + 2 ) - \frac { v ^ { 2 } - 4 v } { 2 } + C
E) (v242)ln(v+2)+v22v4+C\left( \frac { v ^ { 2 } - 4 } { 2 } \right) \ln ( v + 2 ) + \frac { v ^ { 2 } - 2 v } { 4 } + C
Question
Use integration by parts to evaluate 3x3lnxdx\int 3 x ^ { 3 } \ln x d x .

A) 3x4(4ln(x)+1)4+C\frac { - 3 x ^ { 4 } ( 4 \ln ( x ) + 1 ) } { 4 } + C
B) 3x3(3ln(x)+1)3+C\frac { 3 x ^ { 3 } ( 3 \ln ( x ) + 1 ) } { 3 } + C
C) 3x4(4ln(x)+1)16+C\frac { 3 x ^ { 4 } ( 4 \ln ( x ) + 1 ) } { 16 } + C
D) 3x3(3ln(x)1)9+C\frac { 3 x ^ { 3 } ( 3 \ln ( x ) - 1 ) } { 9 } + C
E) 3x4(4ln(x)1)16+C\frac { 3 x ^ { 4 } ( 4 \ln ( x ) - 1 ) } { 16 } + C
Question
Use a table of integrals with forms involving eue ^ { u } to find the integral. 71+e6xdx\int \frac { - 7 } { 1 + e ^ { - 6 x } } d x

A) 7x76ln(1e6x)+C7 x - \frac { 7 } { 6 } \ln \left( 1 - e ^ { - 6 x } \right) + C
B) 7x76ln(1+e6x)+C7 x - \frac { 7 } { 6 } \ln \left( 1 + e ^ { - 6 x } \right) + C
C) 7x+76ln(1+e6x)+C- 7 x + \frac { 7 } { 6 } \ln \left( 1 + e ^ { - 6 x } \right) + C
D) 7x+76ln(1e6x)+C- 7 x + \frac { 7 } { 6 } \ln \left( 1 - e ^ { - 6 x } \right) + C
E) 7x76ln(1+e6x)+C- 7 x - \frac { 7 } { 6 } \ln \left( 1 + e ^ { - 6 x } \right) + C
Question
Evaluate the definite integral 01x2e2xdx\int _ { 0 } ^ { 1 } x ^ { 2 } e ^ { 2 x } d x . Round your answer to three decimal places.

A)4.195
B)9.486
C)1.597
D)8.986
E)0.473
Question
Use integration by parts to evaluate x2e3xdx\int x ^ { 2 } e ^ { - 3 x } d x . Note that evaluation may require integration by parts more than once.

A) (2+6x+9x2)e3x27+C- \frac { \left( 2 + 6 x + 9 x ^ { 2 } \right) e ^ { - 3 x } } { 27 } + C
B) (1+6x3x2)e3x9+C\frac { \left( 1 + 6 x - 3 x ^ { 2 } \right) e ^ { - 3 x } } { 9 } + C
C) (2+9x+9x2)e3x27+C- \frac { \left( 2 + 9 x + 9 x ^ { 2 } \right) e ^ { - 3 x } } { 27 } + C
D) (23x+9x2)e3x9+C\frac { \left( 2 - 3 x + 9 x ^ { 2 } \right) e ^ { - 3 x } } { 9 } + C
E) (13x+9x2)e3x27+C- \frac { \left( 1 - 3 x + 9 x ^ { 2 } \right) e ^ { - 3 x } } { - 27 } + C
Question
Use a table of integrals to find the indefinite integral (ln3x)2dx\int ( \ln 3 x ) ^ { 2 } d x .

A) x[22ln(3x)+(ln3x)2]+Cx \left[ 2 - 2 \ln ( 3 x ) + ( \ln 3 x ) ^ { 2 } \right] + C
B) x[2ln(3x)+(ln3x)2]+Cx \left[ 2 \ln ( 3 x ) + ( \ln 3 x ) ^ { 2 } \right] + C
C) 3x[2+2ln(3x)+(ln3x)2]+C3 x \left[ 2 + 2 \ln ( 3 x ) + ( \ln 3 x ) ^ { 2 } \right] + C
D) x[22ln(3x)(ln3x)]2+Cx [ 2 - 2 \ln ( 3 x ) - ( \ln 3 x ) ] ^ { 2 } + C
E) 3x[2ln(3x)+(ln3x)]2+C3 x [ 2 \ln ( 3 x ) + ( \ln 3 x ) ] ^ { 2 } + C
Question
Find the indefinite integral. t4t+9dt\int t \sqrt { 4 t + 9 } d t

A) (4t+9)3/2(2t+3)20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t + 3 ) } { 20 } + C
B) (4t+9)3/2(2t6)20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t - 6 ) } { 20 } + C
C) (4t+9)3/2(2t3)20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t - 3 ) } { 20 } + C
D) (4t9)3/2(2t+3)20+C\frac { ( 4 t - 9 ) ^ { 3 / 2 } ( 2 t + 3 ) } { 20 } + C
E) (4t+9)3/2(2t+6)20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t + 6 ) } { 20 } + C
Question
Find the definite integral. 14x3lnxdx\int _ { 1 } ^ { 4 } x ^ { 3 } \ln x d x

A) 2048ln425516\frac { 2048 \ln 4 - 255 } { 16 }
B) 1024ln425516\frac { 1024 \ln 4 - 255 } { 16 }
C) 1024ln425516\frac { - 1024 \ln 4 - 255 } { 16 }
D) 1024ln4+25516\frac { 1024 \ln 4 + 255 } { 16 }
E)none of the above
Question
Find the indefinite integral. 6(lnx)2x2dx\int \frac { 6 ( \ln x ) ^ { 2 } } { x ^ { 2 } } d x

A) 6((lnx)22lnx+2)x+C\frac { 6 \left( ( \ln x ) ^ { 2 } - 2 \ln x + 2 \right) } { x } + C
B) 6((lnx)2+2lnx+2)x+C- \frac { 6 \left( ( \ln x ) ^ { 2 } + 2 \ln x + 2 \right) } { x } + C
C) 6((lnx)2+2lnx+2)+C- 6 \left( ( \ln x ) ^ { 2 } + 2 \ln x + 2 \right) + C
D) 6(2(lnx)2+2)x+C- \frac { 6 \left( 2 ( \ln x ) ^ { 2 } + 2 \right) } { x } + C
E) 6(2(lnx)2+2)x+C\frac { 6 \left( 2 ( \ln x ) ^ { 2 } + 2 \right) } { x } + C
Question
Find the indefinite integral. 3x2exdx\int \frac { 3 x ^ { 2 } } { e ^ { x } } d x

A) 3(x22x+2)ex+C3 \left( x ^ { 2 } - 2 x + 2 \right) e ^ { - x } + C
B) (x2+2x+2)ex+C- \left( x ^ { 2 } + 2 x + 2 \right) e ^ { - x } + C
C) (x2+2x+2)ex+C\left( x ^ { 2 } + 2 x + 2 \right) e ^ { - x } + C
D) 3x(x2+2x+2)ex+C- 3 x \left( x ^ { 2 } + 2 x + 2 \right) e ^ { - x } + C
E) 3(x2+2x+2)ex+C- 3 \left( x ^ { 2 } + 2 x + 2 \right) e ^ { - x } + C
Question
Use integration by parts to find the integral below. lnx3dx\int \ln x ^ { 3 } d x

A) lnx43x4+C\ln x ^ { 4 } - 3 x ^ { 4 } + C
B) xlnx44x4+Cx \ln x ^ { 4 } - 4 x ^ { 4 } + C
C) lnx4x4+C\ln x ^ { 4 } - x ^ { 4 } + C
D) xlnx33x+Cx \ln x ^ { 3 } - 3 x + C
E) 4xlnx44x+C4 x \ln x ^ { 4 } - 4 x + C
Question
Identify u and dv for finding the integral using integration by parts. x3ln9x\int x ^ { 3 } \ln 9 x dx

A) u=ln9xu = \int \ln 9 x dx; dv=x3d v = \int x ^ { 3 } dx
B) u=ln9x,dv=x3dxu = \ln 9 x , d v = x ^ { 3 } d x
C) u=ln9x,dv=x3dxu = \int \ln 9 x , d v = x ^ { 3 } d x
D) u=ln9x,dv=x3dxu = \ln 9 x , d v = \int x ^ { 3 } d x
E) u=ln9x,dv=x3dxu = \int \ln 9 x , d v = \int x ^ { 3 } d x
Question
Approximate the value of the definite integral using (a) the Trapezoidal Rule and (b) Simpson's Rule for the indicated value of n. Round your answers to three significant digits. 02ex2dx,n=4\int _ { 0 } ^ { 2 } e ^ { - x ^ { 2 } } d x , n = 4

A)a. Trapezoidal Rule: 1.881\approx 1.881 b. Simpson's Rule: 0.882\approx 0.882
B)a. Trapezoidal Rule: 0.881\approx 0.881 b. Simpson's Rule: 0.882\approx 0.882
C)a. Trapezoidal Rule: 0.881\approx 0.881 b. Simpson's Rule: 1.882\approx 1.882
D)a. Trapezoidal Rule: 0.081\approx 0.081 b. Simpson's Rule: 0.882\approx 0.882
E)a. Trapezoidal Rule: 0.881\approx 0.881 b. Simpson's Rule: 0.082\approx 0.082
Question
The probability of recall in an experiment is modeled by P(axb)=ab7514(x4+5x)dx,0x1P ( a \leq x \leq b ) = \int _ { a } ^ { b } \frac { 75 } { 14 } \left( \frac { x } { \sqrt { 4 + 5 x } } \right) d x , 0 \leq x \leq 1 where x is the percent of recall. What is the probability of recalling between 50% and 70%? Round your answer to three decimal places.

A)0.243
B)0.206
C)0.650
D)0.163
E)0.832
Question
Evaluate the definite integral 13x2lnx\int _ { 1 } ^ { 3 } x ^ { 2 } \ln x dx. Round your answer to three decimal places.

A)7.499
B)8.562
C)5.896
D)6.999
E)6.236
Question
Approximate the definite integral "by hand," using the Trapezoidal Rule with n=4n = 4 trapezoids. Round answer to three decimal places. 127xdx\int _1^ { 2 } \frac { 7 } { x } d x

A)19.517
B)6.192
C)3.096
D)4.879
E)24.767
Question
The rate of change in the number of subscribers SS to a newly introduced magazine is modeled by dSdt=1000t2e1,0t6\frac { d S } { d t } = 1000 t ^ { 2 } e ^ { - 1 } , 0 \leq t \leq 6 where tt is the time in years. Use Simpson's Rule n=12n = 12 with to estimate the total increase in the number of subscribers during the first 6 years.

A) \approx 1870 subscribers
B) \approx 1780 subscribers
C) \approx 1800 subscribers
D) \approx 1878 subscribers
E) \approx 1987 subscribers
Question
Use Simpson's Rule to approximate the revenue for the marginal revenue function dRdx=58000x3\frac { d R } { d x } = 5 \sqrt { 8000 - x ^ { 3 } } with n = 4. Assume that the number of units sold, x, increases from 14 to 18. Round your answer to one decimal place.

A)$1439.03
B)$1346.14
C)$1602.40
D)$1230.54
E)$678.36
Question
Use the error formulas to find n such that the error in the approximation of the definite integral 361xdx\int _ { 3 } ^ { 6 } \frac { 1 } { x } d x is less than 0.0001 using the Trapezoidal Rule.

A)43
B)44
C)42
D)40
E)41
Question
Use the Trapezoidal Rule to approximate the value of the definite integral 031+xdx,n=4\int _ { 0 } ^ { 3 } \sqrt { 1 + x } d x , n = 4 . Round your answer to three decimal places.

A)2.7931
B)2.7955
C)4.6552
D)4.6615
E)6.7643
Question
Evaluate the definite integral 267+x2dx\int _ { 2 } ^ { 6 } \sqrt { 7 + x ^ { 2 } } d x . Round your answer to three decimal places.

A)31.060
B)25.997
C)37.693
D)34.376
E)19.364
Question
Use a table of integrals with forms involving a + bu to find x28+11xdx\int \frac { x ^ { 2 } } { 8 + 11 x } d x

A) 1121(11x8ln8+11x)+C\frac { 1 } { 121 } ( 11 x - 8 \ln | 8 + 11 x | ) + C
B) 11331(11x648+11x16ln8+11x)+C\frac { 1 } { 1331 } \left( 11 x - \frac { 64 } { 8 + 11 x } - 16 \ln | 8 + 11 x | \right) + C
C) 11331(11x2(11x16)+64ln8+11x)+C\frac { 1 } { 1331 } \left( \frac { 11 x } { 2 } ( 11 x - 16 ) + 64 \ln | 8 + 11 x | \right) + C
D) 1121(11x2(11x16)+64ln8+11x)+C\frac { 1 } { 121 } \left( \frac { 11 x } { 2 } ( 11 x - 16 ) + 64 \ln | 8 + 11 x | \right) + C
E) 1121(11x648+11x16ln8+11x)+C\frac { 1 } { 121 } \left( 11 x - \frac { 64 } { 8 + 11 x } - 16 \ln | 8 + 11 x | \right) + C
Question
Use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the indicated value of n. Compare these results with the exact value of the definite integral. Round your answers to four decimal places. 01(x22+1)dx,n=4\int _ { 0 } ^ { 1 } \left( \frac { x ^ { 2 } } { 2 } + 1 \right) d x , n = 4

A)a. Exact: 1.9667\approx 1.9667 b. Trapezoidal Rule: 1.1719\approx 1.1719 c. Simpson's Rule: 1.1667\approx 1.1667
B)a. Exact: 1.1667\approx 1.1667 b. Trapezoidal Rule: 1.1719\approx 1.1719 c. Simpson's Rule: 1.9667\approx 1.9667
C)a. Exact: 1.1667\approx 1.1667 b. Trapezoidal Rule: 1.9719\approx 1.9719 c. Simpson's Rule: 1.1667\approx 1.1667
D)a. Exact: 2.1667\approx 2.1667 b. Trapezoidal Rule: 1.1719\approx 1.1719 c. Simpson's Rule: 1.1667\approx 1.1667
E)a. Exact: 1.1667\approx 1.1667 b. Trapezoidal Rule: 1.1719\approx 1.1719 c. Simpson's Rule: 1.1667\approx 1.1667
Question
Use a table of integrals to find the indefinite integral x9ex10dx\int x ^ { 9 } e ^ { x ^ { 10 } } d x .

A) 19ex10+C\frac { 1 } { 9 } e ^ { x ^ { 10 } } + C
B) 110ex9+C\frac { 1 } { 10 } e ^ { x ^ { 9 } } + C
C) 110ex10+C\frac { 1 } { 10 } e ^ { x ^ { 10 } } + C
D) 19ex9+C\frac { 1 } { 9 } e ^ { x ^ { 9 } } + C
E) 110ex+C\frac { 1 } { 10 } e ^ { x } + C
Question
A body assimilates a 12-hour cold tablet at a rate modeled by dC/dt=8ln(t22t+4),0t12d C / d t = 8 - \ln \left( t ^ { 2 } - 2 t + 4 \right) , 0 \leq t \leq 12 where dC/dtd C / d t is measured in milligrams per hour and tt is the time in hours. Use Simpson's Rule with n=8n = 8 to estimate the total amount of the drug absorbed into the body during the 12 hours.

A) \approx 58.915 mg
B) \approx 68.915 mg
C) \approx 38.915 mg
D) \approx 48.915 mg
E) \approx 78.915 mg
Question
The revenue (in dollars per year) for a new product is modeled by R=10,000[11(1+0.12)1/2]R = 10,000 \left[ 1 - \frac { 1 } { \left( 1 + 0.1 ^ { 2 } \right) ^ { 1 / 2 } } \right] where t the time in years. Estimate the total revenue from sales of the product over its first 4 years on the market. Round your answer to nearest dollar

A)$10,821
B)$6579
C)$15,830
D)$1138
E)$3291
Question
Use a table of integrals to find the indefinite integral lnxx(8+5lnx)dx\int \frac { \ln x } { x ( 8 + 5 \ln x ) } d x .

A) 125[5lnx8ln8+5lnx]+C\frac { 1 } { 25 } [ 5 \ln x - 8 \ln | 8 + 5 \ln x | ] + C
B) [8lnx5ln8+5lnx]+C[ 8 \ln x - 5 \ln | 8 + 5 \ln x | ] + C
C) 125[5lnx+8ln8+5lnx]+C\frac { 1 } { 25 } [ 5 \ln x + 8 \ln | 8 + 5 \ln x | ] + C
D) ln13x+C\ln 13 x + C
E) 113lnx+C\frac { 1 } { 13 } \ln x + C
Question
Use the table of integrals to find the average value of the growth function N=3301+e5.70.25tN = \frac { 330 } { 1 + e ^ { 5.7 - 0.25 t } } over the interval [22,27][ 22,27 ] , where N the size of a population and t is the time in days. Round your answer to three decimal places.

A)200.507
B)758.790
C)198.507
D)391.543
E)321.407
Question
Use a table of integrals with forms involving a2u2\sqrt { a ^ { 2 } - u ^ { 2 } } to find 3x249x2dx\int \frac { - 3 } { x ^ { 2 } \sqrt { 49 - x ^ { 2 } } } d x

A) 349x249x+C\frac { 3 \sqrt { 49 - x ^ { 2 } } } { 49 x } + C
B) 49x249x+C- \frac { \sqrt { 49 - x ^ { 2 } } } { 49 x } + C
C) 37ln7+49x2x+C\frac { 3 } { 7 } \ln \left| \frac { 7 + \sqrt { 49 - x ^ { 2 } } } { x } \right| + C
D) 349x249x+C- \frac { 3 \sqrt { 49 - x ^ { 2 } } } { 49 x } + C
E) 37ln7+49x2x+C- \frac { 3 } { 7 } \ln \left| \frac { 7 + \sqrt { 49 - x ^ { 2 } } } { x } \right| + C
Question
Use a table of integrals to find the indefinite integral x2(8+2x)7dx\int \frac { x ^ { 2 } } { ( 8 + 2 x ) ^ { 7 } } d x .

A) [14(8+2x)4+165(8+2x)5646(8+2x)6]+C\left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } + \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } - \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
B) 18[14(8+2x)4+165(8+2x)5646(8+2x)6]+C\frac { 1 } { 8 } \left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } + \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } - \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
C) 18[14(8+2x)4+165(8+2x)5+646(8+2x)6]+C\frac { 1 } { 8 } \left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } + \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } + \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
D) 18[14(8+2x)4165(8+2x)5+646(8+2x)6]+C\frac { 1 } { 8 } \left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } - \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } + \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
E) [14(8+2x)4165(8+2x)5+646(8+2x)6]+C\left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } - \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } + \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
Question
A body assimilates a 12-hour cold tablet at a rate modeled by dCdt=6ln(t22t+4)\frac { d C } { d t } = 6 - \ln \left( t ^ { 2 } - 2 t + 4 \right) , 0t120 \leq t \leq 12 where t is measured in milligrams per hour and t is the time in hours. Use Simpson's Rule with n = 12 to estimate the total amount of the drug absorbed into the body during the 12 hours.

A)46.88
B)64.90
C)34.88
D)36.90
E)50.90
Question
Approximate the integral using Simpson's Rule: 05x2+x+x2dx\int _ { 0 } ^ { 5 } \frac { x } { 2 + x + x ^ { 2 } } d x , n = 6. Round your answer to three decimal places.

A)0.652
B)0.850
C)1.161
D)1.017
E)1.284
Question
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. 0e6xdx\int _ { - \infty } ^ { 0 } e ^ { 6 x } d x

A)converges to 0
B)converges to 6
C)converges to 16\frac { 1 } { 6 }
D)diverges to - \infty
E)diverges to \infty
Question
Suppose the mean height of American women between the ages of 30 and 39 is 64.5 inches, and the standard deviation is 2.7 inches. Use a symbolic integration utility to approximate the probability that a 30-to 39-year-old woman chosen at random is between 5 feet 4 inches and 6 feet tall.

A)0.8547
B)0.5707
C)0.4257
D)0.5734
E)0.9522
Question
A business is expected to yield a continuous flow of profit at the rate of $600,000 per year. If money will earn interest at the nominal rate of 8% per year compounded continuously, what is the present value of the business forever?

A)$7,600,000
B)$7,510,000
C)$7,500,000
D)$750,000
E)$850,000
Question
Evaluate the improper integral if it converges, or state that it diverges. 11x8dx\int _ { 1 } ^ { \infty } \frac { 1 } { x ^ { 8 } } d x

A) 19\frac { 1 } { 9 }
B) 99
C) 88
D) 17\frac { 1 } { 7 }
E)diverges
Question
Evaluate the improper integral if it converges, or state that it diverges. 11x8dx\int _ { 1 } ^ { \infty } \frac { 1 } { \sqrt [ 8 ] { x } } d x

A) 98\sqrt [ 8 ] { 9 }
B) 11
C) 88
D) 99
E)diverges
Question
The capitalized cost CC of an asset is given by C=C0+0nC(t)ertdtC = C _ { 0 } + \int _ { 0 } ^ { n } C ( t ) e ^ { - r t } d t where C0C _ { 0 } is the original investment, tt is the time in years, rr is the annual interest rate compounded continuously, and C(t)C ( t ) is the annual cost of maintenance (in dollars). Find the capitalized cost of an asset (a) for 5 years, (b) for 10 years, and (c) forever. C0=$300,000,C(t)=15,000,r=6%C _ { 0 } = \$ 300,000 , C ( t ) = 15,000 , r = 6 \%

A)a. For n=5,Cn = 5 , C \approx $253,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $4,466,666.67
B)a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $1,466,666.67
C)a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $2807,922.43c. For n=,Cn = \infty , C \approx $4,466,666.67
D)a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $4,466,666.67
E)a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $466,666.67
Question
Find the capitalized cost C of an asset forever. The capitalized cost is given by C=C0+0nc(t)ertdtC = C _ { 0 } + \int _ { 0 } ^ { n } c ( t ) e ^ { - r t } d t where C0=$500,000C _ { 0 } = \$ 500,000 is the original investment, t is the time in years, r = 12% is the annual interest rate compounded continuously, n is the total time in years over which the asset is capitalized, and c(t)=25,000(1+0.08t)c ( t ) = 25,000 ( 1 + 0.08 t ) is the annual cost of maintenance (measured in dollars). Round your answer to two decimal places.

A)$1,125,000.00
B)$875,000.00
C)$708,333.33
D)$899,218.75
E)$847,222.22
Question
Decide whether the integral is proper or improper. 05exdx\int _ { 0 } ^ { 5 } e ^ { - x } d x

A)The integral is improper.
B)The integral is proper.
Question
Determine the amount of money required to set up a charitable endowment that pays the amount PP each year indefinitely for the annual interest rate compounded continuously. P=$12,000,r=6%P = \$ 12,000 , r = 6 \%

A)$210,000
B)$200,000
C)$220,000
D)$240,000
E)$230,000
Question
Decide whether the following integral is improper. 0113x2dx\int _ { 0 } ^ { 1 } \frac { 1 } { 3 x - 2 } d x

A)no
B)yes
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/50
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: Techniques of Integration
1
Identify u and dv for finding the integral using integration by parts. x4e7xdx\int x ^ { 4 } e ^ { 7 x } d x

A) u=x4;dv=e7xdxu = x ^ { 4 } ; d v = e ^ { 7 x } d x
B) u=x4;dv=e7xdxu = \int x ^ { 4 } ; d v = \int e ^ { 7 x } d x
C) u=x4dx,dv=e7xdxu = \int x ^ { 4 } d x , d v = e ^ { 7 x } d x
D) u=x4dx;dv=e7xdxu = \int x ^ { 4 } d x ; d v = \int e ^ { 7 x } d x
E) u=x4dx,dv=e7xdxu = x ^ { 4 } d x , d v = \int e ^ { 7 x } d x
u=x4;dv=e7xdxu = x ^ { 4 } ; d v = e ^ { 7 x } d x
2
Use integration by parts to evaluate 4xe5xdx\int 4 x e ^ { - 5 x } d x

A) (5x+1)(4e5x)25+C- \frac { ( 5 x + 1 ) \left( 4 e ^ { - 5 x } \right) } { 25 } + C
B) e5x5+C- \frac { e ^ { - 5 x } } { 5 } + C
C) (4e5x)25+C- \frac { \left( 4 e ^ { - 5 x } \right) } { 25 } + C
D) x(4e5x)5+C- \frac { x \left( 4 e ^ { - 5 x } \right) } { 5 } + C
E) e5x5+C\frac { e ^ { - 5 x } } { 5 } + C
(5x+1)(4e5x)25+C- \frac { ( 5 x + 1 ) \left( 4 e ^ { - 5 x } \right) } { 25 } + C
3
Find the indefinite integral. t1+7tdt\int \frac { t } { \sqrt { 1 + 7 t } } d t

A) (7t2)7t+149+C\frac { ( 7 t - 2 ) \sqrt { 7 t + 1 } } { 49 } + C
B) 2(7t2)7t+1147+C\frac { 2 ( 7 t - 2 ) \sqrt { 7 t + 1 } } { 147 } + C
C) 2(27t)7t+1147+C\frac { 2 ( 2 - 7 t ) \sqrt { 7 t + 1 } } { 147 } + C
D) 2(7t2)7t+121+C\frac { 2 ( 7 t - 2 ) \sqrt { 7 t + 1 } } { 21 } + C
E)none of the above
2(7t2)7t+1147+C\frac { 2 ( 7 t - 2 ) \sqrt { 7 t + 1 } } { 147 } + C
4
Use integration by parts to find the integral below. 5xnlnaxdx(a0,n1)\int 5 x ^ { n } \ln a x d x ( a \neq 0 , n \neq - 1 )

A) 5xnnlnax5n2xn+C\frac { 5 x ^ { n } } { n } \ln a x - \frac { 5 } { n ^ { 2 } } x ^ { n } + C
B) 6xn+1n+1lnax6(n+1)2xn+1+C\frac { 6 x ^ { n + 1 } } { n + 1 } \ln a x - \frac { 6 } { ( n + 1 ) ^ { 2 } } x ^ { n + 1 } + C
C) 5xnn5(n+1)2lnax+C\frac { 5 x ^ { n } } { n } - \frac { 5 } { ( n + 1 ) ^ { 2 } } \ln a x + C
D) 5xn+1n+1lnax5(n+1)2xn+1+C\frac { 5 x ^ { n + 1 } } { n + 1 } \ln a x - \frac { 5 } { ( n + 1 ) ^ { 2 } } x ^ { n + 1 } + C
E) 6xn+1n+16n2lnax+C\frac { 6 x ^ { n + 1 } } { n + 1 } - \frac { 6 } { n ^ { 2 } } \ln a x + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
5
A model for the ability M of a child to memorize, measured on a scale from 0 to 10, is M=1+1.6tlnt,0<t3M = 1 + 1.6 t \ln t , 0 < t \leq 3 where t is the child's age in years. Find the average value predicted by the model for a child's ability to memorize between second and third birthdays. Round your answer to three decimal places.

A)5.992
B)4.892
C)6.792
D)3.992
E)4.692
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
6
Find the integral below using an integral table. 664x2dx\int \frac { 6 } { 64 - x ^ { 2 } } d x

A) 38ln8+x8x+C\frac { 3 } { 8 } \ln \left| \frac { 8 + x } { 8 - x } \right| + C
B) 38ln64+x64x+C\frac { 3 } { 8 } \ln \left| \frac { 64 + x } { 64 - x } \right| + C  <strong>Find the integral below using an integral table.  \int \frac { 6 } { 64 - x ^ { 2 } } d x </strong> A)  \frac { 3 } { 8 } \ln \left| \frac { 8 + x } { 8 - x } \right| + C  B)  \frac { 3 } { 8 } \ln \left| \frac { 64 + x } { 64 - x } \right| + C    C)  \frac { 3 } { 8 } \ln \left| \frac { 64 - x } { 64 + x } \right| + C  D)  \frac { 1 } { 8 } \ln \left| \frac { 8 - x } { 8 + x } \right| + C  E)  \frac { 3 } { 8 } \ln \left| \frac { 8 - x } { 8 + x } \right| + C
C) 38ln64x64+x+C\frac { 3 } { 8 } \ln \left| \frac { 64 - x } { 64 + x } \right| + C
D) 18ln8x8+x+C\frac { 1 } { 8 } \ln \left| \frac { 8 - x } { 8 + x } \right| + C
E) 38ln8x8+x+C\frac { 3 } { 8 } \ln \left| \frac { 8 - x } { 8 + x } \right| + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
7
Find the indefinite integral. lnv9v3dv\int \frac { \ln v } { 9 v ^ { 3 } } d v

A) 118v2(2lnv+1)+C- \frac { 1 } { 18 v ^ { 2 } } ( 2 \ln v + 1 ) + C
B) 118v2(2lnv+1)+C)\left. \frac { 1 } { 18 v ^ { 2 } } ( 2 \ln v + 1 ) + C \right)
C) 136v2(2lnv1)+C\frac { 1 } { 36 v ^ { 2 } } ( 2 \ln v - 1 ) + C
D) 136v2(2lnv1)+C- \frac { 1 } { 36 v ^ { 2 } } ( 2 \ln v - 1 ) + C
E) 136v2(2lnv+1)+C- \frac { 1 } { 36 v ^ { 2 } } ( 2 \ln v + 1 ) + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
8
Present Value of a Continuous Stream of Income. An electronics company generates a continuous stream of income of 4t4 t million dollars per year, where t is the number of years that the company has been in operation. Find the present value of this stream of income over the first 9 years at a continuous interest rate of 12%. Round answer to one decimal place.

A)$143.7 million
B)$81.6 million
C)$182.7 million
D)$343.2 million
E)$85.8 million
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
9
Find the indefinite integral. vln(v+2)dv\int v \ln ( v + 2 ) d v

A) (v242)ln(v+2)v24v4+C\left( \frac { v ^ { 2 } - 4 } { 2 } \right) \ln ( v + 2 ) - \frac { v ^ { 2 } - 4 v } { 4 } + C
B) (v242)ln(v+2)+v24v4+C\left( \frac { v ^ { 2 } - 4 } { 2 } \right) \ln ( v + 2 ) + \frac { v ^ { 2 } - 4 v } { 4 } + C
C) (v2+42)ln(v+2)v2+2v4+C\left( \frac { v ^ { 2 } + 4 } { 2 } \right) \ln ( v + 2 ) - \frac { v ^ { 2 } + 2 v } { 4 } + C
D) (v242)ln(v+2)v24v2+C\left( \frac { v ^ { 2 } - 4 } { 2 } \right) \ln ( v + 2 ) - \frac { v ^ { 2 } - 4 v } { 2 } + C
E) (v242)ln(v+2)+v22v4+C\left( \frac { v ^ { 2 } - 4 } { 2 } \right) \ln ( v + 2 ) + \frac { v ^ { 2 } - 2 v } { 4 } + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
10
Use integration by parts to evaluate 3x3lnxdx\int 3 x ^ { 3 } \ln x d x .

A) 3x4(4ln(x)+1)4+C\frac { - 3 x ^ { 4 } ( 4 \ln ( x ) + 1 ) } { 4 } + C
B) 3x3(3ln(x)+1)3+C\frac { 3 x ^ { 3 } ( 3 \ln ( x ) + 1 ) } { 3 } + C
C) 3x4(4ln(x)+1)16+C\frac { 3 x ^ { 4 } ( 4 \ln ( x ) + 1 ) } { 16 } + C
D) 3x3(3ln(x)1)9+C\frac { 3 x ^ { 3 } ( 3 \ln ( x ) - 1 ) } { 9 } + C
E) 3x4(4ln(x)1)16+C\frac { 3 x ^ { 4 } ( 4 \ln ( x ) - 1 ) } { 16 } + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
11
Use a table of integrals with forms involving eue ^ { u } to find the integral. 71+e6xdx\int \frac { - 7 } { 1 + e ^ { - 6 x } } d x

A) 7x76ln(1e6x)+C7 x - \frac { 7 } { 6 } \ln \left( 1 - e ^ { - 6 x } \right) + C
B) 7x76ln(1+e6x)+C7 x - \frac { 7 } { 6 } \ln \left( 1 + e ^ { - 6 x } \right) + C
C) 7x+76ln(1+e6x)+C- 7 x + \frac { 7 } { 6 } \ln \left( 1 + e ^ { - 6 x } \right) + C
D) 7x+76ln(1e6x)+C- 7 x + \frac { 7 } { 6 } \ln \left( 1 - e ^ { - 6 x } \right) + C
E) 7x76ln(1+e6x)+C- 7 x - \frac { 7 } { 6 } \ln \left( 1 + e ^ { - 6 x } \right) + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
12
Evaluate the definite integral 01x2e2xdx\int _ { 0 } ^ { 1 } x ^ { 2 } e ^ { 2 x } d x . Round your answer to three decimal places.

A)4.195
B)9.486
C)1.597
D)8.986
E)0.473
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
13
Use integration by parts to evaluate x2e3xdx\int x ^ { 2 } e ^ { - 3 x } d x . Note that evaluation may require integration by parts more than once.

A) (2+6x+9x2)e3x27+C- \frac { \left( 2 + 6 x + 9 x ^ { 2 } \right) e ^ { - 3 x } } { 27 } + C
B) (1+6x3x2)e3x9+C\frac { \left( 1 + 6 x - 3 x ^ { 2 } \right) e ^ { - 3 x } } { 9 } + C
C) (2+9x+9x2)e3x27+C- \frac { \left( 2 + 9 x + 9 x ^ { 2 } \right) e ^ { - 3 x } } { 27 } + C
D) (23x+9x2)e3x9+C\frac { \left( 2 - 3 x + 9 x ^ { 2 } \right) e ^ { - 3 x } } { 9 } + C
E) (13x+9x2)e3x27+C- \frac { \left( 1 - 3 x + 9 x ^ { 2 } \right) e ^ { - 3 x } } { - 27 } + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
14
Use a table of integrals to find the indefinite integral (ln3x)2dx\int ( \ln 3 x ) ^ { 2 } d x .

A) x[22ln(3x)+(ln3x)2]+Cx \left[ 2 - 2 \ln ( 3 x ) + ( \ln 3 x ) ^ { 2 } \right] + C
B) x[2ln(3x)+(ln3x)2]+Cx \left[ 2 \ln ( 3 x ) + ( \ln 3 x ) ^ { 2 } \right] + C
C) 3x[2+2ln(3x)+(ln3x)2]+C3 x \left[ 2 + 2 \ln ( 3 x ) + ( \ln 3 x ) ^ { 2 } \right] + C
D) x[22ln(3x)(ln3x)]2+Cx [ 2 - 2 \ln ( 3 x ) - ( \ln 3 x ) ] ^ { 2 } + C
E) 3x[2ln(3x)+(ln3x)]2+C3 x [ 2 \ln ( 3 x ) + ( \ln 3 x ) ] ^ { 2 } + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
15
Find the indefinite integral. t4t+9dt\int t \sqrt { 4 t + 9 } d t

A) (4t+9)3/2(2t+3)20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t + 3 ) } { 20 } + C
B) (4t+9)3/2(2t6)20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t - 6 ) } { 20 } + C
C) (4t+9)3/2(2t3)20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t - 3 ) } { 20 } + C
D) (4t9)3/2(2t+3)20+C\frac { ( 4 t - 9 ) ^ { 3 / 2 } ( 2 t + 3 ) } { 20 } + C
E) (4t+9)3/2(2t+6)20+C\frac { ( 4 t + 9 ) ^ { 3 / 2 } ( 2 t + 6 ) } { 20 } + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
16
Find the definite integral. 14x3lnxdx\int _ { 1 } ^ { 4 } x ^ { 3 } \ln x d x

A) 2048ln425516\frac { 2048 \ln 4 - 255 } { 16 }
B) 1024ln425516\frac { 1024 \ln 4 - 255 } { 16 }
C) 1024ln425516\frac { - 1024 \ln 4 - 255 } { 16 }
D) 1024ln4+25516\frac { 1024 \ln 4 + 255 } { 16 }
E)none of the above
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
17
Find the indefinite integral. 6(lnx)2x2dx\int \frac { 6 ( \ln x ) ^ { 2 } } { x ^ { 2 } } d x

A) 6((lnx)22lnx+2)x+C\frac { 6 \left( ( \ln x ) ^ { 2 } - 2 \ln x + 2 \right) } { x } + C
B) 6((lnx)2+2lnx+2)x+C- \frac { 6 \left( ( \ln x ) ^ { 2 } + 2 \ln x + 2 \right) } { x } + C
C) 6((lnx)2+2lnx+2)+C- 6 \left( ( \ln x ) ^ { 2 } + 2 \ln x + 2 \right) + C
D) 6(2(lnx)2+2)x+C- \frac { 6 \left( 2 ( \ln x ) ^ { 2 } + 2 \right) } { x } + C
E) 6(2(lnx)2+2)x+C\frac { 6 \left( 2 ( \ln x ) ^ { 2 } + 2 \right) } { x } + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
18
Find the indefinite integral. 3x2exdx\int \frac { 3 x ^ { 2 } } { e ^ { x } } d x

A) 3(x22x+2)ex+C3 \left( x ^ { 2 } - 2 x + 2 \right) e ^ { - x } + C
B) (x2+2x+2)ex+C- \left( x ^ { 2 } + 2 x + 2 \right) e ^ { - x } + C
C) (x2+2x+2)ex+C\left( x ^ { 2 } + 2 x + 2 \right) e ^ { - x } + C
D) 3x(x2+2x+2)ex+C- 3 x \left( x ^ { 2 } + 2 x + 2 \right) e ^ { - x } + C
E) 3(x2+2x+2)ex+C- 3 \left( x ^ { 2 } + 2 x + 2 \right) e ^ { - x } + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
19
Use integration by parts to find the integral below. lnx3dx\int \ln x ^ { 3 } d x

A) lnx43x4+C\ln x ^ { 4 } - 3 x ^ { 4 } + C
B) xlnx44x4+Cx \ln x ^ { 4 } - 4 x ^ { 4 } + C
C) lnx4x4+C\ln x ^ { 4 } - x ^ { 4 } + C
D) xlnx33x+Cx \ln x ^ { 3 } - 3 x + C
E) 4xlnx44x+C4 x \ln x ^ { 4 } - 4 x + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
20
Identify u and dv for finding the integral using integration by parts. x3ln9x\int x ^ { 3 } \ln 9 x dx

A) u=ln9xu = \int \ln 9 x dx; dv=x3d v = \int x ^ { 3 } dx
B) u=ln9x,dv=x3dxu = \ln 9 x , d v = x ^ { 3 } d x
C) u=ln9x,dv=x3dxu = \int \ln 9 x , d v = x ^ { 3 } d x
D) u=ln9x,dv=x3dxu = \ln 9 x , d v = \int x ^ { 3 } d x
E) u=ln9x,dv=x3dxu = \int \ln 9 x , d v = \int x ^ { 3 } d x
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
21
Approximate the value of the definite integral using (a) the Trapezoidal Rule and (b) Simpson's Rule for the indicated value of n. Round your answers to three significant digits. 02ex2dx,n=4\int _ { 0 } ^ { 2 } e ^ { - x ^ { 2 } } d x , n = 4

A)a. Trapezoidal Rule: 1.881\approx 1.881 b. Simpson's Rule: 0.882\approx 0.882
B)a. Trapezoidal Rule: 0.881\approx 0.881 b. Simpson's Rule: 0.882\approx 0.882
C)a. Trapezoidal Rule: 0.881\approx 0.881 b. Simpson's Rule: 1.882\approx 1.882
D)a. Trapezoidal Rule: 0.081\approx 0.081 b. Simpson's Rule: 0.882\approx 0.882
E)a. Trapezoidal Rule: 0.881\approx 0.881 b. Simpson's Rule: 0.082\approx 0.082
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
22
The probability of recall in an experiment is modeled by P(axb)=ab7514(x4+5x)dx,0x1P ( a \leq x \leq b ) = \int _ { a } ^ { b } \frac { 75 } { 14 } \left( \frac { x } { \sqrt { 4 + 5 x } } \right) d x , 0 \leq x \leq 1 where x is the percent of recall. What is the probability of recalling between 50% and 70%? Round your answer to three decimal places.

A)0.243
B)0.206
C)0.650
D)0.163
E)0.832
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
23
Evaluate the definite integral 13x2lnx\int _ { 1 } ^ { 3 } x ^ { 2 } \ln x dx. Round your answer to three decimal places.

A)7.499
B)8.562
C)5.896
D)6.999
E)6.236
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
24
Approximate the definite integral "by hand," using the Trapezoidal Rule with n=4n = 4 trapezoids. Round answer to three decimal places. 127xdx\int _1^ { 2 } \frac { 7 } { x } d x

A)19.517
B)6.192
C)3.096
D)4.879
E)24.767
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
25
The rate of change in the number of subscribers SS to a newly introduced magazine is modeled by dSdt=1000t2e1,0t6\frac { d S } { d t } = 1000 t ^ { 2 } e ^ { - 1 } , 0 \leq t \leq 6 where tt is the time in years. Use Simpson's Rule n=12n = 12 with to estimate the total increase in the number of subscribers during the first 6 years.

A) \approx 1870 subscribers
B) \approx 1780 subscribers
C) \approx 1800 subscribers
D) \approx 1878 subscribers
E) \approx 1987 subscribers
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
26
Use Simpson's Rule to approximate the revenue for the marginal revenue function dRdx=58000x3\frac { d R } { d x } = 5 \sqrt { 8000 - x ^ { 3 } } with n = 4. Assume that the number of units sold, x, increases from 14 to 18. Round your answer to one decimal place.

A)$1439.03
B)$1346.14
C)$1602.40
D)$1230.54
E)$678.36
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
27
Use the error formulas to find n such that the error in the approximation of the definite integral 361xdx\int _ { 3 } ^ { 6 } \frac { 1 } { x } d x is less than 0.0001 using the Trapezoidal Rule.

A)43
B)44
C)42
D)40
E)41
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
28
Use the Trapezoidal Rule to approximate the value of the definite integral 031+xdx,n=4\int _ { 0 } ^ { 3 } \sqrt { 1 + x } d x , n = 4 . Round your answer to three decimal places.

A)2.7931
B)2.7955
C)4.6552
D)4.6615
E)6.7643
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
29
Evaluate the definite integral 267+x2dx\int _ { 2 } ^ { 6 } \sqrt { 7 + x ^ { 2 } } d x . Round your answer to three decimal places.

A)31.060
B)25.997
C)37.693
D)34.376
E)19.364
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
30
Use a table of integrals with forms involving a + bu to find x28+11xdx\int \frac { x ^ { 2 } } { 8 + 11 x } d x

A) 1121(11x8ln8+11x)+C\frac { 1 } { 121 } ( 11 x - 8 \ln | 8 + 11 x | ) + C
B) 11331(11x648+11x16ln8+11x)+C\frac { 1 } { 1331 } \left( 11 x - \frac { 64 } { 8 + 11 x } - 16 \ln | 8 + 11 x | \right) + C
C) 11331(11x2(11x16)+64ln8+11x)+C\frac { 1 } { 1331 } \left( \frac { 11 x } { 2 } ( 11 x - 16 ) + 64 \ln | 8 + 11 x | \right) + C
D) 1121(11x2(11x16)+64ln8+11x)+C\frac { 1 } { 121 } \left( \frac { 11 x } { 2 } ( 11 x - 16 ) + 64 \ln | 8 + 11 x | \right) + C
E) 1121(11x648+11x16ln8+11x)+C\frac { 1 } { 121 } \left( 11 x - \frac { 64 } { 8 + 11 x } - 16 \ln | 8 + 11 x | \right) + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
31
Use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the indicated value of n. Compare these results with the exact value of the definite integral. Round your answers to four decimal places. 01(x22+1)dx,n=4\int _ { 0 } ^ { 1 } \left( \frac { x ^ { 2 } } { 2 } + 1 \right) d x , n = 4

A)a. Exact: 1.9667\approx 1.9667 b. Trapezoidal Rule: 1.1719\approx 1.1719 c. Simpson's Rule: 1.1667\approx 1.1667
B)a. Exact: 1.1667\approx 1.1667 b. Trapezoidal Rule: 1.1719\approx 1.1719 c. Simpson's Rule: 1.9667\approx 1.9667
C)a. Exact: 1.1667\approx 1.1667 b. Trapezoidal Rule: 1.9719\approx 1.9719 c. Simpson's Rule: 1.1667\approx 1.1667
D)a. Exact: 2.1667\approx 2.1667 b. Trapezoidal Rule: 1.1719\approx 1.1719 c. Simpson's Rule: 1.1667\approx 1.1667
E)a. Exact: 1.1667\approx 1.1667 b. Trapezoidal Rule: 1.1719\approx 1.1719 c. Simpson's Rule: 1.1667\approx 1.1667
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
32
Use a table of integrals to find the indefinite integral x9ex10dx\int x ^ { 9 } e ^ { x ^ { 10 } } d x .

A) 19ex10+C\frac { 1 } { 9 } e ^ { x ^ { 10 } } + C
B) 110ex9+C\frac { 1 } { 10 } e ^ { x ^ { 9 } } + C
C) 110ex10+C\frac { 1 } { 10 } e ^ { x ^ { 10 } } + C
D) 19ex9+C\frac { 1 } { 9 } e ^ { x ^ { 9 } } + C
E) 110ex+C\frac { 1 } { 10 } e ^ { x } + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
33
A body assimilates a 12-hour cold tablet at a rate modeled by dC/dt=8ln(t22t+4),0t12d C / d t = 8 - \ln \left( t ^ { 2 } - 2 t + 4 \right) , 0 \leq t \leq 12 where dC/dtd C / d t is measured in milligrams per hour and tt is the time in hours. Use Simpson's Rule with n=8n = 8 to estimate the total amount of the drug absorbed into the body during the 12 hours.

A) \approx 58.915 mg
B) \approx 68.915 mg
C) \approx 38.915 mg
D) \approx 48.915 mg
E) \approx 78.915 mg
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
34
The revenue (in dollars per year) for a new product is modeled by R=10,000[11(1+0.12)1/2]R = 10,000 \left[ 1 - \frac { 1 } { \left( 1 + 0.1 ^ { 2 } \right) ^ { 1 / 2 } } \right] where t the time in years. Estimate the total revenue from sales of the product over its first 4 years on the market. Round your answer to nearest dollar

A)$10,821
B)$6579
C)$15,830
D)$1138
E)$3291
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
35
Use a table of integrals to find the indefinite integral lnxx(8+5lnx)dx\int \frac { \ln x } { x ( 8 + 5 \ln x ) } d x .

A) 125[5lnx8ln8+5lnx]+C\frac { 1 } { 25 } [ 5 \ln x - 8 \ln | 8 + 5 \ln x | ] + C
B) [8lnx5ln8+5lnx]+C[ 8 \ln x - 5 \ln | 8 + 5 \ln x | ] + C
C) 125[5lnx+8ln8+5lnx]+C\frac { 1 } { 25 } [ 5 \ln x + 8 \ln | 8 + 5 \ln x | ] + C
D) ln13x+C\ln 13 x + C
E) 113lnx+C\frac { 1 } { 13 } \ln x + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
36
Use the table of integrals to find the average value of the growth function N=3301+e5.70.25tN = \frac { 330 } { 1 + e ^ { 5.7 - 0.25 t } } over the interval [22,27][ 22,27 ] , where N the size of a population and t is the time in days. Round your answer to three decimal places.

A)200.507
B)758.790
C)198.507
D)391.543
E)321.407
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
37
Use a table of integrals with forms involving a2u2\sqrt { a ^ { 2 } - u ^ { 2 } } to find 3x249x2dx\int \frac { - 3 } { x ^ { 2 } \sqrt { 49 - x ^ { 2 } } } d x

A) 349x249x+C\frac { 3 \sqrt { 49 - x ^ { 2 } } } { 49 x } + C
B) 49x249x+C- \frac { \sqrt { 49 - x ^ { 2 } } } { 49 x } + C
C) 37ln7+49x2x+C\frac { 3 } { 7 } \ln \left| \frac { 7 + \sqrt { 49 - x ^ { 2 } } } { x } \right| + C
D) 349x249x+C- \frac { 3 \sqrt { 49 - x ^ { 2 } } } { 49 x } + C
E) 37ln7+49x2x+C- \frac { 3 } { 7 } \ln \left| \frac { 7 + \sqrt { 49 - x ^ { 2 } } } { x } \right| + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
38
Use a table of integrals to find the indefinite integral x2(8+2x)7dx\int \frac { x ^ { 2 } } { ( 8 + 2 x ) ^ { 7 } } d x .

A) [14(8+2x)4+165(8+2x)5646(8+2x)6]+C\left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } + \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } - \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
B) 18[14(8+2x)4+165(8+2x)5646(8+2x)6]+C\frac { 1 } { 8 } \left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } + \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } - \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
C) 18[14(8+2x)4+165(8+2x)5+646(8+2x)6]+C\frac { 1 } { 8 } \left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } + \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } + \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
D) 18[14(8+2x)4165(8+2x)5+646(8+2x)6]+C\frac { 1 } { 8 } \left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } - \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } + \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
E) [14(8+2x)4165(8+2x)5+646(8+2x)6]+C\left[ \frac { - 1 } { 4 ( 8 + 2 x ) ^ { 4 } } - \frac { 16 } { 5 ( 8 + 2 x ) ^ { 5 } } + \frac { 64 } { 6 ( 8 + 2 x ) ^ { 6 } } \right] + C
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
39
A body assimilates a 12-hour cold tablet at a rate modeled by dCdt=6ln(t22t+4)\frac { d C } { d t } = 6 - \ln \left( t ^ { 2 } - 2 t + 4 \right) , 0t120 \leq t \leq 12 where t is measured in milligrams per hour and t is the time in hours. Use Simpson's Rule with n = 12 to estimate the total amount of the drug absorbed into the body during the 12 hours.

A)46.88
B)64.90
C)34.88
D)36.90
E)50.90
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
40
Approximate the integral using Simpson's Rule: 05x2+x+x2dx\int _ { 0 } ^ { 5 } \frac { x } { 2 + x + x ^ { 2 } } d x , n = 6. Round your answer to three decimal places.

A)0.652
B)0.850
C)1.161
D)1.017
E)1.284
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
41
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. 0e6xdx\int _ { - \infty } ^ { 0 } e ^ { 6 x } d x

A)converges to 0
B)converges to 6
C)converges to 16\frac { 1 } { 6 }
D)diverges to - \infty
E)diverges to \infty
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
42
Suppose the mean height of American women between the ages of 30 and 39 is 64.5 inches, and the standard deviation is 2.7 inches. Use a symbolic integration utility to approximate the probability that a 30-to 39-year-old woman chosen at random is between 5 feet 4 inches and 6 feet tall.

A)0.8547
B)0.5707
C)0.4257
D)0.5734
E)0.9522
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
43
A business is expected to yield a continuous flow of profit at the rate of $600,000 per year. If money will earn interest at the nominal rate of 8% per year compounded continuously, what is the present value of the business forever?

A)$7,600,000
B)$7,510,000
C)$7,500,000
D)$750,000
E)$850,000
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
44
Evaluate the improper integral if it converges, or state that it diverges. 11x8dx\int _ { 1 } ^ { \infty } \frac { 1 } { x ^ { 8 } } d x

A) 19\frac { 1 } { 9 }
B) 99
C) 88
D) 17\frac { 1 } { 7 }
E)diverges
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
45
Evaluate the improper integral if it converges, or state that it diverges. 11x8dx\int _ { 1 } ^ { \infty } \frac { 1 } { \sqrt [ 8 ] { x } } d x

A) 98\sqrt [ 8 ] { 9 }
B) 11
C) 88
D) 99
E)diverges
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
46
The capitalized cost CC of an asset is given by C=C0+0nC(t)ertdtC = C _ { 0 } + \int _ { 0 } ^ { n } C ( t ) e ^ { - r t } d t where C0C _ { 0 } is the original investment, tt is the time in years, rr is the annual interest rate compounded continuously, and C(t)C ( t ) is the annual cost of maintenance (in dollars). Find the capitalized cost of an asset (a) for 5 years, (b) for 10 years, and (c) forever. C0=$300,000,C(t)=15,000,r=6%C _ { 0 } = \$ 300,000 , C ( t ) = 15,000 , r = 6 \%

A)a. For n=5,Cn = 5 , C \approx $253,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $4,466,666.67
B)a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $1,466,666.67
C)a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $2807,922.43c. For n=,Cn = \infty , C \approx $4,466,666.67
D)a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $4,466,666.67
E)a. For n=5,Cn = 5 , C \approx $453,901.30b. For n=10,Cn = 10 , C \approx $807,922.43c. For n=,Cn = \infty , C \approx $466,666.67
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
47
Find the capitalized cost C of an asset forever. The capitalized cost is given by C=C0+0nc(t)ertdtC = C _ { 0 } + \int _ { 0 } ^ { n } c ( t ) e ^ { - r t } d t where C0=$500,000C _ { 0 } = \$ 500,000 is the original investment, t is the time in years, r = 12% is the annual interest rate compounded continuously, n is the total time in years over which the asset is capitalized, and c(t)=25,000(1+0.08t)c ( t ) = 25,000 ( 1 + 0.08 t ) is the annual cost of maintenance (measured in dollars). Round your answer to two decimal places.

A)$1,125,000.00
B)$875,000.00
C)$708,333.33
D)$899,218.75
E)$847,222.22
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
48
Decide whether the integral is proper or improper. 05exdx\int _ { 0 } ^ { 5 } e ^ { - x } d x

A)The integral is improper.
B)The integral is proper.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
49
Determine the amount of money required to set up a charitable endowment that pays the amount PP each year indefinitely for the annual interest rate compounded continuously. P=$12,000,r=6%P = \$ 12,000 , r = 6 \%

A)$210,000
B)$200,000
C)$220,000
D)$240,000
E)$230,000
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
50
Decide whether the following integral is improper. 0113x2dx\int _ { 0 } ^ { 1 } \frac { 1 } { 3 x - 2 } d x

A)no
B)yes
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 50 flashcards in this deck.