Deck 11: Derivatives of Exponential and Logarithmic Functions

Full screen (f)
exit full mode
Question
Use a graphing utility to graph the function f(x)=(12)x=2xf ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x } .

A)  <strong>Use a graphing utility to graph the function  f ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Use a graphing utility to graph the function  f ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Use a graphing utility to graph the function  f ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Use a graphing utility to graph the function  f ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Use a graphing utility to graph the function  f ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Use Space or
up arrow
down arrow
to flip the card.
Question
Determine the continuity of the function below. f(x)=ex+ex2f ( x ) = \frac { e ^ { x } + e ^ { - x } } { 2 }

A)discontinuous at x = 0
B)continuous on the entire real number line
C)discontinuous at x = 1
D)discontinuous at x = 2
E)discontinuous at x = 4
Question
With an annual rate of inflation of 4% over the next 10 years, the approximate cost of goods or services during any year in the decade is given by C(t)=P(1.04)t,0t10C ( t ) = P ( 1.04 ) ^ { t } , 0 \leq t \leq 10 where is the time (in years) and is the present cost. The price of an oil change for a car is presently $24.95.Estimate the price 10 years from now.

A)$37.09
B)$36.93
C)$89.00
D)$63.90
Question
How much more interest will be earned if $6000 is invested for 6 years at an annual rate of 9% compounded continuously, instead of at 9% compounded quarterly?

A)$20.72
B)$40.72
C)$61.44
D)$994.60
E)$1035.32
Question
Sketch the graph of the function f(x)=e3x+2f ( x ) = e ^ { 3 x + 2 } .

A)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x + 2 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x + 2 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x + 2 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x + 2 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x + 2 }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use a graphing utility to graph the function g(x)=111+exg ( x ) = \frac { 11 } { 1 + e ^ { - x } } . Be sure to choose an appropriate viewing window.

A)  <strong>Use a graphing utility to graph the function  g ( x ) = \frac { 11 } { 1 + e ^ { - x } }  . Be sure to choose an appropriate viewing window.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Use a graphing utility to graph the function  g ( x ) = \frac { 11 } { 1 + e ^ { - x } }  . Be sure to choose an appropriate viewing window.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Use a graphing utility to graph the function  g ( x ) = \frac { 11 } { 1 + e ^ { - x } }  . Be sure to choose an appropriate viewing window.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Use a graphing utility to graph the function  g ( x ) = \frac { 11 } { 1 + e ^ { - x } }  . Be sure to choose an appropriate viewing window.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Use a graphing utility to graph the function  g ( x ) = \frac { 11 } { 1 + e ^ { - x } }  . Be sure to choose an appropriate viewing window.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
What lump sum should be deposited in an account that will earn at an annual rate of 12%, compounded quarterly, to grow to $90,000 for retirement in 15 years?

A)$87,176.69
B)$15,010.50
C)$10,975.61
D)$32,142.86
E)$15,275.98
Question
Assume the population P (in millions) of the United States from 1992 through 2005 can be modeled by the exponential function P(t)=255.82(1.606)tP ( t ) = 255.82 ( 1.606 ) ^ { t } , where t is the time in years, with t = 2 corresponding to1992. Use the model to estimate the population in the year 2006. Round your answer to the nearest million.

A)4389 million
B)2733 million
C)7049 million
D)660 million
E)4388 million
Question
Use a graphing utility to graph the function f(x)=3x2f ( x ) = 3 ^ { - x ^ { 2 } } .

A)  <strong>Use a graphing utility to graph the function  f ( x ) = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Use a graphing utility to graph the function  f ( x ) = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Use a graphing utility to graph the function  f ( x ) = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Use a graphing utility to graph the function  f ( x ) = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Use a graphing utility to graph the function  f ( x ) = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Sketch the graph of the function f(x)=e3xf ( x ) = e ^ { 3 x } .

A)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Determine whether the function below has any horizontal asymptotes. f(x)=exex2f ( x ) = \frac { e ^ { x } - e ^ { - x } } { 2 }

A)horizontal asymptotes: y = 0 and y = 2
B)no horizontal asymptotes
C)horizontal asymptotes: y = 1
D)horizontal asymptotes: y = 1 and y = 3
E)horizontal asymptotes: y = 3
Question
After t years, the remaining mass y(in grams) of 16 grams of a radioactive element whose half-life is 32 years is given by y=16(12)t/32y = 16 \left( \frac { 1 } { 2 } \right) ^ { t / 32 } , for t0t \geq 0 . How much of the initial mass remains after 96 years? Round your answer to two decimal places.

A)4.00 grams
B)3.20 grams
C)4.30 grams
D)4.90 grams
E)2.00 grams
Question
Use the properties of exponents to simplify the expression (e4)(e7/2)\left( e ^ { - 4 } \right) \left( e ^ { - 7 / 2 } \right) .

A) e14e ^ { - 14 }
B) e55e ^ { 55 }
C) e14e ^ { 14 }
D) e55e ^ { - 55 }
E) e16e ^ { 16 }
Question
Use the properties of exponents to simplify the expression [(71)(735)]5\left[ \left( 7 ^ { - 1 } \right) \left( 7 ^ { \frac { 3 } { 5 } } \right) \right] ^ { 5 } .

A) 1343\frac { 1 } { 343 }
B)343
C) 116807\frac { 1 } { 16807 }
D) 149\frac { 1 } { 49 }
E)49
Question
Sketch the graph of the function f(x)=3xf ( x ) = 3 ^ { x } .

A)  <strong>Sketch the graph of the function  f ( x ) = 3 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  f ( x ) = 3 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  f ( x ) = 3 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  f ( x ) = 3 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  f ( x ) = 3 ^ { x }  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Suppose that the annual rate of inflation averages 4% over the next 10 years. With this rate of inflation, the approximate cost C of goods or services during any year in that decade will be given by C(t) = P(1.04)t, 0 t\leq t \leq 10 where t is time in years and P is the present cost. If the price of an oil change for your car is presently $\$ 24.95, estimate the price 9 years from now. Round your answer to two decimal places.

A) $\$ 36.93
B) $\$ 37.51
C) $\$ 38.93
D) $\$ 40.51
E) $\$ 35.51
Question
What is the resulting balance if $5700 is invested for 6 years at an annual rate of 7% compounded monthly?

A) $\$ 5902.43
B) $\$ 5936.86
C) $\$ 8094.00
D) $\$ 8664.60
E) $\$ 11,811.92
Question
After t years, the value of a car that originally cost $\$ 17,000 depreciates so that each year it is worth 34\frac { 3 } { 4 } of its value for the previous year. Find a model for V(t), the value of the car after t years.

A)V(t)= 17,000 (3t4)\left( \frac { 3 ^ { t } } { 4 } \right)
B)V(t)= 17,000t (34)\left( \frac { 3 } { 4 } \right)
C)V(t)= 17,000 (34)t\left( \frac { 3 } { 4 } \right) ^ { t }
D)V(t)= 17,000 (34t)\left( \frac { 3 } { 4 ^ { t } } \right)
E)V(t)= 17,000t (34)t\left( \frac { 3 } { 4 } \right) ^ { t }
Question
To help their son buy a car on his 19th birthday, a boy's parents invest $1400 on his 10th birthday. If the investment pays an annual rate of 9% compounded continuously, how much is available on his 19th birthday?

A)$3118.94
B)$3147.07
C)$3040.65
D)$2534.00
E)$35,747.21
Question
Evaluate the expression 25624256 ^ { \frac { 2 } { 4 } } .

A)256
B)4
C)16
D)18
E)20
Question
What is the annual percentage yield (or effective annual rate) for a nominal rate of 9% compounded quarterly?

A)9.00%
B)9.38%
C)9.42%
D)9.31%
E)9.20%
Question
Use implicit differentiation to find dydx\frac { d y } { d x } . 9exy+y2=159 e ^ { xy } + y ^ { 2 } = 15

A) dydx=9yexy9exy+2y\frac { d y } { d x } = \frac { 9 y e ^ { xy } } { 9 e ^ { x y } + 2 y }
B) dydx=9yexy9exy2y\frac { d y } { d x } = \frac { 9 y e ^ { xy } } { 9 e ^ { x y } - 2 y }
C) dydx=9exy9exyx2y\frac { d y } { d x } = - \frac { 9 e ^ { x y } } { 9 e ^ { xy } x - 2 y }
D) dydx=9yexy9exyx+2y\frac { d y } { d x } = - \frac { 9 y e ^ { xy } } { 9 e ^ { xy } x + 2 y }
E) dydx=9yexy9exyx+y\frac { d y } { d x } = - \frac { 9 y e ^ { x y } } { 9 e ^ { xy } x + y }
Question
Find the derivative of the following function. y=8x36exy = 8 x ^ { 3 } - 6 e ^ { x }

A) y=24x26xex1y ^ { \prime } = 24 x ^ { 2 } - 6 x e ^ { x - 1 }
B) y=8x26xex1y ^ { \prime } = 8 x ^ { 2 } - 6 x e ^ { x - 1 }
C) y=8x26exy ^ { \prime } = 8 x ^ { 2 } - 6 e ^ { x }
D) y=24x2exy ^ { \prime } = 24 x ^ { 2 } - e ^ { x }
E) y=24x26exy ^ { \prime } = 24 x ^ { 2 } - 6 e ^ { x }
Question
Find the future value if $5000 is invested for 2 years at an annual rate of 10% compounded quarterly.

A) $\$ 4000.00
B) $\$ 6077.53
C) $\$ 5253.12
D) $\$ 6050.00
E) $\$ 6092.01
Question
Find dydx\frac { d y } { d x } if y=e5x5y = e ^ { 5 x ^ { 5 } } .

A) dydx=5e5x\frac { d y } { d x } = 5 e ^ { 5 x }
B) dydx=e5x5\frac { d y } { d x } = e ^ { 5 x ^ { 5 } }
C) dydx=5x5e5x51\frac { d y } { d x } = 5 x ^ { 5 } e ^ { 5 x ^ { 5 } - 1 }
D) dydx=25x4ln(55)\frac { d y } { d x } = 25 x ^ { 4 } \ln \left( 5 ^ { 5 } \right)
E) dydx=25x4e5x5\frac { d y } { d x } = 25 x ^ { 4 } e ^ { 5 x ^ { 5 } }
Question
Find the equation of the tangent line to f(x)=9x+exf ( x ) = 9 x + e ^ { x } at the point (0,1).

A) y=10x10y = - 10 x - 10
B) y=10x10y = 10 x - 10
C) y=10x1y = 10 x - 1
D) y=10x+1y = 10 x + 1
E) y=10x1y = - 10 x - 1
Question
Find the derivative of f(x)=x310exf ( x ) = x ^ { - 3 } - 10 e ^ { x }

A) f(x)=3x210exf ^ { \prime } ( x ) = 3 x ^ { 2 } - 10 e ^ { x }
B) f(x)=3x410xex1f ^ { \prime } ( x ) = - \frac { 3 } { x ^ { 4 } } - 10 x e ^ { x - 1 }
C) f(x)=3x410exf ^ { \prime } ( x ) = - \frac { 3 } { x ^ { 4 } } - 10 e ^ { x }
D) f(x)=3x210xex1f ^ { \prime } ( x ) = 3 x ^ { 2 } - 10 x e ^ { x - 1 }
E) f(x)=3x410xexf ^ { \prime } ( x ) = - \frac { 3 } { x ^ { 4 } } - 10 x e ^ { x }
Question
If x5y=3ex+y, find dy/dxx ^ { 5 } y = 3 e ^ { x + y } , \text { find } d y / d x

A) dydx=3ex+y5x5yx5+3ex+y\frac { d y } { d x } = \frac { 3 e ^ { x + y } - 5 x ^ { 5 } y } { x ^ { 5 } + 3 e ^ { x + y } }
B) dydx=3ex+y5x4yx53ex+y\frac { d y } { d x } = \frac { 3 e ^ { x + y } - 5 x ^ { 4 } y } { x ^ { 5 } - 3 e ^ { x + y } }
C) dydx=3ex+y+x4yx53ex+y\frac { d y } { d x } = \frac { 3 e ^ { x + y } + x ^ { 4 } y } { x ^ { 5 } - 3 e ^ { x + y } }
D) dydx=ex+y5x4yx5ex+y\frac { d y } { d x } = \frac { e ^ { x + y } - 5 x ^ { 4 } y } { x ^ { 5 } - e ^ { x + y } }
E) dydx=3ex+y+x5yx5ex+y\frac { d y } { d x } = \frac { 3 e ^ { x + y } + x ^ { 5 } y } { x ^ { 5 } - e ^ { x + y } }
Question
If 4x+e3xy=9, find dy/dx4 x + e ^ { 3 x y } = 9 , \text { find } d y / d x

A) dydx=4+3ye3xy3xe3xy\frac { d y } { d x } = - \frac { 4 + 3 y e ^ { 3 xy } } { 3 x e ^ { 3 xy } }
B) dydx=4+3xe3xy3ye3xy\frac { d y } { d x } = - \frac { 4 + 3 x e ^ { 3 xy } } { 3 y e ^ { 3 xy } }
C) dydx=4+3ye3xy4xe3xy\frac { d y } { d x } = \frac { 4 + 3 y e ^ { 3 x y } } { 4 x e ^ { 3 xy } }
D) dydx=4+3xe3xy3ye3xy\frac { d y } { d x } = \frac { 4 + 3 x e ^ { 3 x y } } { 3 y e ^ { 3 x y } }
E) dydx=4+3ye3xyxe3xy\frac { d y } { d x } = \frac { 4 + 3 y e ^ { 3 x y } } { x e ^ { 3 x y } }
Question
Find the derivative of the following function. y=5e3x23y = 5 e ^ { 3 x ^ { 2 } - 3 }

A) y=15xe3x23y ^ { \prime } = 15 x e ^ { 3 x ^ { 2 } - 3 }
B) y=30xe3x23y ^ { \prime } = 30 x e ^ { 3 x ^ { 2 } - 3 }
C) y=30e3x23y ^ { \prime } = 30 e ^ { 3 x ^ { 2 } - 3 }
D) y=15e3x23y ^ { \prime } = 15 e ^ { 3 x ^ { 2 } - 3 }
E) y=10xe3x23y ^ { \prime } = 10 x e ^ { 3 x ^ { 2 } - 3 }
Question
Find dydx\frac { d y } { d x } if y=x4ex10y = x ^ { 4 } e ^ { x ^ { 10 } } .

A) dydx=ex10(x55+x1111)\frac { d y } { d x } = e ^ { x ^ { 10 } } \left( \frac { x ^ { 5 } } { 5 } + \frac { x ^ { 11 } } { 11 } \right)
B) dydx=ex10(x4+x10)\frac { d y } { d x } = e ^ { x ^ { 10 } } \left( x ^ { 4 } + x ^ { 10 } \right)
C) dydx=ex10(4x3+10x13)\frac { d y } { d x } = e ^ { x ^ { 10 } } \left( 4 x ^ { 3 } + 10 x ^ { 13 } \right)
D) dydx=4x3ex101\frac { d y } { d x } = 4 x ^ { 3 } e ^ { x ^ { 10 } - 1 }
E) dydx=4x3ex10\frac { d y } { d x } = 4 x ^ { 3 } e ^ { x ^ { 10 } }
Question
Find the derivative of the following function. y=3e6x+6y = 3 e ^ { 6 \sqrt { x } } + 6

A) y=9e6xxy ^ { \prime } = \frac { 9 e ^ { 6 \sqrt { x } } } { \sqrt { x } }
B) y=3e6xxy ^ { \prime } = \frac { 3 e ^ { 6 \sqrt { x } } } { \sqrt { x } }
C) y=18e6xxy ^ { \prime } = \frac { 18 e ^ { 6 \sqrt { x } } } { \sqrt { x } }
D) y=3e6xxy ^ { \prime } = \frac { 3 e ^ { 6 \sqrt { x } } } { \sqrt { x } } .
E) y=6e6xxy ^ { \prime } = \frac { 6 e ^ { 6 \sqrt { x } } } { \sqrt { x } }
Question
If x9xe4y=5, find dy/dxx - 9 x e ^ { 4 y } = 5 , \text { find } d y / d x

A) dydx=19e4y72e4y\frac { d y } { d x } = \frac { 1 - 9 e ^ { 4 y } } { 72 e ^ { 4 y } }
B) dydx=1+4e4y36xe4y\frac { d y } { d x } = \frac { 1 + 4 e ^ { 4 y } } { 36 x e ^ { 4 y } }
C) dydx=19e4y36xe4y\frac { d y } { d x } = \frac { 1 - 9 e ^ { 4 y } } { 36 x e ^ { 4 y } }
D) dydx=1+9e4y72xe4y\frac { d y } { d x } = \frac { 1 + 9 e ^ { 4 y } } { 72 x e ^ { 4 y } }
E) dydx=14e4y36e4y\frac { d y } { d x } = \frac { 1 - 4 e ^ { 4 y } } { 36 e ^ { 4 y } }
Question
Find an equation of the tangent line to the graph of y=e5xy = e ^ { 5 x } at the point (0,1) .

A) y=x+1y = x + 1
B) y=ln(5)x+1y = \ln ( 5 ) x + 1
C) y=6x+1y = 6 x + 1
D) y=5x+1y = 5 x + 1
E) y=5x1y = 5 x - 1
Question
Find the derivative of the following function. y=16ex6y = 1 - 6 e ^ { - x ^ { 6 } }

A) y=36x5ex6y ^ { \prime } = 36 x ^ { 5 } e ^ { - x ^ { 6 } }
B) y=36x5ex6y ^ { \prime } = - 36 x ^ { 5 } e ^ { - x ^ { 6 } }
C) y=6ex6y ^ { \prime } = 6 e ^ { - x ^ { 6 } }
D) y=6x6ex6y ^ { \prime } = 6 x ^ { 6 } e ^ { - x ^ { 6 } }
E) y=6x6ex6y ^ { \prime } = - 6 x ^ { 6 } e ^ { - x ^ { 6 } }
Question
Find the derivative of the following function. p=5qeq4p = 5 q e ^ { q ^ { 4 } }

A) p=5eq4(4q4+1)p ^ { \prime } = 5 e ^ { q ^ { 4 } } \left( 4 q ^ { 4 } + 1 \right)
B) p=5eq4(4q3+1)p ^ { \prime } = 5 e ^ { q ^ { 4 } } \left( 4 q ^ { 3 } + 1 \right)
C) p=5eq4(q4+5)p ^ { \prime } = 5 e ^ { q ^ { 4 } } \left( q ^ { 4 } + 5 \right)
D) p=5eq4(4q4+5)p ^ { \prime } = 5 e ^ { q ^ { 4 } } \left( 4 q ^ { 4 } + 5 \right)
E) p=5eq4(4q3+5)p ^ { \prime } = 5 e ^ { q ^ { 4 } } \left( 4 q ^ { 3 } + 5 \right)
Question
Write the equation of the line tangent to the graph of y=2xex+6y = 2 x e ^ { - x } + 6 at x=1x = 1

A) y=2e1x+6y = 2 e ^ { - 1 } x + 6
B) y=2e1x6y = 2 e ^ { - 1 } x - 6
C) y=2e1xy = 2 e ^ { - 1 } x
D) y=2e1+6y = 2 e ^ { - 1 } + 6
E) y=2e16y = 2 e ^ { - 1 } - 6
Question
The average time between incoming calls at a switchboard is 3 minutes. If a call has just come in, the probability that the next call will come within the next t minutes is P(t)=1et/3P ( t ) = 1 - e ^ { - t / 3 } . Find the probability that the next call will come within the next 36\frac { 3 } { 6 } minute. Round your answer to two decimal places.

A)15.35%
B)1.54%
C)184.65%
D)17.58%
E)5.08%
Question
The demand function for a product is modeled by p=3000(155+e0.0002x)p = 3000 \left( 1 - \frac { 5 } { 5 + e ^ { - 0.0002 x } } \right) . Find the price of the product if the quantity demanded is x = 100. Round your answer to two decimal places where applicable.

A) $\$ 422.12
B) $\$ 2518.48
C) $\$ 491.72
D) $\$ 502.02
E) $\$ 2508.28
Question
The demand function for a product is modeled by p=4000(155+e0.0003x)p = 4000 \left( 1 - \frac { 5 } { 5 + e ^ { - 0.0003 x } } \right) . What is the limit of the price as x increases without bound? Round your answer to two decimal places where applicable.

A)The limit of the price as x increases without bound is -1.
B)The limit of the price as x increases without bound is 1.
C)The limit of the price as x increases without bound is 0.
D)The limit of the price as x increases without bound is 40004000 .
E)The limit of the price as x increases without bound is 55 .
Question
Use the properties of logarithms to approximate ln531,\ln \frac { 5 } { 31 }, given that ln51.6094\ln 5 \approx 1.6094 and ln313.4340\ln 31 \approx 3.4340

A)-5.0434
B)-1.8246
C)0.4687
D)5.5267
E)5.0434
Question
Find f(x)f ^ { \prime \prime } ( x ) if f(x)=(9+5x)e8xf ( x ) = ( 9 + 5 x ) e ^ { - 8 x } .

A) f(x)=(496320x)e8xf ^ { \prime \prime } ( x ) = ( 496 - 320 x ) e ^ { - 8 x }
B) f(x)=(496320x)e8xf ^ { \prime \prime } ( x ) = ( - 496 - 320 x ) e ^ { - 8 x }
C) f(x)=496(9+5x)e8xf ^ { \prime \prime } ( x ) = - 496 ( 9 + 5 x ) e ^ { - 8 x }
D) f(x)=(67+40x)e8xf ^ { \prime \prime } ( x ) = - ( 67 + 40 x ) e ^ { - 8 x }
E) f(x)=(496+320x)e8xf ^ { \prime \prime } ( x ) = ( 496 + 320 x ) e ^ { - 8 x }
Question
Sketch the graph of the function f(x)=lnxf ( x ) = \ln | x | .

A)  <strong>Sketch the graph of the function  f ( x ) = \ln | x |  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  f ( x ) = \ln | x |  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  f ( x ) = \ln | x |  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  f ( x ) = \ln | x |  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  f ( x ) = \ln | x |  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use the properties of logarithms to expand ln310\ln \frac { 3 } { 10 }

A) ln3+ln10\ln 3 + \ln 10
B) ln3ln10\ln 3 - \ln 10
C) ln3ln10\frac { \ln 3 } { \ln 10 }
D) (ln3)(ln10)( \ln 3 ) ( \ln 10 )
E)none of the above
Question
Find the extrema of the function f(x)=13exf ( x ) = \frac { 1 } { 3 - e ^ { - x } } by analyzing its graph below.  <strong>Find the extrema of the function  f ( x ) = \frac { 1 } { 3 - e ^ { - x } }  by analyzing its graph below.  </strong> A)(0, 1) B)no relative extrema C)  \left( 3 , e ^ { 3 } \right)  , (0, 0) D)  ( 1,3 ) , \left( 3 , e ^ { - 3 } \right)  E)  \left( 3 , e ^ { - 3 } \right)  <div style=padding-top: 35px>

A)(0, 1)
B)no relative extrema
C) (3,e3)\left( 3 , e ^ { 3 } \right) , (0, 0)
D) (1,3),(3,e3)( 1,3 ) , \left( 3 , e ^ { - 3 } \right)
E) (3,e3)\left( 3 , e ^ { - 3 } \right)
Question
Simplify eln8x5e ^ { \ln 8 x ^ { 5 } } .

A) x5- x ^ { 5 }
B) 8x5- 8 x ^ { 5 }
C) 8x8 x
D) 8x58 x ^ { 5 }
E) x5x ^ { 5 }
Question
Solve for the equation ex=e16e ^ { \sqrt { x } } = e ^ { 16 } for xx .

A) x=16x = 16
B) x=4x = 4
C) x=4096x = 4096
D) x=256x = 256
E) x=4097x = 4097
Question
Sketch the graph of the function y=5+lnxy = 5 + \ln x .

A)  <strong>Sketch the graph of the function  y = 5 + \ln x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  y = 5 + \ln x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  y = 5 + \ln x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  y = 5 + \ln x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  y = 5 + \ln x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use the properties of logarithms to expand ln(x225x10)9\ln \left( \frac { x ^ { 2 } - 25 } { x ^ { 10 } } \right) ^ { 9 } .

A) 9[ln(x+5)ln(x5)10lnx]9 [ \ln ( x + 5 ) - \ln ( x - 5 ) - 10 \ln x ]
B) 9[ln(x+5)+ln(x5)+10lnx]9 [ \ln ( x + 5 ) + \ln ( x - 5 ) + 10 \ln x ]
C) 9[ln(x+5)ln(x5)lnx]9 [ \ln ( x + 5 ) - \ln ( x - 5 ) - \ln x ]
D) 9[ln(x+5)+ln(x5)+lnx]9 [ \ln ( x + 5 ) + \ln ( x - 5 ) + \ln x ]
E) 9[ln(x+5)+ln(x5)10lnx]9 [ \ln ( x + 5 ) + \ln ( x - 5 ) - 10 \ln x ]
Question
A survey of high school seniors from a certain school district who took the SAT has determined that the mean score on the mathematics portion was 650 with a standard deviation of 15.5. Assuming the data can be modeled by a normal probability density function, find a model for these data.

A) f(x)=115.5πe(x650)/240.25f ( x ) = \frac { 1 } { 15.5 \sqrt { \pi } } e ^ { - ( x - 650 ) / 240.25 }
B) f(x)=115.52πe(x650)/480.5f ( x ) = \frac { 1 } { 15.5 \sqrt { 2 \pi } } e ^ { - ( x - 650 ) / 480.5 }
C) f(x)=115.5πe(x650)2/480.5f ( x ) = \frac { 1 } { 15.5 \sqrt { \pi } } e ^ { - ( x - 650 ) ^ { 2 } / 480.5 }
D) f(x)=115.52πe(x650)2/480.5f ( x ) = \frac { 1 } { 15.5 \sqrt { 2 \pi } } e ^ { - ( x - 650 ) ^ { 2 } / 480.5 }
E) f(x)=115.52πe(x650)2/240.25f ( x ) = \frac { 1 } { 15.5 \sqrt { 2 \pi } } e ^ { - ( x - 650 ) ^ { 2 } / 240.25 }
Question
Simplify lne6x4\ln e ^ { - 6 x ^ { 4 } }

A) 6x4- 6 x ^ { 4 }
B) 24x- 24 x
C) 24x4- 24 x ^ { 4 }
D) 6x- 6 x
E) x4x ^ { 4 }
Question
The average typing speed N (in words per minute) after t weeks of lessons is modeled by N=911+7.5e0.15tN = \frac { 91 } { 1 + 7.5 e ^ { - 0.15 t } } . Find the rate at which the typing speed is changing when t = 20 weeks. Round your answer to two decimal places.

A)2.40 words/min/week
B)2.70 words/min/week
C)3.71 words/min/week
D)4.93 words/min/week
E)6.24 words/min/week
Question
Sketch the graph of the function f(x)=2+ln(x)f ( x ) = 2 + \ln ( x ) .

A)  <strong>Sketch the graph of the function  f ( x ) = 2 + \ln ( x )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  f ( x ) = 2 + \ln ( x )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  f ( x ) = 2 + \ln ( x )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  f ( x ) = 2 + \ln ( x )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  f ( x ) = 2 + \ln ( x )  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Write the logarithmic equation ln\ln 1.3=0.2624 K1.3 = 0.2624 \mathrm {~K} as an exponential equation.

A) e0.2624 K=1.3e ^ { - 0.2624 \mathrm {~K} } = 1.3
B) e1.3=0.2624 Ke ^ { - 1.3 } = 0.2624 \mathrm {~K}
C) e0.2624 K=1.3e ^ { 0.2624 \mathrm {~K} } = 1.3
D) e1.3=0.2624 Ke ^ { 1.3 } = 0.2624 \mathrm {~K}
E) e0.2624 K=1.3e ^ { 0.2624 \mathrm {~K} } = - 1.3
Question
Use the properties of logarithms to write the expression as a single logarithm. ln(2x)ln(4y)\ln ( 2 x ) - \ln ( 4 y )

A) ln(2x4y)\ln \left( \frac { 2 x } { 4 y } \right)
B) ln(4y2x)\ln ( 4 y - 2 x )
C) ln(2x4y)\ln ( 2 x - 4 y )
D) ln(2x)ln(4y)\frac { \ln ( 2 x ) } { \ln ( 4 y ) }
E) ln(2y4x)\ln \left( \frac { 2 y } { 4 x } \right)
Question
A survey of high school seniors from a certain school district who took the SAT has determined that the mean score on the mathematics portion was 700 with a standard deviation of 13.5. By a normal probability density function the data can be modeled as f(x)=113.52πe(x700)2/364.5f ( x ) = \frac { 1 } { 13.5 \sqrt { 2 \pi } } e ^ { - ( x - 700 ) ^ { 2 } /3 64.5 } . Find the derivative of the model.

A) f(x)=22(x700)e(x700)2/182.254,921πf ^ { \prime } ( x ) = \frac { - 2 \sqrt { 2 } ( x - 700 ) e ^ { - ( x -700 ) ^ { 2 } / 182.25 } } { 4,921 \sqrt { \pi } }
B) f(x)=22(x700)e(x700)2/364.59,842πf ^ { \prime } ( x ) = \frac { - 2 \sqrt { 2 } ( x - 700 ) e ^ { - ( x -700 ) ^ { 2 } / 364.5 } } { 9,842 \sqrt { \pi } }
C) f(x)=2(x700)e(x700)2/364.54,921πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 700 ) ^ { 2 } / 364.5 } } { 4,921 \sqrt { \pi } }
D) f(x)=2(x700)e(x700)2/364.59,842πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 700 ) ^ { 2 } / 364.5 } } { 9,842 \sqrt { \pi } }
E) f(x)=2(x700)e(x70)2/182.254,921πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 70 ) ^ { 2 } / 182.25 } } { 4,921 \sqrt { \pi } }
Question
Use the properties of logarithms to write the expression ln(xx2+85)\ln \left( x \sqrt [ 5 ] { x ^ { 2 } + 8 } \right) as a sum, difference, or multiple of logarithms.

A) lnx+18ln(x2+5)\ln x + \frac { 1 } { 8 } \ln \left( x ^ { 2 } + 5 \right)
B) ln(x2+8)+15lnx\ln \left( x ^ { 2 } + 8 \right) + \frac { 1 } { 5 } \ln x
C) lnx+15ln(x2+8)\ln x + \frac { 1 } { 5 } \ln \left( x ^ { 2 } + 8 \right)
D) ln(x2+5)+18lnx\ln \left( x ^ { 2 } + 5 \right) + \frac { 1 } { 8 } \ln x
E) lnx+ln(x2+8)\ln x + \ln \left( x ^ { 2 } + 8 \right)
Question
Future value. The future value that accrues when $900 is invested at 5%, compounded continuously, is s(t)=900e005ts ( t ) = 900 e ^ { 005 t } , where t is the number of years. At what rate is the money in this account growing when t=9?t = 9 ?

A)$14.11 per year
B)$49.24 per year
C)$1411.48 per year
D)$941.43 per year
E)$70.57 per year
Question
Find the extrema of the function f(x)=111exf ( x ) = \frac { 1 } { 11 - e ^ { - x } } .

A)(0, 1)
B) (11,e11)\left( 11 , e ^ { 11 } \right) , (0, 0)
C) (1,11),(11,e11)( 1,11 ) , \left( 11 , e ^ { - 11 } \right)
D)no relative extrema
E) (11,e11)\left( 11 , e ^ { - 11 } \right)
Question
Write the exponential equation e10=22026.4658 Ke ^ { 10 } = 22026.4658 \mathrm {~K} as a logarithmic equation.

A) ln\ln 22026.4658 K=1022026.4658 \mathrm {~K} = 10
B) ln\ln 22026.4658 K=22026.4658 \mathrm {~K} = 2020
C) ln\ln 10=22026.4658 K10 = 22026.4658 \mathrm {~K}
D) ln\ln 10 K=10 \mathrm {~K} = 44052.9316 K44052.9316 \mathrm {~K}
E) ln\ln 44052.9316 K=2044052.9316 \mathrm {~K} = 20
Question
Write the following expression as a logarithm of a single quantity. 5lnx3ln(x2+3)5 \ln x - 3 \ln \left( x ^ { 2 } + 3 \right)

A) ln(x53(x2+3))\ln \left( \frac { x ^ { 5 } } { 3 \left( x ^ { 2 } + 3 \right) } \right)
B) ln(x5(x2+3)3)\ln \left( \frac { x ^ { 5 } } { \left( x ^ { 2 } + 3 \right) ^ { 3 } } \right)
C) ln(x5(x2+3)3)\ln \left( x ^ { 5 } - \left( x ^ { 2 } + 3 \right) ^ { 3 } \right)
D) ln(5x3(x2+3))\ln \left( 5 x - 3 \left( x ^ { 2 } + 3 \right) \right)
E)none of the above
Question
Solve the following equation for xx accurate to three decimal places. lnx2=3\ln x ^ { - 2 } = 3

A) x=1.500x = - 1.500
B) x=0.223x = 0.223
C) x=1.405x = 1.405
D) x=0.513x = 0.513
E) x=4.621x = 4.621
Question
Solve the following equation for xx accurate to three decimal places. eln(4x)=5e ^ { \ln ( 4 x ) } = 5

A) x=20.000x = 20.000
B) x=0.800x = 0.800
C) x=1.250x = 1.250
D) x=0.402x = 0.402
E) x=0.402x = - 0.402
Question
Solve (140.97822)2t=50\left( 14 - \frac { 0.978 } { 22 } \right) ^ { 2 t } = 50 for t. Round your answer to four decimal places.

A)1.4841
B)0.7412
C)3.0151
D)0.7421
E)2.7571
Question
Solve the exponential equation. Give answers correct to 3 decimal places. 57x=31255 ^ { 7 x } = 3125

A)625
B)0.714
C)1.000
D)0.453
E)313
Question
Find the derivative of the following function. y=ln5xy = \ln 5 x

A) 1x\frac { 1 } { x }
B) 5x\frac { 5 } { x }
C) 15x\frac { 1 } { 5 x }
D) 1x2\frac { 1 } { x ^ { 2 } }
E) 15x2\frac { 1 } { 5 x ^ { 2 } }
Question
Solve the exponential equation. Give the answer correct to 3 decimal places. 10,000=3500e0.3x10,000 = 3500 e ^ { 0.3 x }

A)0.886
B)2.953
C)3.762
D)0.315
E)3.499
Question
Solve the following equation for xx accurate to three decimal places. 2(22x3)=2902 \left( 2 ^ { 2 x - 3 } \right) = 290

A) x=34.750x = - 34.750
B) x=37.750x = 37.750
C) x=2.090x = - 2.090
D) x=5.090x = 5.090
E) x=32.707x = - 32.707
Question
Solve the exponential equation. Give the answer correct to 3 decimal places. 72=300300e0.07x72 = 300 - 300 e ^ { - 0.07 x }

A)-0.274
B)20.387
C)3.921
D)-20.387
E)-3.073
Question
Find the derivative of y=215lnxy = 2 - 15 \ln x

A) dydx=115x\frac { d y } { d x } = - \frac { 1 } { 15 x }
B) dydx=15x\frac { d y } { d x } = - \frac { 15 } { x }
C) dydx=13x\frac { d y } { d x } = - \frac { 13 } { x }
D) dydx=15x\frac { d y } { d x } = \frac { 15 } { x }
E) dydx=13x\frac { d y } { d x } = \frac { 13 } { x }
Question
Write the expression 5ln(x)+2ln(x+3)5ln(x3)5 \ln ( x ) + 2 \ln ( x + 3 ) - 5 \ln ( x - 3 ) as the logarithm of a single quantity.

A) ln(2x+21)\ln ( 2 x + 21 )
B) ln[10(x2+x)5(x3)]\ln \left[ \frac { 10 \left( x ^ { 2 } + x \right) } { 5 ( x - 3 ) } \right]
C) ln(x5(x+3)2(x3)5)\ln \left( x ^ { 5 } ( x + 3 ) ^ { 2 } ( x - 3 ) ^ { 5 } \right)
D) ln[x5(x+3)2(x3)5]\ln \left[ \frac { x ^ { 5 } ( x + 3 ) ^ { 2 } } { ( x - 3 ) ^ { 5 } } \right]
E) ln[x5(x+3)2(x3)5]\ln \left[ \frac { x ^ { 5 } } { ( x + 3 ) ^ { 2 } ( x - 3 ) ^ { 5 } } \right]
Question
Find the derivative of the following function. y=9ln(x84)y = 9 \ln \left( x ^ { 8 } - 4 \right)

A) 9x84\frac { 9 } { x ^ { 8 } - 4 }
B) 8x7x84\frac { 8 x ^ { 7 } } { x ^ { 8 } - 4 }
C) 8x84\frac { 8 } { x ^ { 8 } - 4 }
D) 72x7x84\frac { 72 x ^ { 7 } } { x ^ { 8 } - 4 }
E) 9x7x84\frac { 9 x ^ { 7 } } { x ^ {8 } - 4 }
Question
Write the following expression as a logarithm of a single quantity. lnx16ln(x2+1)\ln x - 16 \ln \left( x ^ { 2 } + 1 \right)

A) ln(16x(x2+1))\ln \left( \frac { - 16 x } { \left( x ^ { 2 } + 1 \right) } \right)
B) ln(x16(x2+1))\ln \left( \frac { x } { 16 \left( x ^ { 2 } + 1 \right) } \right)
C) ln(x16(x2+1))\ln \left( x - 16 \left( x ^ { 2 } + 1 \right) \right)
D) ln(x(x2+1)16)\ln \left( \frac { x } { \left( x ^ { 2 } + 1 \right) ^ { 16 } } \right)
E) ln(16xx2+1)\ln \left( \frac { - 16 x } { x ^ { 2 } + 1 } \right)
Question
Find the derivative of the following function. y=ln(4x+7)y = \ln ( 4 x + 7 )

A) 7x4x+7\frac { 7 x } { 4 x + 7 }
B) 4x4x+7\frac { 4 x } { 4 x + 7 }
C) 14x+7\frac { 1 } { 4 x + 7 }
D) 44x+7\frac { 4 } { 4 x + 7 }
E) 74x+7\frac { 7 } { 4 x + 7 }
Question
Write the expression 3ln(2)15ln(x2+4)3 \ln ( 2 ) - \frac { 1 } { 5 } \ln \left( x ^ { 2 } + 4 \right) as the logarithm of a single quantity.

A) ln[8(x2+4)5]\ln \left[ \frac { 8 } { \left( x ^ { 2 } + 4 \right) ^ { 5 } } \right]
B) ln(8x2+45)\ln \left( 8 \sqrt [ 5 ] { x ^ { 2 } + 4 } \right)
C) ln[9x2+45]\ln \left[ \frac { 9 } { \sqrt [ 5 ] { x ^ { 2 } + 4 } } \right]
D) ln(9x2+45)\ln \left( 9 \sqrt [ 5 ] { x ^ { 2 } + 4 } \right)
E) ln[8x2+45]\ln \left[ \frac { 8 } { \sqrt [ 5 ] { x ^ { 2 } + 4 } } \right]
Question
Find the derivative of the following function. y=ln(4x39x)3xy = \ln \left( 4 x ^ { 3 } - 9 x \right) - 3 x

A) 12x29xx(4x29)3\frac { 12 x ^ { 2 } - 9 x } { x \left( 4 x ^ { 2 } - 9 \right) } - 3
B) 1x(4x29)3\frac { 1 } { x \left( 4 x ^ { 2 } - 9 \right) } - 3
C) 12x29x(4x29)3\frac { 12 x ^ { 2 } - 9 } { x \left( 4 x ^ { 2 } - 9 \right) } - 3
D) 12x2x(4x29)3\frac { 12 x ^ { 2 } } { x \left( 4 x ^ { 2 } - 9 \right) } - 3
E) 1x(4x21)3\frac { 1 } { x \left( 4 x ^ { 2 } - 1 \right) } - 3
Question
Solve the exponential equation. Give the answer correct to 3 decimal places. 57=771+4e0.1x57 = \frac { 77 } { 1 + 4 e ^ { - 0.1 x } }

A)-2.434
B)-0.877
C)5.315
D)-0.532
E)24.336
Question
Find the derivative of the following function. y=8+ln5xy = 8 + \ln 5 x

A) 1x\frac { 1 } { x }
B) 5x\frac { 5 } { x }
C) 15x\frac { 1 } { 5 x }
D) 1x2\frac { 1 } { x ^ { 2 } }
E) 15x2\frac { 1 } { 5 x ^ { 2 } }
Question
How long (in years) would $450 have to be invested at an annual rate of 12%, compounded continuously, to amount to $790?

A)6.30 years
B)4.97 years
C)1.13 years
D)5.68 years
E)4.69 years
Question
Find the derivative of the following function. y=lnx5y = \ln x ^ { 5 }

A) 1x\frac { 1 } { x }
B) 5x\frac { 5 } { x }
C) 15x\frac { 1 } { 5 x }
D) 1x2\frac { 1 } { x ^ { 2 } }
E) 15x2\frac { 1 } { 5 x ^ { 2 } }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/121
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 11: Derivatives of Exponential and Logarithmic Functions
1
Use a graphing utility to graph the function f(x)=(12)x=2xf ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x } .

A)  <strong>Use a graphing utility to graph the function  f ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Use a graphing utility to graph the function  f ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Use a graphing utility to graph the function  f ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Use a graphing utility to graph the function  f ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Use a graphing utility to graph the function  f ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x } = 2 ^ { - x }  .</strong> A)   B)   C)   D)   E)

2
Determine the continuity of the function below. f(x)=ex+ex2f ( x ) = \frac { e ^ { x } + e ^ { - x } } { 2 }

A)discontinuous at x = 0
B)continuous on the entire real number line
C)discontinuous at x = 1
D)discontinuous at x = 2
E)discontinuous at x = 4
continuous on the entire real number line
3
With an annual rate of inflation of 4% over the next 10 years, the approximate cost of goods or services during any year in the decade is given by C(t)=P(1.04)t,0t10C ( t ) = P ( 1.04 ) ^ { t } , 0 \leq t \leq 10 where is the time (in years) and is the present cost. The price of an oil change for a car is presently $24.95.Estimate the price 10 years from now.

A)$37.09
B)$36.93
C)$89.00
D)$63.90
$36.93
4
How much more interest will be earned if $6000 is invested for 6 years at an annual rate of 9% compounded continuously, instead of at 9% compounded quarterly?

A)$20.72
B)$40.72
C)$61.44
D)$994.60
E)$1035.32
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
5
Sketch the graph of the function f(x)=e3x+2f ( x ) = e ^ { 3 x + 2 } .

A)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x + 2 }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x + 2 }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x + 2 }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x + 2 }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x + 2 }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
6
Use a graphing utility to graph the function g(x)=111+exg ( x ) = \frac { 11 } { 1 + e ^ { - x } } . Be sure to choose an appropriate viewing window.

A)  <strong>Use a graphing utility to graph the function  g ( x ) = \frac { 11 } { 1 + e ^ { - x } }  . Be sure to choose an appropriate viewing window.</strong> A)   B)   C)   D)   E)
B)  <strong>Use a graphing utility to graph the function  g ( x ) = \frac { 11 } { 1 + e ^ { - x } }  . Be sure to choose an appropriate viewing window.</strong> A)   B)   C)   D)   E)
C)  <strong>Use a graphing utility to graph the function  g ( x ) = \frac { 11 } { 1 + e ^ { - x } }  . Be sure to choose an appropriate viewing window.</strong> A)   B)   C)   D)   E)
D)  <strong>Use a graphing utility to graph the function  g ( x ) = \frac { 11 } { 1 + e ^ { - x } }  . Be sure to choose an appropriate viewing window.</strong> A)   B)   C)   D)   E)
E)  <strong>Use a graphing utility to graph the function  g ( x ) = \frac { 11 } { 1 + e ^ { - x } }  . Be sure to choose an appropriate viewing window.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
7
What lump sum should be deposited in an account that will earn at an annual rate of 12%, compounded quarterly, to grow to $90,000 for retirement in 15 years?

A)$87,176.69
B)$15,010.50
C)$10,975.61
D)$32,142.86
E)$15,275.98
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
8
Assume the population P (in millions) of the United States from 1992 through 2005 can be modeled by the exponential function P(t)=255.82(1.606)tP ( t ) = 255.82 ( 1.606 ) ^ { t } , where t is the time in years, with t = 2 corresponding to1992. Use the model to estimate the population in the year 2006. Round your answer to the nearest million.

A)4389 million
B)2733 million
C)7049 million
D)660 million
E)4388 million
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
9
Use a graphing utility to graph the function f(x)=3x2f ( x ) = 3 ^ { - x ^ { 2 } } .

A)  <strong>Use a graphing utility to graph the function  f ( x ) = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Use a graphing utility to graph the function  f ( x ) = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Use a graphing utility to graph the function  f ( x ) = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Use a graphing utility to graph the function  f ( x ) = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Use a graphing utility to graph the function  f ( x ) = 3 ^ { - x ^ { 2 } }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
10
Sketch the graph of the function f(x)=e3xf ( x ) = e ^ { 3 x } .

A)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  f ( x ) = e ^ { 3 x }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
11
Determine whether the function below has any horizontal asymptotes. f(x)=exex2f ( x ) = \frac { e ^ { x } - e ^ { - x } } { 2 }

A)horizontal asymptotes: y = 0 and y = 2
B)no horizontal asymptotes
C)horizontal asymptotes: y = 1
D)horizontal asymptotes: y = 1 and y = 3
E)horizontal asymptotes: y = 3
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
12
After t years, the remaining mass y(in grams) of 16 grams of a radioactive element whose half-life is 32 years is given by y=16(12)t/32y = 16 \left( \frac { 1 } { 2 } \right) ^ { t / 32 } , for t0t \geq 0 . How much of the initial mass remains after 96 years? Round your answer to two decimal places.

A)4.00 grams
B)3.20 grams
C)4.30 grams
D)4.90 grams
E)2.00 grams
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
13
Use the properties of exponents to simplify the expression (e4)(e7/2)\left( e ^ { - 4 } \right) \left( e ^ { - 7 / 2 } \right) .

A) e14e ^ { - 14 }
B) e55e ^ { 55 }
C) e14e ^ { 14 }
D) e55e ^ { - 55 }
E) e16e ^ { 16 }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
14
Use the properties of exponents to simplify the expression [(71)(735)]5\left[ \left( 7 ^ { - 1 } \right) \left( 7 ^ { \frac { 3 } { 5 } } \right) \right] ^ { 5 } .

A) 1343\frac { 1 } { 343 }
B)343
C) 116807\frac { 1 } { 16807 }
D) 149\frac { 1 } { 49 }
E)49
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
15
Sketch the graph of the function f(x)=3xf ( x ) = 3 ^ { x } .

A)  <strong>Sketch the graph of the function  f ( x ) = 3 ^ { x }  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  f ( x ) = 3 ^ { x }  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  f ( x ) = 3 ^ { x }  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  f ( x ) = 3 ^ { x }  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  f ( x ) = 3 ^ { x }  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
16
Suppose that the annual rate of inflation averages 4% over the next 10 years. With this rate of inflation, the approximate cost C of goods or services during any year in that decade will be given by C(t) = P(1.04)t, 0 t\leq t \leq 10 where t is time in years and P is the present cost. If the price of an oil change for your car is presently $\$ 24.95, estimate the price 9 years from now. Round your answer to two decimal places.

A) $\$ 36.93
B) $\$ 37.51
C) $\$ 38.93
D) $\$ 40.51
E) $\$ 35.51
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
17
What is the resulting balance if $5700 is invested for 6 years at an annual rate of 7% compounded monthly?

A) $\$ 5902.43
B) $\$ 5936.86
C) $\$ 8094.00
D) $\$ 8664.60
E) $\$ 11,811.92
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
18
After t years, the value of a car that originally cost $\$ 17,000 depreciates so that each year it is worth 34\frac { 3 } { 4 } of its value for the previous year. Find a model for V(t), the value of the car after t years.

A)V(t)= 17,000 (3t4)\left( \frac { 3 ^ { t } } { 4 } \right)
B)V(t)= 17,000t (34)\left( \frac { 3 } { 4 } \right)
C)V(t)= 17,000 (34)t\left( \frac { 3 } { 4 } \right) ^ { t }
D)V(t)= 17,000 (34t)\left( \frac { 3 } { 4 ^ { t } } \right)
E)V(t)= 17,000t (34)t\left( \frac { 3 } { 4 } \right) ^ { t }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
19
To help their son buy a car on his 19th birthday, a boy's parents invest $1400 on his 10th birthday. If the investment pays an annual rate of 9% compounded continuously, how much is available on his 19th birthday?

A)$3118.94
B)$3147.07
C)$3040.65
D)$2534.00
E)$35,747.21
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
20
Evaluate the expression 25624256 ^ { \frac { 2 } { 4 } } .

A)256
B)4
C)16
D)18
E)20
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
21
What is the annual percentage yield (or effective annual rate) for a nominal rate of 9% compounded quarterly?

A)9.00%
B)9.38%
C)9.42%
D)9.31%
E)9.20%
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
22
Use implicit differentiation to find dydx\frac { d y } { d x } . 9exy+y2=159 e ^ { xy } + y ^ { 2 } = 15

A) dydx=9yexy9exy+2y\frac { d y } { d x } = \frac { 9 y e ^ { xy } } { 9 e ^ { x y } + 2 y }
B) dydx=9yexy9exy2y\frac { d y } { d x } = \frac { 9 y e ^ { xy } } { 9 e ^ { x y } - 2 y }
C) dydx=9exy9exyx2y\frac { d y } { d x } = - \frac { 9 e ^ { x y } } { 9 e ^ { xy } x - 2 y }
D) dydx=9yexy9exyx+2y\frac { d y } { d x } = - \frac { 9 y e ^ { xy } } { 9 e ^ { xy } x + 2 y }
E) dydx=9yexy9exyx+y\frac { d y } { d x } = - \frac { 9 y e ^ { x y } } { 9 e ^ { xy } x + y }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
23
Find the derivative of the following function. y=8x36exy = 8 x ^ { 3 } - 6 e ^ { x }

A) y=24x26xex1y ^ { \prime } = 24 x ^ { 2 } - 6 x e ^ { x - 1 }
B) y=8x26xex1y ^ { \prime } = 8 x ^ { 2 } - 6 x e ^ { x - 1 }
C) y=8x26exy ^ { \prime } = 8 x ^ { 2 } - 6 e ^ { x }
D) y=24x2exy ^ { \prime } = 24 x ^ { 2 } - e ^ { x }
E) y=24x26exy ^ { \prime } = 24 x ^ { 2 } - 6 e ^ { x }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
24
Find the future value if $5000 is invested for 2 years at an annual rate of 10% compounded quarterly.

A) $\$ 4000.00
B) $\$ 6077.53
C) $\$ 5253.12
D) $\$ 6050.00
E) $\$ 6092.01
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
25
Find dydx\frac { d y } { d x } if y=e5x5y = e ^ { 5 x ^ { 5 } } .

A) dydx=5e5x\frac { d y } { d x } = 5 e ^ { 5 x }
B) dydx=e5x5\frac { d y } { d x } = e ^ { 5 x ^ { 5 } }
C) dydx=5x5e5x51\frac { d y } { d x } = 5 x ^ { 5 } e ^ { 5 x ^ { 5 } - 1 }
D) dydx=25x4ln(55)\frac { d y } { d x } = 25 x ^ { 4 } \ln \left( 5 ^ { 5 } \right)
E) dydx=25x4e5x5\frac { d y } { d x } = 25 x ^ { 4 } e ^ { 5 x ^ { 5 } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
26
Find the equation of the tangent line to f(x)=9x+exf ( x ) = 9 x + e ^ { x } at the point (0,1).

A) y=10x10y = - 10 x - 10
B) y=10x10y = 10 x - 10
C) y=10x1y = 10 x - 1
D) y=10x+1y = 10 x + 1
E) y=10x1y = - 10 x - 1
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
27
Find the derivative of f(x)=x310exf ( x ) = x ^ { - 3 } - 10 e ^ { x }

A) f(x)=3x210exf ^ { \prime } ( x ) = 3 x ^ { 2 } - 10 e ^ { x }
B) f(x)=3x410xex1f ^ { \prime } ( x ) = - \frac { 3 } { x ^ { 4 } } - 10 x e ^ { x - 1 }
C) f(x)=3x410exf ^ { \prime } ( x ) = - \frac { 3 } { x ^ { 4 } } - 10 e ^ { x }
D) f(x)=3x210xex1f ^ { \prime } ( x ) = 3 x ^ { 2 } - 10 x e ^ { x - 1 }
E) f(x)=3x410xexf ^ { \prime } ( x ) = - \frac { 3 } { x ^ { 4 } } - 10 x e ^ { x }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
28
If x5y=3ex+y, find dy/dxx ^ { 5 } y = 3 e ^ { x + y } , \text { find } d y / d x

A) dydx=3ex+y5x5yx5+3ex+y\frac { d y } { d x } = \frac { 3 e ^ { x + y } - 5 x ^ { 5 } y } { x ^ { 5 } + 3 e ^ { x + y } }
B) dydx=3ex+y5x4yx53ex+y\frac { d y } { d x } = \frac { 3 e ^ { x + y } - 5 x ^ { 4 } y } { x ^ { 5 } - 3 e ^ { x + y } }
C) dydx=3ex+y+x4yx53ex+y\frac { d y } { d x } = \frac { 3 e ^ { x + y } + x ^ { 4 } y } { x ^ { 5 } - 3 e ^ { x + y } }
D) dydx=ex+y5x4yx5ex+y\frac { d y } { d x } = \frac { e ^ { x + y } - 5 x ^ { 4 } y } { x ^ { 5 } - e ^ { x + y } }
E) dydx=3ex+y+x5yx5ex+y\frac { d y } { d x } = \frac { 3 e ^ { x + y } + x ^ { 5 } y } { x ^ { 5 } - e ^ { x + y } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
29
If 4x+e3xy=9, find dy/dx4 x + e ^ { 3 x y } = 9 , \text { find } d y / d x

A) dydx=4+3ye3xy3xe3xy\frac { d y } { d x } = - \frac { 4 + 3 y e ^ { 3 xy } } { 3 x e ^ { 3 xy } }
B) dydx=4+3xe3xy3ye3xy\frac { d y } { d x } = - \frac { 4 + 3 x e ^ { 3 xy } } { 3 y e ^ { 3 xy } }
C) dydx=4+3ye3xy4xe3xy\frac { d y } { d x } = \frac { 4 + 3 y e ^ { 3 x y } } { 4 x e ^ { 3 xy } }
D) dydx=4+3xe3xy3ye3xy\frac { d y } { d x } = \frac { 4 + 3 x e ^ { 3 x y } } { 3 y e ^ { 3 x y } }
E) dydx=4+3ye3xyxe3xy\frac { d y } { d x } = \frac { 4 + 3 y e ^ { 3 x y } } { x e ^ { 3 x y } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
30
Find the derivative of the following function. y=5e3x23y = 5 e ^ { 3 x ^ { 2 } - 3 }

A) y=15xe3x23y ^ { \prime } = 15 x e ^ { 3 x ^ { 2 } - 3 }
B) y=30xe3x23y ^ { \prime } = 30 x e ^ { 3 x ^ { 2 } - 3 }
C) y=30e3x23y ^ { \prime } = 30 e ^ { 3 x ^ { 2 } - 3 }
D) y=15e3x23y ^ { \prime } = 15 e ^ { 3 x ^ { 2 } - 3 }
E) y=10xe3x23y ^ { \prime } = 10 x e ^ { 3 x ^ { 2 } - 3 }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
31
Find dydx\frac { d y } { d x } if y=x4ex10y = x ^ { 4 } e ^ { x ^ { 10 } } .

A) dydx=ex10(x55+x1111)\frac { d y } { d x } = e ^ { x ^ { 10 } } \left( \frac { x ^ { 5 } } { 5 } + \frac { x ^ { 11 } } { 11 } \right)
B) dydx=ex10(x4+x10)\frac { d y } { d x } = e ^ { x ^ { 10 } } \left( x ^ { 4 } + x ^ { 10 } \right)
C) dydx=ex10(4x3+10x13)\frac { d y } { d x } = e ^ { x ^ { 10 } } \left( 4 x ^ { 3 } + 10 x ^ { 13 } \right)
D) dydx=4x3ex101\frac { d y } { d x } = 4 x ^ { 3 } e ^ { x ^ { 10 } - 1 }
E) dydx=4x3ex10\frac { d y } { d x } = 4 x ^ { 3 } e ^ { x ^ { 10 } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
32
Find the derivative of the following function. y=3e6x+6y = 3 e ^ { 6 \sqrt { x } } + 6

A) y=9e6xxy ^ { \prime } = \frac { 9 e ^ { 6 \sqrt { x } } } { \sqrt { x } }
B) y=3e6xxy ^ { \prime } = \frac { 3 e ^ { 6 \sqrt { x } } } { \sqrt { x } }
C) y=18e6xxy ^ { \prime } = \frac { 18 e ^ { 6 \sqrt { x } } } { \sqrt { x } }
D) y=3e6xxy ^ { \prime } = \frac { 3 e ^ { 6 \sqrt { x } } } { \sqrt { x } } .
E) y=6e6xxy ^ { \prime } = \frac { 6 e ^ { 6 \sqrt { x } } } { \sqrt { x } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
33
If x9xe4y=5, find dy/dxx - 9 x e ^ { 4 y } = 5 , \text { find } d y / d x

A) dydx=19e4y72e4y\frac { d y } { d x } = \frac { 1 - 9 e ^ { 4 y } } { 72 e ^ { 4 y } }
B) dydx=1+4e4y36xe4y\frac { d y } { d x } = \frac { 1 + 4 e ^ { 4 y } } { 36 x e ^ { 4 y } }
C) dydx=19e4y36xe4y\frac { d y } { d x } = \frac { 1 - 9 e ^ { 4 y } } { 36 x e ^ { 4 y } }
D) dydx=1+9e4y72xe4y\frac { d y } { d x } = \frac { 1 + 9 e ^ { 4 y } } { 72 x e ^ { 4 y } }
E) dydx=14e4y36e4y\frac { d y } { d x } = \frac { 1 - 4 e ^ { 4 y } } { 36 e ^ { 4 y } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
34
Find an equation of the tangent line to the graph of y=e5xy = e ^ { 5 x } at the point (0,1) .

A) y=x+1y = x + 1
B) y=ln(5)x+1y = \ln ( 5 ) x + 1
C) y=6x+1y = 6 x + 1
D) y=5x+1y = 5 x + 1
E) y=5x1y = 5 x - 1
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
35
Find the derivative of the following function. y=16ex6y = 1 - 6 e ^ { - x ^ { 6 } }

A) y=36x5ex6y ^ { \prime } = 36 x ^ { 5 } e ^ { - x ^ { 6 } }
B) y=36x5ex6y ^ { \prime } = - 36 x ^ { 5 } e ^ { - x ^ { 6 } }
C) y=6ex6y ^ { \prime } = 6 e ^ { - x ^ { 6 } }
D) y=6x6ex6y ^ { \prime } = 6 x ^ { 6 } e ^ { - x ^ { 6 } }
E) y=6x6ex6y ^ { \prime } = - 6 x ^ { 6 } e ^ { - x ^ { 6 } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
36
Find the derivative of the following function. p=5qeq4p = 5 q e ^ { q ^ { 4 } }

A) p=5eq4(4q4+1)p ^ { \prime } = 5 e ^ { q ^ { 4 } } \left( 4 q ^ { 4 } + 1 \right)
B) p=5eq4(4q3+1)p ^ { \prime } = 5 e ^ { q ^ { 4 } } \left( 4 q ^ { 3 } + 1 \right)
C) p=5eq4(q4+5)p ^ { \prime } = 5 e ^ { q ^ { 4 } } \left( q ^ { 4 } + 5 \right)
D) p=5eq4(4q4+5)p ^ { \prime } = 5 e ^ { q ^ { 4 } } \left( 4 q ^ { 4 } + 5 \right)
E) p=5eq4(4q3+5)p ^ { \prime } = 5 e ^ { q ^ { 4 } } \left( 4 q ^ { 3 } + 5 \right)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
37
Write the equation of the line tangent to the graph of y=2xex+6y = 2 x e ^ { - x } + 6 at x=1x = 1

A) y=2e1x+6y = 2 e ^ { - 1 } x + 6
B) y=2e1x6y = 2 e ^ { - 1 } x - 6
C) y=2e1xy = 2 e ^ { - 1 } x
D) y=2e1+6y = 2 e ^ { - 1 } + 6
E) y=2e16y = 2 e ^ { - 1 } - 6
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
38
The average time between incoming calls at a switchboard is 3 minutes. If a call has just come in, the probability that the next call will come within the next t minutes is P(t)=1et/3P ( t ) = 1 - e ^ { - t / 3 } . Find the probability that the next call will come within the next 36\frac { 3 } { 6 } minute. Round your answer to two decimal places.

A)15.35%
B)1.54%
C)184.65%
D)17.58%
E)5.08%
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
39
The demand function for a product is modeled by p=3000(155+e0.0002x)p = 3000 \left( 1 - \frac { 5 } { 5 + e ^ { - 0.0002 x } } \right) . Find the price of the product if the quantity demanded is x = 100. Round your answer to two decimal places where applicable.

A) $\$ 422.12
B) $\$ 2518.48
C) $\$ 491.72
D) $\$ 502.02
E) $\$ 2508.28
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
40
The demand function for a product is modeled by p=4000(155+e0.0003x)p = 4000 \left( 1 - \frac { 5 } { 5 + e ^ { - 0.0003 x } } \right) . What is the limit of the price as x increases without bound? Round your answer to two decimal places where applicable.

A)The limit of the price as x increases without bound is -1.
B)The limit of the price as x increases without bound is 1.
C)The limit of the price as x increases without bound is 0.
D)The limit of the price as x increases without bound is 40004000 .
E)The limit of the price as x increases without bound is 55 .
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
41
Use the properties of logarithms to approximate ln531,\ln \frac { 5 } { 31 }, given that ln51.6094\ln 5 \approx 1.6094 and ln313.4340\ln 31 \approx 3.4340

A)-5.0434
B)-1.8246
C)0.4687
D)5.5267
E)5.0434
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
42
Find f(x)f ^ { \prime \prime } ( x ) if f(x)=(9+5x)e8xf ( x ) = ( 9 + 5 x ) e ^ { - 8 x } .

A) f(x)=(496320x)e8xf ^ { \prime \prime } ( x ) = ( 496 - 320 x ) e ^ { - 8 x }
B) f(x)=(496320x)e8xf ^ { \prime \prime } ( x ) = ( - 496 - 320 x ) e ^ { - 8 x }
C) f(x)=496(9+5x)e8xf ^ { \prime \prime } ( x ) = - 496 ( 9 + 5 x ) e ^ { - 8 x }
D) f(x)=(67+40x)e8xf ^ { \prime \prime } ( x ) = - ( 67 + 40 x ) e ^ { - 8 x }
E) f(x)=(496+320x)e8xf ^ { \prime \prime } ( x ) = ( 496 + 320 x ) e ^ { - 8 x }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
43
Sketch the graph of the function f(x)=lnxf ( x ) = \ln | x | .

A)  <strong>Sketch the graph of the function  f ( x ) = \ln | x |  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  f ( x ) = \ln | x |  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  f ( x ) = \ln | x |  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  f ( x ) = \ln | x |  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  f ( x ) = \ln | x |  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
44
Use the properties of logarithms to expand ln310\ln \frac { 3 } { 10 }

A) ln3+ln10\ln 3 + \ln 10
B) ln3ln10\ln 3 - \ln 10
C) ln3ln10\frac { \ln 3 } { \ln 10 }
D) (ln3)(ln10)( \ln 3 ) ( \ln 10 )
E)none of the above
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
45
Find the extrema of the function f(x)=13exf ( x ) = \frac { 1 } { 3 - e ^ { - x } } by analyzing its graph below.  <strong>Find the extrema of the function  f ( x ) = \frac { 1 } { 3 - e ^ { - x } }  by analyzing its graph below.  </strong> A)(0, 1) B)no relative extrema C)  \left( 3 , e ^ { 3 } \right)  , (0, 0) D)  ( 1,3 ) , \left( 3 , e ^ { - 3 } \right)  E)  \left( 3 , e ^ { - 3 } \right)

A)(0, 1)
B)no relative extrema
C) (3,e3)\left( 3 , e ^ { 3 } \right) , (0, 0)
D) (1,3),(3,e3)( 1,3 ) , \left( 3 , e ^ { - 3 } \right)
E) (3,e3)\left( 3 , e ^ { - 3 } \right)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
46
Simplify eln8x5e ^ { \ln 8 x ^ { 5 } } .

A) x5- x ^ { 5 }
B) 8x5- 8 x ^ { 5 }
C) 8x8 x
D) 8x58 x ^ { 5 }
E) x5x ^ { 5 }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
47
Solve for the equation ex=e16e ^ { \sqrt { x } } = e ^ { 16 } for xx .

A) x=16x = 16
B) x=4x = 4
C) x=4096x = 4096
D) x=256x = 256
E) x=4097x = 4097
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
48
Sketch the graph of the function y=5+lnxy = 5 + \ln x .

A)  <strong>Sketch the graph of the function  y = 5 + \ln x  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  y = 5 + \ln x  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  y = 5 + \ln x  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  y = 5 + \ln x  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  y = 5 + \ln x  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
49
Use the properties of logarithms to expand ln(x225x10)9\ln \left( \frac { x ^ { 2 } - 25 } { x ^ { 10 } } \right) ^ { 9 } .

A) 9[ln(x+5)ln(x5)10lnx]9 [ \ln ( x + 5 ) - \ln ( x - 5 ) - 10 \ln x ]
B) 9[ln(x+5)+ln(x5)+10lnx]9 [ \ln ( x + 5 ) + \ln ( x - 5 ) + 10 \ln x ]
C) 9[ln(x+5)ln(x5)lnx]9 [ \ln ( x + 5 ) - \ln ( x - 5 ) - \ln x ]
D) 9[ln(x+5)+ln(x5)+lnx]9 [ \ln ( x + 5 ) + \ln ( x - 5 ) + \ln x ]
E) 9[ln(x+5)+ln(x5)10lnx]9 [ \ln ( x + 5 ) + \ln ( x - 5 ) - 10 \ln x ]
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
50
A survey of high school seniors from a certain school district who took the SAT has determined that the mean score on the mathematics portion was 650 with a standard deviation of 15.5. Assuming the data can be modeled by a normal probability density function, find a model for these data.

A) f(x)=115.5πe(x650)/240.25f ( x ) = \frac { 1 } { 15.5 \sqrt { \pi } } e ^ { - ( x - 650 ) / 240.25 }
B) f(x)=115.52πe(x650)/480.5f ( x ) = \frac { 1 } { 15.5 \sqrt { 2 \pi } } e ^ { - ( x - 650 ) / 480.5 }
C) f(x)=115.5πe(x650)2/480.5f ( x ) = \frac { 1 } { 15.5 \sqrt { \pi } } e ^ { - ( x - 650 ) ^ { 2 } / 480.5 }
D) f(x)=115.52πe(x650)2/480.5f ( x ) = \frac { 1 } { 15.5 \sqrt { 2 \pi } } e ^ { - ( x - 650 ) ^ { 2 } / 480.5 }
E) f(x)=115.52πe(x650)2/240.25f ( x ) = \frac { 1 } { 15.5 \sqrt { 2 \pi } } e ^ { - ( x - 650 ) ^ { 2 } / 240.25 }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
51
Simplify lne6x4\ln e ^ { - 6 x ^ { 4 } }

A) 6x4- 6 x ^ { 4 }
B) 24x- 24 x
C) 24x4- 24 x ^ { 4 }
D) 6x- 6 x
E) x4x ^ { 4 }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
52
The average typing speed N (in words per minute) after t weeks of lessons is modeled by N=911+7.5e0.15tN = \frac { 91 } { 1 + 7.5 e ^ { - 0.15 t } } . Find the rate at which the typing speed is changing when t = 20 weeks. Round your answer to two decimal places.

A)2.40 words/min/week
B)2.70 words/min/week
C)3.71 words/min/week
D)4.93 words/min/week
E)6.24 words/min/week
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
53
Sketch the graph of the function f(x)=2+ln(x)f ( x ) = 2 + \ln ( x ) .

A)  <strong>Sketch the graph of the function  f ( x ) = 2 + \ln ( x )  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  f ( x ) = 2 + \ln ( x )  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  f ( x ) = 2 + \ln ( x )  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  f ( x ) = 2 + \ln ( x )  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  f ( x ) = 2 + \ln ( x )  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
54
Write the logarithmic equation ln\ln 1.3=0.2624 K1.3 = 0.2624 \mathrm {~K} as an exponential equation.

A) e0.2624 K=1.3e ^ { - 0.2624 \mathrm {~K} } = 1.3
B) e1.3=0.2624 Ke ^ { - 1.3 } = 0.2624 \mathrm {~K}
C) e0.2624 K=1.3e ^ { 0.2624 \mathrm {~K} } = 1.3
D) e1.3=0.2624 Ke ^ { 1.3 } = 0.2624 \mathrm {~K}
E) e0.2624 K=1.3e ^ { 0.2624 \mathrm {~K} } = - 1.3
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
55
Use the properties of logarithms to write the expression as a single logarithm. ln(2x)ln(4y)\ln ( 2 x ) - \ln ( 4 y )

A) ln(2x4y)\ln \left( \frac { 2 x } { 4 y } \right)
B) ln(4y2x)\ln ( 4 y - 2 x )
C) ln(2x4y)\ln ( 2 x - 4 y )
D) ln(2x)ln(4y)\frac { \ln ( 2 x ) } { \ln ( 4 y ) }
E) ln(2y4x)\ln \left( \frac { 2 y } { 4 x } \right)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
56
A survey of high school seniors from a certain school district who took the SAT has determined that the mean score on the mathematics portion was 700 with a standard deviation of 13.5. By a normal probability density function the data can be modeled as f(x)=113.52πe(x700)2/364.5f ( x ) = \frac { 1 } { 13.5 \sqrt { 2 \pi } } e ^ { - ( x - 700 ) ^ { 2 } /3 64.5 } . Find the derivative of the model.

A) f(x)=22(x700)e(x700)2/182.254,921πf ^ { \prime } ( x ) = \frac { - 2 \sqrt { 2 } ( x - 700 ) e ^ { - ( x -700 ) ^ { 2 } / 182.25 } } { 4,921 \sqrt { \pi } }
B) f(x)=22(x700)e(x700)2/364.59,842πf ^ { \prime } ( x ) = \frac { - 2 \sqrt { 2 } ( x - 700 ) e ^ { - ( x -700 ) ^ { 2 } / 364.5 } } { 9,842 \sqrt { \pi } }
C) f(x)=2(x700)e(x700)2/364.54,921πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 700 ) ^ { 2 } / 364.5 } } { 4,921 \sqrt { \pi } }
D) f(x)=2(x700)e(x700)2/364.59,842πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 700 ) ^ { 2 } / 364.5 } } { 9,842 \sqrt { \pi } }
E) f(x)=2(x700)e(x70)2/182.254,921πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 70 ) ^ { 2 } / 182.25 } } { 4,921 \sqrt { \pi } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
57
Use the properties of logarithms to write the expression ln(xx2+85)\ln \left( x \sqrt [ 5 ] { x ^ { 2 } + 8 } \right) as a sum, difference, or multiple of logarithms.

A) lnx+18ln(x2+5)\ln x + \frac { 1 } { 8 } \ln \left( x ^ { 2 } + 5 \right)
B) ln(x2+8)+15lnx\ln \left( x ^ { 2 } + 8 \right) + \frac { 1 } { 5 } \ln x
C) lnx+15ln(x2+8)\ln x + \frac { 1 } { 5 } \ln \left( x ^ { 2 } + 8 \right)
D) ln(x2+5)+18lnx\ln \left( x ^ { 2 } + 5 \right) + \frac { 1 } { 8 } \ln x
E) lnx+ln(x2+8)\ln x + \ln \left( x ^ { 2 } + 8 \right)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
58
Future value. The future value that accrues when $900 is invested at 5%, compounded continuously, is s(t)=900e005ts ( t ) = 900 e ^ { 005 t } , where t is the number of years. At what rate is the money in this account growing when t=9?t = 9 ?

A)$14.11 per year
B)$49.24 per year
C)$1411.48 per year
D)$941.43 per year
E)$70.57 per year
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
59
Find the extrema of the function f(x)=111exf ( x ) = \frac { 1 } { 11 - e ^ { - x } } .

A)(0, 1)
B) (11,e11)\left( 11 , e ^ { 11 } \right) , (0, 0)
C) (1,11),(11,e11)( 1,11 ) , \left( 11 , e ^ { - 11 } \right)
D)no relative extrema
E) (11,e11)\left( 11 , e ^ { - 11 } \right)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
60
Write the exponential equation e10=22026.4658 Ke ^ { 10 } = 22026.4658 \mathrm {~K} as a logarithmic equation.

A) ln\ln 22026.4658 K=1022026.4658 \mathrm {~K} = 10
B) ln\ln 22026.4658 K=22026.4658 \mathrm {~K} = 2020
C) ln\ln 10=22026.4658 K10 = 22026.4658 \mathrm {~K}
D) ln\ln 10 K=10 \mathrm {~K} = 44052.9316 K44052.9316 \mathrm {~K}
E) ln\ln 44052.9316 K=2044052.9316 \mathrm {~K} = 20
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
61
Write the following expression as a logarithm of a single quantity. 5lnx3ln(x2+3)5 \ln x - 3 \ln \left( x ^ { 2 } + 3 \right)

A) ln(x53(x2+3))\ln \left( \frac { x ^ { 5 } } { 3 \left( x ^ { 2 } + 3 \right) } \right)
B) ln(x5(x2+3)3)\ln \left( \frac { x ^ { 5 } } { \left( x ^ { 2 } + 3 \right) ^ { 3 } } \right)
C) ln(x5(x2+3)3)\ln \left( x ^ { 5 } - \left( x ^ { 2 } + 3 \right) ^ { 3 } \right)
D) ln(5x3(x2+3))\ln \left( 5 x - 3 \left( x ^ { 2 } + 3 \right) \right)
E)none of the above
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
62
Solve the following equation for xx accurate to three decimal places. lnx2=3\ln x ^ { - 2 } = 3

A) x=1.500x = - 1.500
B) x=0.223x = 0.223
C) x=1.405x = 1.405
D) x=0.513x = 0.513
E) x=4.621x = 4.621
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
63
Solve the following equation for xx accurate to three decimal places. eln(4x)=5e ^ { \ln ( 4 x ) } = 5

A) x=20.000x = 20.000
B) x=0.800x = 0.800
C) x=1.250x = 1.250
D) x=0.402x = 0.402
E) x=0.402x = - 0.402
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
64
Solve (140.97822)2t=50\left( 14 - \frac { 0.978 } { 22 } \right) ^ { 2 t } = 50 for t. Round your answer to four decimal places.

A)1.4841
B)0.7412
C)3.0151
D)0.7421
E)2.7571
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
65
Solve the exponential equation. Give answers correct to 3 decimal places. 57x=31255 ^ { 7 x } = 3125

A)625
B)0.714
C)1.000
D)0.453
E)313
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
66
Find the derivative of the following function. y=ln5xy = \ln 5 x

A) 1x\frac { 1 } { x }
B) 5x\frac { 5 } { x }
C) 15x\frac { 1 } { 5 x }
D) 1x2\frac { 1 } { x ^ { 2 } }
E) 15x2\frac { 1 } { 5 x ^ { 2 } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
67
Solve the exponential equation. Give the answer correct to 3 decimal places. 10,000=3500e0.3x10,000 = 3500 e ^ { 0.3 x }

A)0.886
B)2.953
C)3.762
D)0.315
E)3.499
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
68
Solve the following equation for xx accurate to three decimal places. 2(22x3)=2902 \left( 2 ^ { 2 x - 3 } \right) = 290

A) x=34.750x = - 34.750
B) x=37.750x = 37.750
C) x=2.090x = - 2.090
D) x=5.090x = 5.090
E) x=32.707x = - 32.707
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
69
Solve the exponential equation. Give the answer correct to 3 decimal places. 72=300300e0.07x72 = 300 - 300 e ^ { - 0.07 x }

A)-0.274
B)20.387
C)3.921
D)-20.387
E)-3.073
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
70
Find the derivative of y=215lnxy = 2 - 15 \ln x

A) dydx=115x\frac { d y } { d x } = - \frac { 1 } { 15 x }
B) dydx=15x\frac { d y } { d x } = - \frac { 15 } { x }
C) dydx=13x\frac { d y } { d x } = - \frac { 13 } { x }
D) dydx=15x\frac { d y } { d x } = \frac { 15 } { x }
E) dydx=13x\frac { d y } { d x } = \frac { 13 } { x }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
71
Write the expression 5ln(x)+2ln(x+3)5ln(x3)5 \ln ( x ) + 2 \ln ( x + 3 ) - 5 \ln ( x - 3 ) as the logarithm of a single quantity.

A) ln(2x+21)\ln ( 2 x + 21 )
B) ln[10(x2+x)5(x3)]\ln \left[ \frac { 10 \left( x ^ { 2 } + x \right) } { 5 ( x - 3 ) } \right]
C) ln(x5(x+3)2(x3)5)\ln \left( x ^ { 5 } ( x + 3 ) ^ { 2 } ( x - 3 ) ^ { 5 } \right)
D) ln[x5(x+3)2(x3)5]\ln \left[ \frac { x ^ { 5 } ( x + 3 ) ^ { 2 } } { ( x - 3 ) ^ { 5 } } \right]
E) ln[x5(x+3)2(x3)5]\ln \left[ \frac { x ^ { 5 } } { ( x + 3 ) ^ { 2 } ( x - 3 ) ^ { 5 } } \right]
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
72
Find the derivative of the following function. y=9ln(x84)y = 9 \ln \left( x ^ { 8 } - 4 \right)

A) 9x84\frac { 9 } { x ^ { 8 } - 4 }
B) 8x7x84\frac { 8 x ^ { 7 } } { x ^ { 8 } - 4 }
C) 8x84\frac { 8 } { x ^ { 8 } - 4 }
D) 72x7x84\frac { 72 x ^ { 7 } } { x ^ { 8 } - 4 }
E) 9x7x84\frac { 9 x ^ { 7 } } { x ^ {8 } - 4 }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
73
Write the following expression as a logarithm of a single quantity. lnx16ln(x2+1)\ln x - 16 \ln \left( x ^ { 2 } + 1 \right)

A) ln(16x(x2+1))\ln \left( \frac { - 16 x } { \left( x ^ { 2 } + 1 \right) } \right)
B) ln(x16(x2+1))\ln \left( \frac { x } { 16 \left( x ^ { 2 } + 1 \right) } \right)
C) ln(x16(x2+1))\ln \left( x - 16 \left( x ^ { 2 } + 1 \right) \right)
D) ln(x(x2+1)16)\ln \left( \frac { x } { \left( x ^ { 2 } + 1 \right) ^ { 16 } } \right)
E) ln(16xx2+1)\ln \left( \frac { - 16 x } { x ^ { 2 } + 1 } \right)
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
74
Find the derivative of the following function. y=ln(4x+7)y = \ln ( 4 x + 7 )

A) 7x4x+7\frac { 7 x } { 4 x + 7 }
B) 4x4x+7\frac { 4 x } { 4 x + 7 }
C) 14x+7\frac { 1 } { 4 x + 7 }
D) 44x+7\frac { 4 } { 4 x + 7 }
E) 74x+7\frac { 7 } { 4 x + 7 }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
75
Write the expression 3ln(2)15ln(x2+4)3 \ln ( 2 ) - \frac { 1 } { 5 } \ln \left( x ^ { 2 } + 4 \right) as the logarithm of a single quantity.

A) ln[8(x2+4)5]\ln \left[ \frac { 8 } { \left( x ^ { 2 } + 4 \right) ^ { 5 } } \right]
B) ln(8x2+45)\ln \left( 8 \sqrt [ 5 ] { x ^ { 2 } + 4 } \right)
C) ln[9x2+45]\ln \left[ \frac { 9 } { \sqrt [ 5 ] { x ^ { 2 } + 4 } } \right]
D) ln(9x2+45)\ln \left( 9 \sqrt [ 5 ] { x ^ { 2 } + 4 } \right)
E) ln[8x2+45]\ln \left[ \frac { 8 } { \sqrt [ 5 ] { x ^ { 2 } + 4 } } \right]
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
76
Find the derivative of the following function. y=ln(4x39x)3xy = \ln \left( 4 x ^ { 3 } - 9 x \right) - 3 x

A) 12x29xx(4x29)3\frac { 12 x ^ { 2 } - 9 x } { x \left( 4 x ^ { 2 } - 9 \right) } - 3
B) 1x(4x29)3\frac { 1 } { x \left( 4 x ^ { 2 } - 9 \right) } - 3
C) 12x29x(4x29)3\frac { 12 x ^ { 2 } - 9 } { x \left( 4 x ^ { 2 } - 9 \right) } - 3
D) 12x2x(4x29)3\frac { 12 x ^ { 2 } } { x \left( 4 x ^ { 2 } - 9 \right) } - 3
E) 1x(4x21)3\frac { 1 } { x \left( 4 x ^ { 2 } - 1 \right) } - 3
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
77
Solve the exponential equation. Give the answer correct to 3 decimal places. 57=771+4e0.1x57 = \frac { 77 } { 1 + 4 e ^ { - 0.1 x } }

A)-2.434
B)-0.877
C)5.315
D)-0.532
E)24.336
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
78
Find the derivative of the following function. y=8+ln5xy = 8 + \ln 5 x

A) 1x\frac { 1 } { x }
B) 5x\frac { 5 } { x }
C) 15x\frac { 1 } { 5 x }
D) 1x2\frac { 1 } { x ^ { 2 } }
E) 15x2\frac { 1 } { 5 x ^ { 2 } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
79
How long (in years) would $450 have to be invested at an annual rate of 12%, compounded continuously, to amount to $790?

A)6.30 years
B)4.97 years
C)1.13 years
D)5.68 years
E)4.69 years
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
80
Find the derivative of the following function. y=lnx5y = \ln x ^ { 5 }

A) 1x\frac { 1 } { x }
B) 5x\frac { 5 } { x }
C) 15x\frac { 1 } { 5 x }
D) 1x2\frac { 1 } { x ^ { 2 } }
E) 15x2\frac { 1 } { 5 x ^ { 2 } }
Unlock Deck
Unlock for access to all 121 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 121 flashcards in this deck.