Deck 12: Integration and Its Applications

Full screen (f)
exit full mode
Question
Find the cost function for the marginal cost dCdx=140x2+90\frac { d C } { d x } = \frac { 1 } { 40 } x ^ { 2 } + 90 and fixed cost of $2000\$ 2000 (for x = 0).

A) C(x)=180x3+90x+2000C ( x ) = \frac { 1 } { 80 } x ^ { 3 } + 90 x + 2000
B) C(x)=1120x3+2000x+90C ( x ) = \frac { 1 } { 120 } x ^ { 3 } + 2000 x + 90
C) C(x)=1120x3+90x+2000C ( x ) = \frac { 1 } { 120 } x ^ { 3 } + 90 x + 2000
D) C(x)=180x4+2000x+90C ( x ) = \frac { 1 } { 80 } x ^ { 4 } + 2000 x + 90
E) C(x)=1120x4+90x+2000C ( x ) = \frac { 1 } { 120 } x ^ { 4 } + 90 x + 2000
Use Space or
up arrow
down arrow
to flip the card.
Question
Use algebra to rewrite the integrand; then integrate and simplify. x+14xdx\int \frac { x + 14 } { \sqrt { x } } d x

A) 23xx+14x+C\frac { 2 } { 3 } x \sqrt { x } + 14 \sqrt { x } + C
B) 23xx+28x+C\frac { 2 } { 3 } x \sqrt { x } + 28 \sqrt { x } + C
C) 23xx+42x+C\frac { 2 } { 3 } x \sqrt { x } + 42 \sqrt { x } + C
D) 12x2+42x+C\frac { 1 } { 2 } x ^ { 2 } + 42 \sqrt { x } + C
E) 12x2+28x+C\frac { 1 } { 2 } x ^ { 2 } + 28 \sqrt { x } + C
Question
Evaluate the integral 19x7dx\int 19 x ^ { 7 } d x .

A) 133x6+C133 x ^ { 6 } + C
B) 152x8+C152 x ^ { 8 } + C
C) 196x6+C\frac { 19 } { 6 } x ^ { 6 } + C
D) 198x8+C\frac { 19 } { 8 } x ^ { 8 } + C
E) 197x7+C\frac { 19 } { 7 } x ^ { 7 } + C
Question
Find the indefinite integral and check the result by differentiation. (16x314x+5)dx\int \left( 16 x ^ { 3 } - 14 x + 5 \right) d x

A) 4x47x2+5+C4 x ^ { 4 } - 7 x ^ { 2 } + 5 + C
B) 4x47x+5x4 x ^ { 4 } - 7 x + 5 x
C) 12x314x2+5x+C12 x ^ { 3 } - 14 x ^ { 2 } + 5 x + C
D) 4x47x2+5x+C4 x ^ { 4 } - 7 x ^ { 2 } + 5 x + C
E) 4x47x3+5x+C4 x ^ { 4 } - 7 x ^ { 3 } + 5 x + C
Question
A ball is thrown vertically upwards from a height of 10 ft with an initial velocity of 70 ft per second. How high will the ball go?

A)239.6875 ft
B)67.4219 ft
C)86.5625 ft
D)219.6875 ft
E)241.6875 ft
Question
Find the indefinite integral v1/10dv\int v ^ { - 1 / 10 } d v and check your result by differentiation.

A) 9v91010\frac { 9 v ^ { \frac { 9 } { 10 } } } { 10 }
B) v9109\frac { v ^ { \frac { 9 } { 10 } } } { 9 }
C) 11v11109\frac { 11 v ^ { \frac { 11 } { 10 } } } { 9 }
D) 10v9109\frac { 10 v ^ { \frac { 9 } { 10 } } } { 9 }
E) v111011\frac { v ^ { \frac { 11 } { 10 } } } { 11 }
Question
Identify u and du/dxd u / d x for the integral (8+1x8)8(8x9)dx\int \left( 8 + \frac { 1 } { x ^ { 8 } } \right) ^ { 8 } \left( - \frac { 8 } { x ^ { 9 } } \right) d x .

A) u=8+1x8u = 8 + \frac { 1 } { x ^ { 8 } } and du/dx=8x9d u / d x = \frac { 8 } { x ^ { 9 } }
B) u=(8+1x8)7u = \left( 8 + \frac { 1 } { x ^ { 8 } } \right) ^ { 7 } and du/dx=8x9du / d x = - \frac { 8 } { x ^ { 9 } }
C) u=8+1x8u = 8 + \frac { 1 } { x ^ { 8 } } and du/dx=8x9d u/ d x = - \frac { 8 } { x ^ { 9 } }
D) u=8+1x8u = 8 + \frac { 1 } { x ^ { 8 } } and du/dx=9x9d u / d x = - \frac { 9 } { x ^ { 9 } }
E) u=(8+1x8)7u = \left( 8 + \frac { 1 } { x ^ { 8 } } \right) ^ { 7 } and du/dx=8x9d u / d x = \frac { 8 } { x ^ { 9 } }
Question
Find the indefinite integral 4dx\int 4 d x and check your result by differentiation.

A) 4x4 x
B) 4x24 x ^ { 2 }
C)4
D) 88
E) 8x8 x
Question
Find the particular solution that satisfies the differential equation f(x)=12x5f ^ { \prime } ( x ) = \frac { 1 } { 2 } x - 5 and initial condition f(4)=16f ( 4 ) = - 16 .

A) f(x)=15x25xf ( x ) = \frac { 1 } { 5 } x ^ { 2 } - 5 x
B) f(x)=17x2+5x1260f ( x ) = \frac { 1 } { 7 } x ^ { 2 } + 5 x - 1260
C) f(x)=14x25xf ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 x
D) f(x)=14x25x1260f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 x - 1260
E) f(x)=15x2+5xf ( x ) = \frac { 1 } { 5 } x ^ { 2 } + 5 x
Question
Find the indefinite integral and check the result by differentiation. (8t+3)dt\int ( - 8 t + 3 ) d t

A) 4t2+3t+C- 4 t ^ { 2 } + 3 t + C
B) 8t2+3t+C- 8 t ^ { 2 } + 3 t + C
C) 4t2+3t- 4 t ^ { 2 } + 3 t
D) 8- 8
E)none of the above
Question
Identify uu and du/dxd u / d x for the integral 1x11(11x10)dx\int \sqrt { 1 - x ^ { 11 } } \left( - 11 x ^ { 10 } \right) d x .

A) u=1x11u = 1 - x ^ { 11 } and du/dx=12xd u / d x = - 12 x
B) u=1x11u = 1 - x ^ { 11 } and du/dx=11x10d u / d x = - 11 x ^ { 10 }
C) u=1x11u = \sqrt { 1 - x ^ { 11 } } and du/dx=11x10d u / d x = - 11 x ^ { 10 }
D) u=1x11u= 1 - x ^ { 11 } and du/dx=11xd u / d x = 11 x
E) u=1x11u = \sqrt { 1 - x ^ { 11 } } and du/dx=12xd u / d x = 12 x
Question
Evaluate the integral (3+x3/5)dx\int \left( 3 + x ^ { 3 / 5 } \right) d x .

A) 3x+58x8/5+C3 x + \frac { 5 } { 8 } x ^ { 8 / 5 } + C
B) 3x+85x8/5+C3 x + \frac { 8 } { 5 } x ^ { 8 / 5 } + C
C) 92+58x8/5+C\frac { 9 } { 2 } + \frac { 5 } { 8 } x ^ { 8 / 5 } + C
D) 35x2/5+C\frac { 3 } { 5 } x ^ { - 2 / 5 } + C
E) 35x8/5+C\frac { 3 } { 5 } x ^ { 8 /5 } + C
Question
Evaluate the integral (2x29x9)dx\int \left( - 2 x ^ { 2 } - 9 x - 9 \right) d x .

A) 6x318x29x+C- 6 x ^ { 3 } - 18 x ^ { 2 } - 9 x + C
B) 23x392x2+812+C- \frac { 2 } { 3 } x ^ { 3 } - \frac { 9 } { 2 } x ^ { 2 } + \frac { 81 } { 2 } + C
C) 23x392x2+812x+C- \frac { 2 } { 3 } x ^ { 3 } - \frac { 9 } { 2 } x ^ { 2 } + \frac { 81 } { 2 } x + C
D) 23x392x29x+C- \frac { 2 } { 3 } x ^ { 3 } - \frac { 9 } { 2 } x ^ { 2 } - 9 x + C
E) 4x9+C- 4 x - 9 + C
Question
An evergreen nursery sells a certain shrub after 4 years. The growth rate of the shrub is given by dh/dt=2.5t+6d h / d t = 2.5 t + 6 , where t is the time in years and h is the height in centimeters. The seedlings are 10 centimeters tall when planted (t = 0). How tall are the shrubs when they are sold?

A)36 centimeters
B)40 centimeters
C)44 centimeters
D)54 centimeters
E)70 centimeters
Question
Evaluate the integral (x6+7x43)dx\int \left( x ^ { 6 } + 7 x ^ { 4 } - 3 \right) d x .

A) 17x7+75x592+C\frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - \frac { 9 } { 2 } + C  <strong>Evaluate the integral  \int \left( x ^ { 6 } + 7 x ^ { 4 } - 3 \right) d x  .</strong> A)  \frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - \frac { 9 } { 2 } + C    B)  \frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - \frac { 9 } { 2 } x + C  C)  \frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - 3 x + C  D)  \frac { 1 } { 6 } x ^ { 6 } + \frac { 7 } { 4 } x ^ { 4 } - 3 x + C  E)  \frac { 1 } { 5 } x ^ { 5 } + \frac { 7 } { 3 } x ^ { 3 } - 3 x + C  <div style=padding-top: 35px>
B) 17x7+75x592x+C\frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - \frac { 9 } { 2 } x + C
C) 17x7+75x53x+C\frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - 3 x + C
D) 16x6+74x43x+C\frac { 1 } { 6 } x ^ { 6 } + \frac { 7 } { 4 } x ^ { 4 } - 3 x + C
E) 15x5+73x33x+C\frac { 1 } { 5 } x ^ { 5 } + \frac { 7 } { 3 } x ^ { 3 } - 3 x + C
Question
Evaluate the integral (8x5+9)7(40x4)dx\int \left( 8 x ^ { 5 } + 9 \right) ^ { 7 } \left( 40 x ^ { 4 } \right) d x

A) 16(8x5+9)6+C\frac { 1 } { 6 } \left( 8 x ^ { 5 } + 9 \right) ^ { 6 } + C
B) 17(8x5+9)7+C\frac { 1 } { 7 } \left( 8 x ^ { 5 } + 9 \right) ^ { 7 } + C
C) 17(8x5+9)8+C\frac { 1 } { 7 } \left( 8 x ^ { 5 } + 9 \right) ^ { 8 } + C
D) 18(8x5+9)8+C\frac { 1 } { 8 } \left( 8 x ^ { 5 } + 9 \right) ^ { 8 } + C
E) 18(8x5+9)7+C\frac { 1 } { 8 } \left( 8 x ^ { 5 } + 9 \right) ^ { 7 } + C
Question
Find a function that satisfies the conditions f(x)=x5,f(0)=9,f(0)=5f ^ { \prime \prime } ( x ) = x ^ { 5 } , f ^ { \prime } ( 0 ) = 9 , f ( 0 ) = 5 .

A) f(x)=16x6+9xf ( x ) = \frac { 1 } { 6 } x ^ { 6 } + 9 x
B) f(x)=142x7+9x+5f ( x ) = \frac { 1 } { 42 } x ^ { 7 } + 9 x + 5
C) f(x)=142x6+9x+5f ( x ) = \frac { 1 } { 42 } x ^ { 6 } + 9 x + 5
D) f(x)=17x7+9xf ( x ) = \frac { 1 } { 7 } x ^ { 7 } + 9 x
E) f(x)=142x6+5x+9f ( x ) = \frac { 1 } { 42 } x ^ { 6 } + 5 x + 9
Question
Evaluate the integral 4x6dx\int \frac { 4 } { x ^ { 6 } } d x .

A) 4ln(x6)+C4 \ln \left( x ^ { 6 } \right) + C
B) 47x7+C\frac { 4 } { 7 x ^ { 7 } } + C
C) 45ln(x5)+C- \frac { 4 } { 5 } \ln \left( x ^ { 5 } \right) + C
D) 47x7+C- \frac { 4 } { 7 x ^ { 7 } } + C
E) 45x5+C- \frac { 4 } { 5 x ^ { 5 } } + C
Question
The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative. <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the indefinite integral of the following function and check the result by differentiation. (1+4z)3dz\int ( 1 + 4 z ) ^ { 3 } d z

A) 4(1+4z)4+C4 ( 1 + 4 z ) ^ { 4 } + C
B) (1+4z)43+C\frac { ( 1 + 4 z ) ^ { 4 } } { 3 } + C
C) (1+4z)44+C\frac { ( 1 + 4 z ) ^ { 4 } } { 4 } + C
D) (1+4z)416+C\frac { ( 1 + 4 z ) ^ { 4 } } { 16 } + C
E)none of the above
Question
Find the equation of the function f whose graph passes through the point (0,73)\left( 0 , \frac { 7 } { 3 } \right) and whose derivative is f(x)=x1x2f ^ { \prime } ( x ) = x \sqrt { 1 - x ^ { 2 } } .

A) f(x)=13[8(1x2)1/2]f ( x ) = \frac { 1 } { 3 } \left[ 8 - \left( 1 - x ^ { 2 } \right) ^ { 1 / 2 } \right]
B) f(x)=13[8(1x2)3/2]f ( x ) = \frac { 1 } { 3 } \left[ 8 - \left( 1 - x ^ { 2 } \right) ^ { 3 / 2 } \right]
C) f(x)=13[10+(1x2)2/3]f ( x ) = \frac { 1 } { 3 } \left[ 10 + \left( 1 - x ^ { 2 } \right) ^ { 2 / 3 } \right]
D) f(x)=13[10+(1x2)1/2]f ( x ) = \frac { 1 } { 3 } \left[ 10 + \left( 1 - x ^ { 2 } \right) ^ { 1 / 2 } \right]
E) f(x)=13[10(1x2)2/3]f ( x ) = \frac { 1 } { 3 } \left[ 10 - \left( 1 - x ^ { 2 } \right) ^ { 2 / 3 } \right]
Question
Find the indefinite integral of the following function and check the result by differentiation. 5x(x2+5)4dx\int \frac { 5 x } { \left( x ^ { 2 } + 5 \right) ^ { 4 } } d x

A) 56(x2+5)3+C\frac { - 5 } { 6 \left( x ^ { 2 } + 5 \right) ^ { 3 } } + C
B) 56(x2+5)3+C\frac { - 5 } { 6 \left( x ^ { 2 } + 5 \right) ^ { 3 } } + C .
C) 26(x2+5)3+C\frac { - 2 } { 6 \left( x ^ { 2 } + 5 \right) ^ { 3 } } + C
D) 56(x2+5)4+C\frac { - 5 } { 6 \left( x ^ { 2 } + 5 \right) ^ { 4 } } + C
E) 56(x2+5)3+C\frac { - 5 } { 6 \left( x ^ { 2 } + 5 \right) ^ { - 3 } } + C
Question
Find the indefinite integral. x4x2+4dx\int \frac { x } { - 4 x ^ { 2 } + 4 } d x

A) 18x+C\frac { 1 } { - 8 x } + C
B) ln4x2+4+C\ln \left| - 4 x ^ { 2 } + 4 \right| + C
C) 18ln4x2+4+C\frac { - 1 } { 8 } \ln \left| - 4 x ^ { 2 } + 4 \right| + C
D) ln4x2+44x2+4+C\frac { \ln \left| - 4 x ^ { 2 } + 4 \right| } { - 4 x ^ { 2 } + 4 } + C
E) ln4x24+C\ln \left| - 4 x ^ { 2 } - 4 \right| + C
Question
Evaluate the integral 210e0.1xdx\int 210 e ^ { 0.1 x } d x

A) 21e0.1x+C21 e ^ { 0.1 x } + C
B) 190.9e1.1x+C190.9 e ^ { 1.1 x } + C
C) 2100e0.1x+C2100 e ^ { 0.1 x } + C
D) 21e0.9x+C21 e ^ { - 0.9 x } + C
E) 21e1.1x+C21 e ^ { 1.1 x } + C
Question
Find the indefinite integral. x23x3+10dx\int \frac { x ^ { 2 } } { 3 x ^ { 3 } + 10 } d x

A) 19ln3x3+10+C\frac { 1 } { 9 } \ln \left| 3 x ^ { 3 } + 10 \right| + C
B) ln3x3+10+C\ln \left| 3 x ^ { 3 } + 10 \right| + C
C) x33x4+10x+C\frac { x ^ { 3 } } { 3 x ^ { 4 } + 10 x } + C
D)integral does not exist
E)none of the above
Question
Find the indefinite integral. (lnx)4xdx\int \frac { ( \ln x ) ^ { 4 } } { x } d x

A) (lnx)44+C\frac { ( \ln x ) ^ { 4 } } { 4 } + C
B) 4(lnx)3+C4 ( \ln x ) ^ { 3 } + C
C) 5lnxx+C\frac { 5 \ln x } { x } + C
D) (lnx)55+C\frac { ( \ln x ) ^ { 5 } } { 5 } + C
E)none of the above
Question
Evaluate the integral x7e7x8dx\int x ^ { 7 } e ^ { 7 x ^ { 8 } } d x

A) 18e7x8+C\frac { 1 } { 8 } e ^ { 7 x ^ { 8 } } + C
B) 56e7x8+C56 e ^ { 7 x ^ { 8 } } + C
C) 156e7x8+C\frac { 1 } { 56 } e ^ { 7 x ^ { 8 } } + C
D) 8e7x8+C8 e ^ { 7 x ^ { 8 } } + C
E) 156x8e7x8+C\frac { 1 } { 56 } x ^ { 8 } e ^ { 7 x ^ { 8 } } + C
Question
Use formal substitution to find the indefinite integral x4+1x5+5x+6dx\int \frac { x ^ { 4 } + 1 } { \sqrt { x ^ { 5 } + 5 x + 6 } } d x .

A) 25(x5+5x+6)+C\frac { 2 } { 5 } \left( x ^ { 5 } + 5 x + 6 \right) + C
B) 15x4+5x+6+C\frac { 1 } { 5 } \sqrt { x ^ { 4 } + 5 x + 6 } + C
C) 25x4+5x+6+C\frac { 2 } { 5 } \sqrt { x ^ { 4 } + 5 x + 6 } + C
D) 25x5+5x+6+C\frac { 2 } { 5 } \sqrt { x ^ { 5 } + 5 x + 6 } + C
E) 15(x5+5x+6)+C\frac { 1 } { 5 } \left( x ^ { 5 } + 5 x + 6 \right) + C
Question
Find the indefinite integral of the following function and check the result by differentiation. x4(4+x5)dx\int x ^ { 4 } \sqrt { \left( 4 + x ^ { 5 } \right) } d x

A) (4+x5)3210+C\frac { \left( 4 + x ^ { 5 } \right) ^ { \frac { 3 } { 2 } } } { 10 } + C
B) 2(4+x5)2315+C\frac { 2 \left( 4 + x ^ { 5 } \right) ^ { \frac { 2 } { 3 } } } { 15 } + C
C) (4+x5)3215+C\frac { \left( 4 + x ^ { 5 } \right) ^ { \frac { 3 } { 2 } } } { 15 } + C
D) 2(4+x5)3215+C\frac { 2 \left( 4 + x ^ { 5 } \right) ^ { \frac { 3 } { 2 } } } { 15 } + C
E)none of the above
Question
Use the Log Rule to find the indefinite integral for 146xdx\int \frac { 1 } { 4 - 6 x } d x .

A) 16ln4+6x+C- \frac { 1 } { 6 } \ln | 4 + 6 x | + C
B) 14ln46x+C\frac { 1 } { 4 } \ln | 4 - 6 x | + C
C) 16ln46x+C- \frac { 1 } { 6 } \ln | 4 - 6 x | + C
D) 14ln4+6x+C\frac { 1 } { 4 } \ln | 4 + 6 x | + C
E) 16ln46x+C\frac { 1 } { 6 } \ln | 4 - 6 x | + C
Question
Evaluate the integral (7x+2)1/5dx\int ( 7 x + 2 ) ^ { 1 / 5 } d x

A) 56(7x+2)6/5+C\frac { 5 } { 6 } ( 7 x + 2 ) ^ { 6 / 5 } + C
B) 65(7x+2)4/5+C\frac { 6 } { 5 } ( 7 x + 2 ) ^ { - 4 / 5 } + C
C) 356(7x+2)4/5+C\frac { 35 } { 6 } ( 7 x + 2 ) ^ { - 4 / 5 } + C
D) 425(7x+2)6/5+C\frac { 42 } { 5 } ( 7 x + 2 ) ^ { 6 / 5 } + C
E) 542(7x+2)6/5+C\frac { 5 } { 42 } ( 7 x + 2 ) ^ { 6 / 5 } + C
Question
Find the indefinite integral of the following function and check the result by differentiation. u2(5+u3)3du\int u ^ { 2 } \left( 5 + u ^ { 3 } \right) ^ { 3 } d u

A) 12(5+u3)4+C12 \left( 5 + u ^ { 3 } \right) ^ { 4 } + C
B) (5+u3)412+C\frac { \left( 5 + u ^ { 3 } \right) ^ { 4 } } { 12 } + C
C) (5+u3)44+C\frac { \left( 5 + u ^ { 3 } \right) ^ { 4 } } { 4 } + C
D) (5+u2)412+C\frac { \left( 5 + u ^ { 2 } \right) ^ { 4 } } { 12 } + C
E)none of the above
Question
Find the indefinite integral. x2+18x+2x3+27x2+6xdx\int \frac { x ^ { 2 } + 18 x + 2 } { x ^ { 3 } + 27 x ^ { 2 } + 6 x } d x

A) 13lnx3+27x2+6x+C\frac { 1 } { 3 } \ln \left| x ^ { 3 } + 27 x ^ { 2 } + 6 x \right| + C
B) 13lnx3+27x2+6x+C- \frac { 1 } { 3 } \ln \left| x ^ { 3 } + 27 x ^ { 2 } + 6 x \right| + C
C) lnx3+27x2+6x+C\ln \left| x ^ { 3 } + 27 x ^ { 2 } + 6 x \right| + C
D) 3lnx3+27x2+6x+C- 3 \ln \left| x ^ { 3 } + 27 x ^ { 2 } + 6 x \right| + C
E) lnx3+27x2+6x+C- \ln \left| x ^ { 3 } + 27 x ^ { 2 } + 6 x \right| + C
Question
Find the supply function x=f(p)x = f ( p ) that satisfies dxdp=pp225\frac { d x } { d p } = p \sqrt { p ^ { 2 } - 25 } and the initial condition x = 700 when p=$13p = \$ 13 .

A) x=13(p225)3/2+124x = \frac { 1 } { 3 } \left( p ^ { 2 } - 25 \right) ^ { 3 / 2 } + 124
B) x=13(p225)1/2+696x = \frac { 1 } { 3 } \left( p ^ { 2 } - 25 \right) ^ { 1 / 2 } + 696
C) x=13(p5)+124x = \frac { 1 } { 3 } ( p - 5 ) + 124
D) x=15(p225)3/2+127x = \frac { 1 } { 5 } \left( p ^ { 2 } - 25 \right) ^ { 3 / 2 } + 127
E) x=1p1(p225)1/2+699x = \frac { 1 } { p - 1 } \left( p ^ { 2 } - 25 \right) ^ { 1 / 2 } + 699
Question
Evaluate the integral e23xdx\int e ^ { 23 x } d x

A) 123e23x+C\frac { 1 } { 23 } e ^ { 23 x } + C
B) 23e23x+C23 e ^ {2 3 x } + C
C) 124e24x+C\frac { 1 } { 24 } e ^ { 24 x } + C
D) 23e22x+C23 e ^ { 22 x } + C
E) 122e22x+C\frac { 1 } { 22 } e ^ { 2 2 x } + C
Question
The marginal cost of a product is modeled by dCdx=8x+1\frac { d C } { d x } = \frac { 8 } { \sqrt { x + 1 } } , when x = 8, C = 40. Find the cost function.

A) C(x)=8x+1+8C ( x ) = 8 \sqrt { x + 1 } + - 8
B) C(x)=16(x+1)+6C ( x ) = 16 ( x + 1 ) + - 6
C) C(x)=16x+1+8C ( x ) = 16 \sqrt { x + 1 } + - 8
D) C(x)=8x+1+8C ( x ) = 8 \sqrt { x + 1 } + - 8 .
E) C(x)=8(x+1)+6C ( x ) = 8 ( x + 1 ) + - 6
Question
Find the indefinite integral. 7x298x3dx\int \frac { 7 x ^ { 2 } } { 9 - 8 x ^ { 3 } } d x

A) 247ln98x3+C\frac { 24 } { 7 } \ln \left| 9 - 8 x ^ { 3 } \right| + C
B) ln98x3+C\ln \left| 9 - 8 x ^ { 3 } \right| + C
C) 7ln98x3+C7 \ln \left| 9 - 8 x ^ { 3 } \right| + C
D) 724ln98x3+C- \frac { 7 } { 24 } \ln \left| 9 - 8 x ^ { 3 } \right| + C
E) 124ln98x3+C- \frac { 1 } { 24 } \ln \left| 9 - 8 x ^ { 3 } \right| + C
Question
Find the indefinite integral of the following function and check the result by differentiation. 3t2t3+3dt\int \frac { 3 t ^ { 2 } } { \sqrt { t ^ { 3 } + 3 } } d t

A) 2t3+3+C2 \sqrt { t ^ { 3 } + 3 } + C
B) t3+3+C\sqrt { t ^ { 3 } + 3 } + C
C) 2t2+3+C2 \sqrt { t ^ { 2 } + 3 } + C
D) 12t3+3+C\frac { 1 } { 2 } \sqrt { t ^ { 3 } + 3 } + C
E) 12t2+3+C\frac { 1 } { 2 } \sqrt { t ^ { 2 } + 3 } + C
Question
Evaluate the integral (4x5+3)8x4dx\int \left( 4 x ^ { 5 } + 3 \right) ^ { 8 } x ^ { 4 } d x

A) 1140(4x5+3)7+C\frac { 1 } { 140 } \left( 4 x ^ { 5 } + 3 \right) ^ { 7 } + C
B) 209(4x5+3)9+C\frac { 20 } { 9 } \left( 4 x ^ { 5 } + 3 \right) ^ { 9 } + C
C) 52(4x5+3)8+C\frac { 5 } { 2 } \left( 4 x ^ { 5 } + 3 \right) ^ { 8 } + C
D) 1180(4x5+3)9+C\frac { 1 } { 180 } \left( 4 x ^ { 5 } + 3 \right) ^ { 9 } + C
E) 1160(4x5+3)8+C\frac { 1 } { 160 } \left( 4 x ^ { 5 } + 3 \right) ^ { 8 } + C
Question
Find the indefinite integral. e4ydy\int e ^ { - 4 y } d y

A) 4e4y+C- 4 e ^ { - 4 y } + C
B) 4e5y+C- 4 e ^ { - 5 y } + C
C) 14e5y+C- \frac { 1 } { 4 } e ^ { - 5 y } + C
D) 14e4y+C- \frac { 1 } { 4 } e ^ { - 4 y } + C
E) 14e14y+C- \frac { 1 } { 4 } e ^ { \frac { - 1 } { 4 } y } + C
Question
Sketch the region whose area is given by the definite integral and then use a geometric formula to evaluate the integral. 339x2dx\int _ { - 3 } ^ { 3 } \sqrt { 9 - x ^ { 2 } } d x

A) 9π9 \pi
B) 9π4\frac { 9 \pi } { 4 }
C) 92\frac { 9 } { 2 }
D) 9π2\frac { 9 \pi } { 2 }
E)none of the above
Question
Find the area of the region bounded by the graphs of the algebraic functions. f(x)=x24xg(x)=0\begin{array} { l } f ( x ) = x ^ { 2 } - 4 x \\g ( x ) = 0\end{array}

A) A=176A = \frac { 17 } { 6 }
B) A=163A = \frac { 16 } { 3 }
C) A=112A = \frac { 11 } { 2 }
D) A=323A = \frac { 32 } { 3 }
E) A=31A = \frac { 3 } { 1 }
Question
Use any basic integration formula or formulas to find the indefinite integral ex2exdx\int e ^ { x } \sqrt { 2 - e ^ { x } } d x .

A) 32(2ex)3/2+C\frac { 3 } { 2 } \left( 2 - e ^ { x } \right) ^ { 3 / 2 } + C
B) 32(4ex)2/3+C\frac { 3 } { 2 } \left( 4 - e ^ { x } \right) ^ { 2 / 3 } + C
C) 32(4ex)3/2+C- \frac { 3 } { 2 } \left( 4 - e ^ { x } \right) ^ { 3 / 2 } + C
D) 23(2ex)2/3+C\frac { 2 } { 3 } \left( 2 - e ^ { x } \right) ^ { 2 / 3 } + C
E) 23(2ex)3/2+C- \frac { 2 } { 3 } \left( 2 - e ^ { x } \right) ^ { 3 / 2 } + C
Question
Find the area between the curve y=5x26x8y = 5 x ^ { 2 } - 6 x - 8 and the x-axis from x=1 to x=3x = - 1 \text { to } x = 3 .

A) 283\frac { 28 } { 3 }
B) 1963\frac { 196 } { 3 }
C) 1409\frac { 140 } { 9 }
D) 1403\frac { 140 } { 3 }
E) 143\frac { 14 } { 3 }
Question
Set up the definite integral that gives the area of the region bounded by the graphs. f(x)=(x4)3g(x)=x4\begin{array} { l } f ( x ) = ( x - 4 ) ^ { 3 } \\g ( x ) = x - 4\end{array}  <strong>Set up the definite integral that gives the area of the region bounded by the graphs.  \begin{array} { l } f ( x ) = ( x - 4 ) ^ { 3 } \\ g ( x ) = x - 4 \end{array}   </strong> A)  \int _ { 3 } ^ { 4 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x  B)  \int _ { - 1 } ^ { 0 } \left( ( x - 4 ) + ( x - 4 ) ^ { 3 } \right) d x + \int _ { 0 } ^ { 1 } \left( ( x - 4 ) ^ { 3 } + ( x - 4 ) \right) d x  C)  \int _ { - 1 } ^ { 0 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x + \int _ { 0 } ^ { 1 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x  D)  \int _ { 3 } ^ { 4 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x  E)  \int _ { 3 } ^ { 4 } \left( ( x - 4 ) ^ { 3 } + ( x - 4 ) \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) + ( x - 4 ) ^ { 3 } \right) d x  <div style=padding-top: 35px>

A) 34((x4)(x4)3)dx+45((x4)3(x4))dx\int _ { 3 } ^ { 4 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x
B) 10((x4)+(x4)3)dx+01((x4)3+(x4))dx\int _ { - 1 } ^ { 0 } \left( ( x - 4 ) + ( x - 4 ) ^ { 3 } \right) d x + \int _ { 0 } ^ { 1 } \left( ( x - 4 ) ^ { 3 } + ( x - 4 ) \right) d x
C) 10((x4)3(x4))dx+01((x4)(x4)3)dx\int _ { - 1 } ^ { 0 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x + \int _ { 0 } ^ { 1 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x
D) 34((x4)3(x4))dx+45((x4)(x4)3)dx\int _ { 3 } ^ { 4 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x
E) 34((x4)3+(x4))dx+45((x4)+(x4)3)dx\int _ { 3 } ^ { 4 } \left( ( x - 4 ) ^ { 3 } + ( x - 4 ) \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) + ( x - 4 ) ^ { 3 } \right) d x
Question
Find the average value of the function over the given interval. f(x)=7x3f ( x ) = 7 \sqrt [ 3 ] { x } on [0,8]

A) 74\frac { 7 } { 4 }
B) 149\frac { 14 } { 9 }
C) 212\frac { 21 } { 2 }
D) 83\frac { 8 } { 3 }
E) 643\frac { 64 } { 3 }
Question
Evaluate the following definite integral. 1416z+7dz\int _ { 1 } ^ { 4 } \frac { 1 } { \sqrt { 6 z + 7 } } d z Use a graphing utility to check your answer.

A) 31136\frac { \sqrt { 31 } - \sqrt { 13 } } { 6 }
B) 31133\frac { \sqrt { 31 } - \sqrt { 13 } } { 3 }
C) 31+133\frac { \sqrt { 31 } + \sqrt { 13 } } { 3 }
D) 31+136\frac { \sqrt { 31 } + \sqrt { 13 } } { 6 }
E) 13313\frac { \sqrt { 13 } - \sqrt { 31 } } { 3 }
Question
Determine the area of the given region. y=2x(1x)y = 2 x ( 1 - x )  <strong>Determine the area of the given region.  y = 2 x ( 1 - x )   </strong> A)  \frac { 5 } { 3 }  B)  \frac { 1 } { 3 }  C)  \frac { 3 } { 7 }  D)  \frac { 1 } { 2 }  E)None of the above <div style=padding-top: 35px>

A) 53\frac { 5 } { 3 }
B) 13\frac { 1 } { 3 }
C) 37\frac { 3 } { 7 }
D) 12\frac { 1 } { 2 }
E)None of the above
Question
Find the area of the region bounded by the graphs of the algebraic functions. f(x)=x2+18x+81g(x)=11(x+9)\begin{array} { l } f ( x ) = x ^ { 2 } + 18 x + 81 \\g ( x ) = 11 ( x + 9 )\end{array}

A) A=13316A = \frac { 1331 } { 6 }
B) A=13313A = \frac { 1331 } { 3 }
C) A=133112A = \frac { 1331 } { 12 }
D) A=14936A = \frac { 1493 } { 6 }
E) A=18176A = \frac { 1817 } { 6 }
Question
The rate of depreciation of a building is given by D(t)=8,300(20t)D ^ { \prime } ( t ) = 8,300 ( 20 - t ) dollars per year, 0t200 \leq t \leq 20 Use the definite integral to find the total depreciation over the first 2020 years.

A) $1,660,000\$ 1,660,000
B) $83,000\$ 83,000
C) $830,000\$ 830,000
D) $474,286\$ 474,286
E) $3,320,000\$ 3,320,000
Question
Determine the graph whose area (the shaded region) is represented by the integral. 14(x24x+5)(x+1)dx\int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x

A)  <strong>Determine the graph whose area (the shaded region) is represented by the integral.  \int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Determine the graph whose area (the shaded region) is represented by the integral.  \int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Determine the graph whose area (the shaded region) is represented by the integral.  \int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Determine the graph whose area (the shaded region) is represented by the integral.  \int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Determine the graph whose area (the shaded region) is represented by the integral.  \int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the average value of the function over the given interval. f(x)=9x2f ( x ) = 9 - x ^ { 2 } on [-3,3]

A)6
B)21
C)36
D)4
E)20
Question
Sketch the region whose area is given by the definite integral and then use a geometric formula to evaluate the integral. 375t dt\int _ { 3 } ^ { 7 } 5 t ~d t

A)-145
B)290
C)200
D)100
E)10
Question
The integrand of the following definite integral is a difference of two functions. 04[(x+1)12x]dx\int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x Sketch the graph of the two functions and shade the region whose area is represented by the integral.

A)  <strong>The integrand of the following definite integral is a difference of two functions.  \int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x  Sketch the graph of the two functions and shade the region whose area is represented by the integral.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>The integrand of the following definite integral is a difference of two functions.  \int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x  Sketch the graph of the two functions and shade the region whose area is represented by the integral.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>The integrand of the following definite integral is a difference of two functions.  \int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x  Sketch the graph of the two functions and shade the region whose area is represented by the integral.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>The integrand of the following definite integral is a difference of two functions.  \int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x  Sketch the graph of the two functions and shade the region whose area is represented by the integral.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>The integrand of the following definite integral is a difference of two functions.  \int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x  Sketch the graph of the two functions and shade the region whose area is represented by the integral.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Evaluate the definite integral of the algebraic function. 24(6z+4)dz\int _ { 2 } ^ { 4 } ( - 6 z + 4 ) d z Use a graphing utility to verify your results.

A)-12
B)-56
C)-36
D)8
E)-28
Question
Find the area of the shaded region.  <strong>Find the area of the shaded region.  </strong> A)  \frac { 13 } { 6 }  B)  \frac { 37 } { 12 }  C)  \frac { 37 } { 6 }  D)  \frac { 13 } { 12 }  E)  \frac { 13 } { 7 }  <div style=padding-top: 35px>

A) 136\frac { 13 } { 6 }
B) 3712\frac { 37 } { 12 }
C) 376\frac { 37 } { 6 }
D) 1312\frac { 13 } { 12 }
E) 137\frac { 13 } { 7 }
Question
Use the values 02f(x)dx=8\int _ { 0 } ^ { 2 } f ( x ) d x = 8 and 02g(x)dx=3\int _ { 0 } ^ { 2 } g ( x ) d x = 3 to evaluate the definite integral 02[f(x)2g(x)]dx\int _ { 0 } ^ { 2 } [ f ( x ) - 2 g ( x ) ] d x .

A)14
B)2
C)5
D)11
E)4
Question
Find the equation of the function whose derivative is f(x)=x2+9x+7x1f ^ { \prime } ( x ) = \frac { x ^ { 2 } + 9 x + 7 } { x - 1 } and whose graph passes through the point (2,4)( 2,4 ) .

A) x22+10x+17lnx119\frac { x ^ { 2 } } { 2 } + 10 x + 17 \ln | x - 1 | - 19
B) x22+9x+17lnx118\frac { x ^ { 2 } } { 2 } + 9 x + 17 \ln | x - 1 | - 18
C) x22+10x+17lnx118\frac { x ^ { 2 } } { 2 } + 10 x + 17 \ln | x - 1 | - 18
D) x22+9x+7lnx118\frac { x ^ { 2 } } { 2 } + 9 x + 7 \ln | x - 1 | - 18
E) x22+10x+7lnx119\frac { x ^ { 2 } } { 2 } + 10 x + 7 \ln | x - 1 | - 19
Question
Evaluate the definite integral 47(x7)5dx\int _ { 4 } ^ { 7 } ( x - 7 ) ^ { 5 } d x .

A) 7295\frac { 729 } { 5 }
B) 7297- \frac { 729 } { 7 }
C) 7295- \frac { 729 } { 5 }
D) 2432\frac { 243 } { 2 }
E) 2432- \frac { 243 } { 2 }
Question
Evaluate the definite integral of the algebraic function. 38(u65u56)du\int _ { 3 } ^ { 8 } \left( u ^ { \frac { 6 } { 5 } } - u ^ { \frac { 5 } { 6 } } \right) d u Use a graphing utility to verify your results.

A)18.4007
B)29.6329
C)59.5941
D)38.9974
E)48.0336
Question
Estimate the surface area of the pond shown in the figure using the Midpoint Rule.  <strong>Estimate the surface area of the pond shown in the figure using the Midpoint Rule.  </strong> A)  \approx 990 \mathrm { ft } ^ { 2 }  B)  \approx 9920 \mathrm {f t } ^ { 2 }  C)  \approx 9020 \mathrm {f t } ^ { 2 }  D)  \approx 9990 \mathrm { ft } ^ { 2 }  E)  \approx 920 \mathrm { ft } ^ { 2 }  <div style=padding-top: 35px>

A) 990ft2\approx 990 \mathrm { ft } ^ { 2 }
B) 9920ft2\approx 9920 \mathrm {f t } ^ { 2 }
C) 9020ft2\approx 9020 \mathrm {f t } ^ { 2 }
D) 9990ft2\approx 9990 \mathrm { ft } ^ { 2 }
E) 920ft2\approx 920 \mathrm { ft } ^ { 2 }
Question
Use the Midpoint Rule with n = 4 to approximate the area of the following region. f(x)=1x,[1,5]f ( x ) = \frac { 1 } { x } , [ 1,5 ]  <strong>Use the Midpoint Rule with n = 4 to approximate the area of the following region.  f ( x ) = \frac { 1 } { x } , [ 1,5 ]   </strong> A)1.156 B)1.324 C)1.575 D)1.275 E)1.876 <div style=padding-top: 35px>

A)1.156
B)1.324
C)1.575
D)1.275
E)1.876
Question
The demand function for a product is p=1404xp = 140 - 4 x , where p is the number of dollars and x is the number of units. If the equilibrium price is $40\$ 40 , what is the consumer's surplus?

A)$ 11751175
B)$ 12501250
C)$ 13751375
D)$ 12201220
E)$ 13401340
Question
Use the Midpoint Rule with n = 4 to approximate the area of the region bounded by the graph of f(x)=4x2f ( x ) = 4 - x ^ { 2 } and the x-axis over the interval [ 2,2- 2,2 ].

A)11.4421
B)11.0023
C)11.2114
D)11.0000
E)12.0000
Question
The revenue from a manufacturing process (in millions of dollars per year) is projected to follow the model R=400+0.07tR = 400 + 0.07 t for 10 years. Over the same period of time, the cost (in millions of dollars per year) is projected to follow the model C=60+0.5t2C = 60 + 0.5 t ^ { 2 } , where t is the time (in years). Approximate the profit over the 10-year period, beginning with t = 0. Round your answer to two decimal places.

A) $3236.83\$ 3236.83 million
B) $3378.50\$ 3378.50 million
C) $3153.50\$ 3153.50 million
D) $3235.67\$ 3235.67 million
E) $3385.67\$ 3385.67 million
Question
Use the Midpoint Rule n = 4 to approximate the area of the following region. f(y)=14y,[2,4]f ( y ) = \frac { 1 } { 4 } y , [ 2,4 ]  <strong>Use the Midpoint Rule n = 4 to approximate the area of the following region.  f ( y ) = \frac { 1 } { 4 } y , [ 2,4 ]   </strong> A)2.5 B)1.2 C)1.5 D)1.9 E)2.3 <div style=padding-top: 35px>

A)2.5
B)1.2
C)1.5
D)1.9
E)2.3
Question
Estimate the surface area of the oil spill shown in the figure using the Midpoint Rule.  <strong>Estimate the surface area of the oil spill shown in the figure using the Midpoint Rule.  </strong> A)  \approx  481.6  m i ^ { 2 }  B)  \approx  301.6  m i ^ { 2 }  C)  \approx  311.6  m i ^ { 2 }  D)  \approx  431.6  m i ^ { 2 }  E)  \approx  381.6  m i ^ { 2 }  <div style=padding-top: 35px>

A) \approx 481.6 mi2m i ^ { 2 }
B) \approx 301.6 mi2m i ^ { 2 }
C) \approx 311.6 mi2m i ^ { 2 }
D) \approx 431.6 mi2m i ^ { 2 }
E) \approx 381.6 mi2m i ^ { 2 }
Question
Use the Midpoint Rule with n=4n = 4 to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region. f(x)=(x24)2,[2,2]f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ]

A)The approximate area is: 30.25\approx 30.25  <strong>Use the Midpoint Rule with  n = 4  to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region.  f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ] </strong> A)The approximate area is:  \approx 30.25    B)The approximate area is:  \approx 24.25    C)The approximate area is:  \approx 34.25    D)The approximate area is:  \approx 14.25    E)The approximate area is:  \approx 34.99    <div style=padding-top: 35px>
B)The approximate area is: 24.25\approx 24.25  <strong>Use the Midpoint Rule with  n = 4  to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region.  f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ] </strong> A)The approximate area is:  \approx 30.25    B)The approximate area is:  \approx 24.25    C)The approximate area is:  \approx 34.25    D)The approximate area is:  \approx 14.25    E)The approximate area is:  \approx 34.99    <div style=padding-top: 35px>
C)The approximate area is: 34.25\approx 34.25  <strong>Use the Midpoint Rule with  n = 4  to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region.  f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ] </strong> A)The approximate area is:  \approx 30.25    B)The approximate area is:  \approx 24.25    C)The approximate area is:  \approx 34.25    D)The approximate area is:  \approx 14.25    E)The approximate area is:  \approx 34.99    <div style=padding-top: 35px>
D)The approximate area is: 14.25\approx 14.25  <strong>Use the Midpoint Rule with  n = 4  to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region.  f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ] </strong> A)The approximate area is:  \approx 30.25    B)The approximate area is:  \approx 24.25    C)The approximate area is:  \approx 34.25    D)The approximate area is:  \approx 14.25    E)The approximate area is:  \approx 34.99    <div style=padding-top: 35px>
E)The approximate area is: 34.99\approx 34.99  <strong>Use the Midpoint Rule with  n = 4  to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region.  f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ] </strong> A)The approximate area is:  \approx 30.25    B)The approximate area is:  \approx 24.25    C)The approximate area is:  \approx 34.25    D)The approximate area is:  \approx 14.25    E)The approximate area is:  \approx 34.99    <div style=padding-top: 35px>
Question
Use the Midpoint Rule with n = 4 to approximate the area of the region bounded by the graph of f(x)=3xx4f ( x ) = 3 x - x ^ { 4 } and the x-axis over the interval [0,1].

A)1.7524
B)1.3126
C)1.5217
D)2.3103
E)1.3103
Question
Two models, R1=7.21+0.58tR _ { 1 } = 7.21 + 0.58 t and R2=7.21+0.43tR _ { 2 } = 7.21 + 0.43 t , are given for revenue (in billions of dollars per year) for a large corporation. Both models are estimates of revenues for 2007 through 2011, with t = 7 corresponding to 2007. Which model is projecting the greater revenue? How much more total revenue does that model project over the five-year period?

A)The model R1R _ { 1 } projects greater revenue than R2R _ { 2 } . $8.75\$ 8.75 billion
B)The model R2R _ { 2 } projects greater revenue than R1R _ { 1 } . $7.75\$ 7.75 billion
C)The model R1R _ { 1 } projects greater revenue than R2R _ { 2 } . $6.75\$ 6.75 billion
D)The model R1R _ { 1 } projects greater revenue than R2R _ { 2 } . $10.75\$ 10.75 billion
E)The model R2R _ { 2 } projects greater revenue than R1R _ { 1 } . $16.75\$ 16.75 billion
Question
Find the consumer and producer surpluses by using the demand and supply functions, where p is the price (in dollars) and x is the number of units (in millions). Demand Function                 ~~~~~~~~~~~~~~~~ Supply Function
P=97523x           42xP = 975 - 23 x ~~~~~~~~~~~\quad 42 x

A)a. $2587.50b. $3725.00
B)a. $5587.50b. $4725.00
C)a. $2587.50b. $1725.00
D)a. $1587.50b. $4725.00
E)a. $3587.50b. $4725.00
Question
Estimate the surface area of the golf green shown in the figure using the midpoint rule. <strong>Estimate the surface area of the golf green shown in the figure using the midpoint rule.  </strong> A)966 B)161 C)1449 D)1550 E)234 <div style=padding-top: 35px>

A)966
B)161
C)1449
D)1550
E)234
Question
Use the Midpoint Rule with n=4n = 4 to approximate π\pi where π=0141+x2dx\pi = \int _ { 0 } ^ { 1 } \frac { 4 } { 1 + x ^ { 2 } } d x . Then use a graphing utility to evaluate the definite integral. Compare your results.

A)a. Midpoint Rule: 0.146801\approx 0.146801 b. Graphing utility: 3.141593\approx 3.141593
B)a. Midpoint Rule: 3.146801\approx 3.146801 b. Graphing utility: 0.141593\approx 0.141593
C)a. Midpoint Rule: 1.146801\approx 1.146801 b. Graphing utility: 3.141593\approx 3.141593
D)a. Midpoint Rule: 3.146801\approx 3.146801 b. Graphing utility: 3.141593\approx 3.141593
E)a. Midpoint Rule: 3.146801\approx 3.146801 b. Graphing utility: 1.141593\approx 1.141593
Question
Use the rectangles to approximate the area of the region. Compare your result with the exact area obtained with a definite integral. f(x)=2x+3,[0,1]f ( x ) = - 2 x + 3 , [ 0,1 ]  <strong>Use the rectangles to approximate the area of the region. Compare your result with the exact area obtained with a definite integral.  f ( x ) = - 2 x + 3 , [ 0,1 ]   </strong> A)a. The approximate area: 3b. The exact area: 2 B)a. The approximate area: 2b. The exact area: 3 C)a. The approximate area: 2b. The exact area: 1 D)a. The approximate area: 2b. The exact area: 2 E)a. The approximate area: 1b. The exact area: 2 <div style=padding-top: 35px>

A)a. The approximate area: 3b. The exact area: 2
B)a. The approximate area: 2b. The exact area: 3
C)a. The approximate area: 2b. The exact area: 1
D)a. The approximate area: 2b. The exact area: 2
E)a. The approximate area: 1b. The exact area: 2
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/74
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: Integration and Its Applications
1
Find the cost function for the marginal cost dCdx=140x2+90\frac { d C } { d x } = \frac { 1 } { 40 } x ^ { 2 } + 90 and fixed cost of $2000\$ 2000 (for x = 0).

A) C(x)=180x3+90x+2000C ( x ) = \frac { 1 } { 80 } x ^ { 3 } + 90 x + 2000
B) C(x)=1120x3+2000x+90C ( x ) = \frac { 1 } { 120 } x ^ { 3 } + 2000 x + 90
C) C(x)=1120x3+90x+2000C ( x ) = \frac { 1 } { 120 } x ^ { 3 } + 90 x + 2000
D) C(x)=180x4+2000x+90C ( x ) = \frac { 1 } { 80 } x ^ { 4 } + 2000 x + 90
E) C(x)=1120x4+90x+2000C ( x ) = \frac { 1 } { 120 } x ^ { 4 } + 90 x + 2000
C(x)=1120x3+90x+2000C ( x ) = \frac { 1 } { 120 } x ^ { 3 } + 90 x + 2000
2
Use algebra to rewrite the integrand; then integrate and simplify. x+14xdx\int \frac { x + 14 } { \sqrt { x } } d x

A) 23xx+14x+C\frac { 2 } { 3 } x \sqrt { x } + 14 \sqrt { x } + C
B) 23xx+28x+C\frac { 2 } { 3 } x \sqrt { x } + 28 \sqrt { x } + C
C) 23xx+42x+C\frac { 2 } { 3 } x \sqrt { x } + 42 \sqrt { x } + C
D) 12x2+42x+C\frac { 1 } { 2 } x ^ { 2 } + 42 \sqrt { x } + C
E) 12x2+28x+C\frac { 1 } { 2 } x ^ { 2 } + 28 \sqrt { x } + C
23xx+28x+C\frac { 2 } { 3 } x \sqrt { x } + 28 \sqrt { x } + C
3
Evaluate the integral 19x7dx\int 19 x ^ { 7 } d x .

A) 133x6+C133 x ^ { 6 } + C
B) 152x8+C152 x ^ { 8 } + C
C) 196x6+C\frac { 19 } { 6 } x ^ { 6 } + C
D) 198x8+C\frac { 19 } { 8 } x ^ { 8 } + C
E) 197x7+C\frac { 19 } { 7 } x ^ { 7 } + C
198x8+C\frac { 19 } { 8 } x ^ { 8 } + C
4
Find the indefinite integral and check the result by differentiation. (16x314x+5)dx\int \left( 16 x ^ { 3 } - 14 x + 5 \right) d x

A) 4x47x2+5+C4 x ^ { 4 } - 7 x ^ { 2 } + 5 + C
B) 4x47x+5x4 x ^ { 4 } - 7 x + 5 x
C) 12x314x2+5x+C12 x ^ { 3 } - 14 x ^ { 2 } + 5 x + C
D) 4x47x2+5x+C4 x ^ { 4 } - 7 x ^ { 2 } + 5 x + C
E) 4x47x3+5x+C4 x ^ { 4 } - 7 x ^ { 3 } + 5 x + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
5
A ball is thrown vertically upwards from a height of 10 ft with an initial velocity of 70 ft per second. How high will the ball go?

A)239.6875 ft
B)67.4219 ft
C)86.5625 ft
D)219.6875 ft
E)241.6875 ft
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
6
Find the indefinite integral v1/10dv\int v ^ { - 1 / 10 } d v and check your result by differentiation.

A) 9v91010\frac { 9 v ^ { \frac { 9 } { 10 } } } { 10 }
B) v9109\frac { v ^ { \frac { 9 } { 10 } } } { 9 }
C) 11v11109\frac { 11 v ^ { \frac { 11 } { 10 } } } { 9 }
D) 10v9109\frac { 10 v ^ { \frac { 9 } { 10 } } } { 9 }
E) v111011\frac { v ^ { \frac { 11 } { 10 } } } { 11 }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
7
Identify u and du/dxd u / d x for the integral (8+1x8)8(8x9)dx\int \left( 8 + \frac { 1 } { x ^ { 8 } } \right) ^ { 8 } \left( - \frac { 8 } { x ^ { 9 } } \right) d x .

A) u=8+1x8u = 8 + \frac { 1 } { x ^ { 8 } } and du/dx=8x9d u / d x = \frac { 8 } { x ^ { 9 } }
B) u=(8+1x8)7u = \left( 8 + \frac { 1 } { x ^ { 8 } } \right) ^ { 7 } and du/dx=8x9du / d x = - \frac { 8 } { x ^ { 9 } }
C) u=8+1x8u = 8 + \frac { 1 } { x ^ { 8 } } and du/dx=8x9d u/ d x = - \frac { 8 } { x ^ { 9 } }
D) u=8+1x8u = 8 + \frac { 1 } { x ^ { 8 } } and du/dx=9x9d u / d x = - \frac { 9 } { x ^ { 9 } }
E) u=(8+1x8)7u = \left( 8 + \frac { 1 } { x ^ { 8 } } \right) ^ { 7 } and du/dx=8x9d u / d x = \frac { 8 } { x ^ { 9 } }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
8
Find the indefinite integral 4dx\int 4 d x and check your result by differentiation.

A) 4x4 x
B) 4x24 x ^ { 2 }
C)4
D) 88
E) 8x8 x
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
9
Find the particular solution that satisfies the differential equation f(x)=12x5f ^ { \prime } ( x ) = \frac { 1 } { 2 } x - 5 and initial condition f(4)=16f ( 4 ) = - 16 .

A) f(x)=15x25xf ( x ) = \frac { 1 } { 5 } x ^ { 2 } - 5 x
B) f(x)=17x2+5x1260f ( x ) = \frac { 1 } { 7 } x ^ { 2 } + 5 x - 1260
C) f(x)=14x25xf ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 x
D) f(x)=14x25x1260f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 x - 1260
E) f(x)=15x2+5xf ( x ) = \frac { 1 } { 5 } x ^ { 2 } + 5 x
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
10
Find the indefinite integral and check the result by differentiation. (8t+3)dt\int ( - 8 t + 3 ) d t

A) 4t2+3t+C- 4 t ^ { 2 } + 3 t + C
B) 8t2+3t+C- 8 t ^ { 2 } + 3 t + C
C) 4t2+3t- 4 t ^ { 2 } + 3 t
D) 8- 8
E)none of the above
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
11
Identify uu and du/dxd u / d x for the integral 1x11(11x10)dx\int \sqrt { 1 - x ^ { 11 } } \left( - 11 x ^ { 10 } \right) d x .

A) u=1x11u = 1 - x ^ { 11 } and du/dx=12xd u / d x = - 12 x
B) u=1x11u = 1 - x ^ { 11 } and du/dx=11x10d u / d x = - 11 x ^ { 10 }
C) u=1x11u = \sqrt { 1 - x ^ { 11 } } and du/dx=11x10d u / d x = - 11 x ^ { 10 }
D) u=1x11u= 1 - x ^ { 11 } and du/dx=11xd u / d x = 11 x
E) u=1x11u = \sqrt { 1 - x ^ { 11 } } and du/dx=12xd u / d x = 12 x
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
12
Evaluate the integral (3+x3/5)dx\int \left( 3 + x ^ { 3 / 5 } \right) d x .

A) 3x+58x8/5+C3 x + \frac { 5 } { 8 } x ^ { 8 / 5 } + C
B) 3x+85x8/5+C3 x + \frac { 8 } { 5 } x ^ { 8 / 5 } + C
C) 92+58x8/5+C\frac { 9 } { 2 } + \frac { 5 } { 8 } x ^ { 8 / 5 } + C
D) 35x2/5+C\frac { 3 } { 5 } x ^ { - 2 / 5 } + C
E) 35x8/5+C\frac { 3 } { 5 } x ^ { 8 /5 } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
13
Evaluate the integral (2x29x9)dx\int \left( - 2 x ^ { 2 } - 9 x - 9 \right) d x .

A) 6x318x29x+C- 6 x ^ { 3 } - 18 x ^ { 2 } - 9 x + C
B) 23x392x2+812+C- \frac { 2 } { 3 } x ^ { 3 } - \frac { 9 } { 2 } x ^ { 2 } + \frac { 81 } { 2 } + C
C) 23x392x2+812x+C- \frac { 2 } { 3 } x ^ { 3 } - \frac { 9 } { 2 } x ^ { 2 } + \frac { 81 } { 2 } x + C
D) 23x392x29x+C- \frac { 2 } { 3 } x ^ { 3 } - \frac { 9 } { 2 } x ^ { 2 } - 9 x + C
E) 4x9+C- 4 x - 9 + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
14
An evergreen nursery sells a certain shrub after 4 years. The growth rate of the shrub is given by dh/dt=2.5t+6d h / d t = 2.5 t + 6 , where t is the time in years and h is the height in centimeters. The seedlings are 10 centimeters tall when planted (t = 0). How tall are the shrubs when they are sold?

A)36 centimeters
B)40 centimeters
C)44 centimeters
D)54 centimeters
E)70 centimeters
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
15
Evaluate the integral (x6+7x43)dx\int \left( x ^ { 6 } + 7 x ^ { 4 } - 3 \right) d x .

A) 17x7+75x592+C\frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - \frac { 9 } { 2 } + C  <strong>Evaluate the integral  \int \left( x ^ { 6 } + 7 x ^ { 4 } - 3 \right) d x  .</strong> A)  \frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - \frac { 9 } { 2 } + C    B)  \frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - \frac { 9 } { 2 } x + C  C)  \frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - 3 x + C  D)  \frac { 1 } { 6 } x ^ { 6 } + \frac { 7 } { 4 } x ^ { 4 } - 3 x + C  E)  \frac { 1 } { 5 } x ^ { 5 } + \frac { 7 } { 3 } x ^ { 3 } - 3 x + C
B) 17x7+75x592x+C\frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - \frac { 9 } { 2 } x + C
C) 17x7+75x53x+C\frac { 1 } { 7 } x ^ { 7 } + \frac { 7 } { 5 } x ^ { 5 } - 3 x + C
D) 16x6+74x43x+C\frac { 1 } { 6 } x ^ { 6 } + \frac { 7 } { 4 } x ^ { 4 } - 3 x + C
E) 15x5+73x33x+C\frac { 1 } { 5 } x ^ { 5 } + \frac { 7 } { 3 } x ^ { 3 } - 3 x + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
16
Evaluate the integral (8x5+9)7(40x4)dx\int \left( 8 x ^ { 5 } + 9 \right) ^ { 7 } \left( 40 x ^ { 4 } \right) d x

A) 16(8x5+9)6+C\frac { 1 } { 6 } \left( 8 x ^ { 5 } + 9 \right) ^ { 6 } + C
B) 17(8x5+9)7+C\frac { 1 } { 7 } \left( 8 x ^ { 5 } + 9 \right) ^ { 7 } + C
C) 17(8x5+9)8+C\frac { 1 } { 7 } \left( 8 x ^ { 5 } + 9 \right) ^ { 8 } + C
D) 18(8x5+9)8+C\frac { 1 } { 8 } \left( 8 x ^ { 5 } + 9 \right) ^ { 8 } + C
E) 18(8x5+9)7+C\frac { 1 } { 8 } \left( 8 x ^ { 5 } + 9 \right) ^ { 7 } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
17
Find a function that satisfies the conditions f(x)=x5,f(0)=9,f(0)=5f ^ { \prime \prime } ( x ) = x ^ { 5 } , f ^ { \prime } ( 0 ) = 9 , f ( 0 ) = 5 .

A) f(x)=16x6+9xf ( x ) = \frac { 1 } { 6 } x ^ { 6 } + 9 x
B) f(x)=142x7+9x+5f ( x ) = \frac { 1 } { 42 } x ^ { 7 } + 9 x + 5
C) f(x)=142x6+9x+5f ( x ) = \frac { 1 } { 42 } x ^ { 6 } + 9 x + 5
D) f(x)=17x7+9xf ( x ) = \frac { 1 } { 7 } x ^ { 7 } + 9 x
E) f(x)=142x6+5x+9f ( x ) = \frac { 1 } { 42 } x ^ { 6 } + 5 x + 9
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
18
Evaluate the integral 4x6dx\int \frac { 4 } { x ^ { 6 } } d x .

A) 4ln(x6)+C4 \ln \left( x ^ { 6 } \right) + C
B) 47x7+C\frac { 4 } { 7 x ^ { 7 } } + C
C) 45ln(x5)+C- \frac { 4 } { 5 } \ln \left( x ^ { 5 } \right) + C
D) 47x7+C- \frac { 4 } { 7 x ^ { 7 } } + C
E) 45x5+C- \frac { 4 } { 5 x ^ { 5 } } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
19
The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative. <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)

A) <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)
B) <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)
C) <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)
D) <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)
E) <strong>The graph of the derivative of a function is given below. Sketch the graphs of two functions that have the given derivative.  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
20
Find the indefinite integral of the following function and check the result by differentiation. (1+4z)3dz\int ( 1 + 4 z ) ^ { 3 } d z

A) 4(1+4z)4+C4 ( 1 + 4 z ) ^ { 4 } + C
B) (1+4z)43+C\frac { ( 1 + 4 z ) ^ { 4 } } { 3 } + C
C) (1+4z)44+C\frac { ( 1 + 4 z ) ^ { 4 } } { 4 } + C
D) (1+4z)416+C\frac { ( 1 + 4 z ) ^ { 4 } } { 16 } + C
E)none of the above
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
21
Find the equation of the function f whose graph passes through the point (0,73)\left( 0 , \frac { 7 } { 3 } \right) and whose derivative is f(x)=x1x2f ^ { \prime } ( x ) = x \sqrt { 1 - x ^ { 2 } } .

A) f(x)=13[8(1x2)1/2]f ( x ) = \frac { 1 } { 3 } \left[ 8 - \left( 1 - x ^ { 2 } \right) ^ { 1 / 2 } \right]
B) f(x)=13[8(1x2)3/2]f ( x ) = \frac { 1 } { 3 } \left[ 8 - \left( 1 - x ^ { 2 } \right) ^ { 3 / 2 } \right]
C) f(x)=13[10+(1x2)2/3]f ( x ) = \frac { 1 } { 3 } \left[ 10 + \left( 1 - x ^ { 2 } \right) ^ { 2 / 3 } \right]
D) f(x)=13[10+(1x2)1/2]f ( x ) = \frac { 1 } { 3 } \left[ 10 + \left( 1 - x ^ { 2 } \right) ^ { 1 / 2 } \right]
E) f(x)=13[10(1x2)2/3]f ( x ) = \frac { 1 } { 3 } \left[ 10 - \left( 1 - x ^ { 2 } \right) ^ { 2 / 3 } \right]
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
22
Find the indefinite integral of the following function and check the result by differentiation. 5x(x2+5)4dx\int \frac { 5 x } { \left( x ^ { 2 } + 5 \right) ^ { 4 } } d x

A) 56(x2+5)3+C\frac { - 5 } { 6 \left( x ^ { 2 } + 5 \right) ^ { 3 } } + C
B) 56(x2+5)3+C\frac { - 5 } { 6 \left( x ^ { 2 } + 5 \right) ^ { 3 } } + C .
C) 26(x2+5)3+C\frac { - 2 } { 6 \left( x ^ { 2 } + 5 \right) ^ { 3 } } + C
D) 56(x2+5)4+C\frac { - 5 } { 6 \left( x ^ { 2 } + 5 \right) ^ { 4 } } + C
E) 56(x2+5)3+C\frac { - 5 } { 6 \left( x ^ { 2 } + 5 \right) ^ { - 3 } } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
23
Find the indefinite integral. x4x2+4dx\int \frac { x } { - 4 x ^ { 2 } + 4 } d x

A) 18x+C\frac { 1 } { - 8 x } + C
B) ln4x2+4+C\ln \left| - 4 x ^ { 2 } + 4 \right| + C
C) 18ln4x2+4+C\frac { - 1 } { 8 } \ln \left| - 4 x ^ { 2 } + 4 \right| + C
D) ln4x2+44x2+4+C\frac { \ln \left| - 4 x ^ { 2 } + 4 \right| } { - 4 x ^ { 2 } + 4 } + C
E) ln4x24+C\ln \left| - 4 x ^ { 2 } - 4 \right| + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
24
Evaluate the integral 210e0.1xdx\int 210 e ^ { 0.1 x } d x

A) 21e0.1x+C21 e ^ { 0.1 x } + C
B) 190.9e1.1x+C190.9 e ^ { 1.1 x } + C
C) 2100e0.1x+C2100 e ^ { 0.1 x } + C
D) 21e0.9x+C21 e ^ { - 0.9 x } + C
E) 21e1.1x+C21 e ^ { 1.1 x } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
25
Find the indefinite integral. x23x3+10dx\int \frac { x ^ { 2 } } { 3 x ^ { 3 } + 10 } d x

A) 19ln3x3+10+C\frac { 1 } { 9 } \ln \left| 3 x ^ { 3 } + 10 \right| + C
B) ln3x3+10+C\ln \left| 3 x ^ { 3 } + 10 \right| + C
C) x33x4+10x+C\frac { x ^ { 3 } } { 3 x ^ { 4 } + 10 x } + C
D)integral does not exist
E)none of the above
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
26
Find the indefinite integral. (lnx)4xdx\int \frac { ( \ln x ) ^ { 4 } } { x } d x

A) (lnx)44+C\frac { ( \ln x ) ^ { 4 } } { 4 } + C
B) 4(lnx)3+C4 ( \ln x ) ^ { 3 } + C
C) 5lnxx+C\frac { 5 \ln x } { x } + C
D) (lnx)55+C\frac { ( \ln x ) ^ { 5 } } { 5 } + C
E)none of the above
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
27
Evaluate the integral x7e7x8dx\int x ^ { 7 } e ^ { 7 x ^ { 8 } } d x

A) 18e7x8+C\frac { 1 } { 8 } e ^ { 7 x ^ { 8 } } + C
B) 56e7x8+C56 e ^ { 7 x ^ { 8 } } + C
C) 156e7x8+C\frac { 1 } { 56 } e ^ { 7 x ^ { 8 } } + C
D) 8e7x8+C8 e ^ { 7 x ^ { 8 } } + C
E) 156x8e7x8+C\frac { 1 } { 56 } x ^ { 8 } e ^ { 7 x ^ { 8 } } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
28
Use formal substitution to find the indefinite integral x4+1x5+5x+6dx\int \frac { x ^ { 4 } + 1 } { \sqrt { x ^ { 5 } + 5 x + 6 } } d x .

A) 25(x5+5x+6)+C\frac { 2 } { 5 } \left( x ^ { 5 } + 5 x + 6 \right) + C
B) 15x4+5x+6+C\frac { 1 } { 5 } \sqrt { x ^ { 4 } + 5 x + 6 } + C
C) 25x4+5x+6+C\frac { 2 } { 5 } \sqrt { x ^ { 4 } + 5 x + 6 } + C
D) 25x5+5x+6+C\frac { 2 } { 5 } \sqrt { x ^ { 5 } + 5 x + 6 } + C
E) 15(x5+5x+6)+C\frac { 1 } { 5 } \left( x ^ { 5 } + 5 x + 6 \right) + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
29
Find the indefinite integral of the following function and check the result by differentiation. x4(4+x5)dx\int x ^ { 4 } \sqrt { \left( 4 + x ^ { 5 } \right) } d x

A) (4+x5)3210+C\frac { \left( 4 + x ^ { 5 } \right) ^ { \frac { 3 } { 2 } } } { 10 } + C
B) 2(4+x5)2315+C\frac { 2 \left( 4 + x ^ { 5 } \right) ^ { \frac { 2 } { 3 } } } { 15 } + C
C) (4+x5)3215+C\frac { \left( 4 + x ^ { 5 } \right) ^ { \frac { 3 } { 2 } } } { 15 } + C
D) 2(4+x5)3215+C\frac { 2 \left( 4 + x ^ { 5 } \right) ^ { \frac { 3 } { 2 } } } { 15 } + C
E)none of the above
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
30
Use the Log Rule to find the indefinite integral for 146xdx\int \frac { 1 } { 4 - 6 x } d x .

A) 16ln4+6x+C- \frac { 1 } { 6 } \ln | 4 + 6 x | + C
B) 14ln46x+C\frac { 1 } { 4 } \ln | 4 - 6 x | + C
C) 16ln46x+C- \frac { 1 } { 6 } \ln | 4 - 6 x | + C
D) 14ln4+6x+C\frac { 1 } { 4 } \ln | 4 + 6 x | + C
E) 16ln46x+C\frac { 1 } { 6 } \ln | 4 - 6 x | + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
31
Evaluate the integral (7x+2)1/5dx\int ( 7 x + 2 ) ^ { 1 / 5 } d x

A) 56(7x+2)6/5+C\frac { 5 } { 6 } ( 7 x + 2 ) ^ { 6 / 5 } + C
B) 65(7x+2)4/5+C\frac { 6 } { 5 } ( 7 x + 2 ) ^ { - 4 / 5 } + C
C) 356(7x+2)4/5+C\frac { 35 } { 6 } ( 7 x + 2 ) ^ { - 4 / 5 } + C
D) 425(7x+2)6/5+C\frac { 42 } { 5 } ( 7 x + 2 ) ^ { 6 / 5 } + C
E) 542(7x+2)6/5+C\frac { 5 } { 42 } ( 7 x + 2 ) ^ { 6 / 5 } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
32
Find the indefinite integral of the following function and check the result by differentiation. u2(5+u3)3du\int u ^ { 2 } \left( 5 + u ^ { 3 } \right) ^ { 3 } d u

A) 12(5+u3)4+C12 \left( 5 + u ^ { 3 } \right) ^ { 4 } + C
B) (5+u3)412+C\frac { \left( 5 + u ^ { 3 } \right) ^ { 4 } } { 12 } + C
C) (5+u3)44+C\frac { \left( 5 + u ^ { 3 } \right) ^ { 4 } } { 4 } + C
D) (5+u2)412+C\frac { \left( 5 + u ^ { 2 } \right) ^ { 4 } } { 12 } + C
E)none of the above
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
33
Find the indefinite integral. x2+18x+2x3+27x2+6xdx\int \frac { x ^ { 2 } + 18 x + 2 } { x ^ { 3 } + 27 x ^ { 2 } + 6 x } d x

A) 13lnx3+27x2+6x+C\frac { 1 } { 3 } \ln \left| x ^ { 3 } + 27 x ^ { 2 } + 6 x \right| + C
B) 13lnx3+27x2+6x+C- \frac { 1 } { 3 } \ln \left| x ^ { 3 } + 27 x ^ { 2 } + 6 x \right| + C
C) lnx3+27x2+6x+C\ln \left| x ^ { 3 } + 27 x ^ { 2 } + 6 x \right| + C
D) 3lnx3+27x2+6x+C- 3 \ln \left| x ^ { 3 } + 27 x ^ { 2 } + 6 x \right| + C
E) lnx3+27x2+6x+C- \ln \left| x ^ { 3 } + 27 x ^ { 2 } + 6 x \right| + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
34
Find the supply function x=f(p)x = f ( p ) that satisfies dxdp=pp225\frac { d x } { d p } = p \sqrt { p ^ { 2 } - 25 } and the initial condition x = 700 when p=$13p = \$ 13 .

A) x=13(p225)3/2+124x = \frac { 1 } { 3 } \left( p ^ { 2 } - 25 \right) ^ { 3 / 2 } + 124
B) x=13(p225)1/2+696x = \frac { 1 } { 3 } \left( p ^ { 2 } - 25 \right) ^ { 1 / 2 } + 696
C) x=13(p5)+124x = \frac { 1 } { 3 } ( p - 5 ) + 124
D) x=15(p225)3/2+127x = \frac { 1 } { 5 } \left( p ^ { 2 } - 25 \right) ^ { 3 / 2 } + 127
E) x=1p1(p225)1/2+699x = \frac { 1 } { p - 1 } \left( p ^ { 2 } - 25 \right) ^ { 1 / 2 } + 699
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
35
Evaluate the integral e23xdx\int e ^ { 23 x } d x

A) 123e23x+C\frac { 1 } { 23 } e ^ { 23 x } + C
B) 23e23x+C23 e ^ {2 3 x } + C
C) 124e24x+C\frac { 1 } { 24 } e ^ { 24 x } + C
D) 23e22x+C23 e ^ { 22 x } + C
E) 122e22x+C\frac { 1 } { 22 } e ^ { 2 2 x } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
36
The marginal cost of a product is modeled by dCdx=8x+1\frac { d C } { d x } = \frac { 8 } { \sqrt { x + 1 } } , when x = 8, C = 40. Find the cost function.

A) C(x)=8x+1+8C ( x ) = 8 \sqrt { x + 1 } + - 8
B) C(x)=16(x+1)+6C ( x ) = 16 ( x + 1 ) + - 6
C) C(x)=16x+1+8C ( x ) = 16 \sqrt { x + 1 } + - 8
D) C(x)=8x+1+8C ( x ) = 8 \sqrt { x + 1 } + - 8 .
E) C(x)=8(x+1)+6C ( x ) = 8 ( x + 1 ) + - 6
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
37
Find the indefinite integral. 7x298x3dx\int \frac { 7 x ^ { 2 } } { 9 - 8 x ^ { 3 } } d x

A) 247ln98x3+C\frac { 24 } { 7 } \ln \left| 9 - 8 x ^ { 3 } \right| + C
B) ln98x3+C\ln \left| 9 - 8 x ^ { 3 } \right| + C
C) 7ln98x3+C7 \ln \left| 9 - 8 x ^ { 3 } \right| + C
D) 724ln98x3+C- \frac { 7 } { 24 } \ln \left| 9 - 8 x ^ { 3 } \right| + C
E) 124ln98x3+C- \frac { 1 } { 24 } \ln \left| 9 - 8 x ^ { 3 } \right| + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
38
Find the indefinite integral of the following function and check the result by differentiation. 3t2t3+3dt\int \frac { 3 t ^ { 2 } } { \sqrt { t ^ { 3 } + 3 } } d t

A) 2t3+3+C2 \sqrt { t ^ { 3 } + 3 } + C
B) t3+3+C\sqrt { t ^ { 3 } + 3 } + C
C) 2t2+3+C2 \sqrt { t ^ { 2 } + 3 } + C
D) 12t3+3+C\frac { 1 } { 2 } \sqrt { t ^ { 3 } + 3 } + C
E) 12t2+3+C\frac { 1 } { 2 } \sqrt { t ^ { 2 } + 3 } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
39
Evaluate the integral (4x5+3)8x4dx\int \left( 4 x ^ { 5 } + 3 \right) ^ { 8 } x ^ { 4 } d x

A) 1140(4x5+3)7+C\frac { 1 } { 140 } \left( 4 x ^ { 5 } + 3 \right) ^ { 7 } + C
B) 209(4x5+3)9+C\frac { 20 } { 9 } \left( 4 x ^ { 5 } + 3 \right) ^ { 9 } + C
C) 52(4x5+3)8+C\frac { 5 } { 2 } \left( 4 x ^ { 5 } + 3 \right) ^ { 8 } + C
D) 1180(4x5+3)9+C\frac { 1 } { 180 } \left( 4 x ^ { 5 } + 3 \right) ^ { 9 } + C
E) 1160(4x5+3)8+C\frac { 1 } { 160 } \left( 4 x ^ { 5 } + 3 \right) ^ { 8 } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
40
Find the indefinite integral. e4ydy\int e ^ { - 4 y } d y

A) 4e4y+C- 4 e ^ { - 4 y } + C
B) 4e5y+C- 4 e ^ { - 5 y } + C
C) 14e5y+C- \frac { 1 } { 4 } e ^ { - 5 y } + C
D) 14e4y+C- \frac { 1 } { 4 } e ^ { - 4 y } + C
E) 14e14y+C- \frac { 1 } { 4 } e ^ { \frac { - 1 } { 4 } y } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
41
Sketch the region whose area is given by the definite integral and then use a geometric formula to evaluate the integral. 339x2dx\int _ { - 3 } ^ { 3 } \sqrt { 9 - x ^ { 2 } } d x

A) 9π9 \pi
B) 9π4\frac { 9 \pi } { 4 }
C) 92\frac { 9 } { 2 }
D) 9π2\frac { 9 \pi } { 2 }
E)none of the above
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
42
Find the area of the region bounded by the graphs of the algebraic functions. f(x)=x24xg(x)=0\begin{array} { l } f ( x ) = x ^ { 2 } - 4 x \\g ( x ) = 0\end{array}

A) A=176A = \frac { 17 } { 6 }
B) A=163A = \frac { 16 } { 3 }
C) A=112A = \frac { 11 } { 2 }
D) A=323A = \frac { 32 } { 3 }
E) A=31A = \frac { 3 } { 1 }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
43
Use any basic integration formula or formulas to find the indefinite integral ex2exdx\int e ^ { x } \sqrt { 2 - e ^ { x } } d x .

A) 32(2ex)3/2+C\frac { 3 } { 2 } \left( 2 - e ^ { x } \right) ^ { 3 / 2 } + C
B) 32(4ex)2/3+C\frac { 3 } { 2 } \left( 4 - e ^ { x } \right) ^ { 2 / 3 } + C
C) 32(4ex)3/2+C- \frac { 3 } { 2 } \left( 4 - e ^ { x } \right) ^ { 3 / 2 } + C
D) 23(2ex)2/3+C\frac { 2 } { 3 } \left( 2 - e ^ { x } \right) ^ { 2 / 3 } + C
E) 23(2ex)3/2+C- \frac { 2 } { 3 } \left( 2 - e ^ { x } \right) ^ { 3 / 2 } + C
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
44
Find the area between the curve y=5x26x8y = 5 x ^ { 2 } - 6 x - 8 and the x-axis from x=1 to x=3x = - 1 \text { to } x = 3 .

A) 283\frac { 28 } { 3 }
B) 1963\frac { 196 } { 3 }
C) 1409\frac { 140 } { 9 }
D) 1403\frac { 140 } { 3 }
E) 143\frac { 14 } { 3 }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
45
Set up the definite integral that gives the area of the region bounded by the graphs. f(x)=(x4)3g(x)=x4\begin{array} { l } f ( x ) = ( x - 4 ) ^ { 3 } \\g ( x ) = x - 4\end{array}  <strong>Set up the definite integral that gives the area of the region bounded by the graphs.  \begin{array} { l } f ( x ) = ( x - 4 ) ^ { 3 } \\ g ( x ) = x - 4 \end{array}   </strong> A)  \int _ { 3 } ^ { 4 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x  B)  \int _ { - 1 } ^ { 0 } \left( ( x - 4 ) + ( x - 4 ) ^ { 3 } \right) d x + \int _ { 0 } ^ { 1 } \left( ( x - 4 ) ^ { 3 } + ( x - 4 ) \right) d x  C)  \int _ { - 1 } ^ { 0 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x + \int _ { 0 } ^ { 1 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x  D)  \int _ { 3 } ^ { 4 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x  E)  \int _ { 3 } ^ { 4 } \left( ( x - 4 ) ^ { 3 } + ( x - 4 ) \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) + ( x - 4 ) ^ { 3 } \right) d x

A) 34((x4)(x4)3)dx+45((x4)3(x4))dx\int _ { 3 } ^ { 4 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x
B) 10((x4)+(x4)3)dx+01((x4)3+(x4))dx\int _ { - 1 } ^ { 0 } \left( ( x - 4 ) + ( x - 4 ) ^ { 3 } \right) d x + \int _ { 0 } ^ { 1 } \left( ( x - 4 ) ^ { 3 } + ( x - 4 ) \right) d x
C) 10((x4)3(x4))dx+01((x4)(x4)3)dx\int _ { - 1 } ^ { 0 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x + \int _ { 0 } ^ { 1 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x
D) 34((x4)3(x4))dx+45((x4)(x4)3)dx\int _ { 3 } ^ { 4 } \left( ( x - 4 ) ^ { 3 } - ( x - 4 ) \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) - ( x - 4 ) ^ { 3 } \right) d x
E) 34((x4)3+(x4))dx+45((x4)+(x4)3)dx\int _ { 3 } ^ { 4 } \left( ( x - 4 ) ^ { 3 } + ( x - 4 ) \right) d x + \int _ { 4 } ^ { 5 } \left( ( x - 4 ) + ( x - 4 ) ^ { 3 } \right) d x
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
46
Find the average value of the function over the given interval. f(x)=7x3f ( x ) = 7 \sqrt [ 3 ] { x } on [0,8]

A) 74\frac { 7 } { 4 }
B) 149\frac { 14 } { 9 }
C) 212\frac { 21 } { 2 }
D) 83\frac { 8 } { 3 }
E) 643\frac { 64 } { 3 }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
47
Evaluate the following definite integral. 1416z+7dz\int _ { 1 } ^ { 4 } \frac { 1 } { \sqrt { 6 z + 7 } } d z Use a graphing utility to check your answer.

A) 31136\frac { \sqrt { 31 } - \sqrt { 13 } } { 6 }
B) 31133\frac { \sqrt { 31 } - \sqrt { 13 } } { 3 }
C) 31+133\frac { \sqrt { 31 } + \sqrt { 13 } } { 3 }
D) 31+136\frac { \sqrt { 31 } + \sqrt { 13 } } { 6 }
E) 13313\frac { \sqrt { 13 } - \sqrt { 31 } } { 3 }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
48
Determine the area of the given region. y=2x(1x)y = 2 x ( 1 - x )  <strong>Determine the area of the given region.  y = 2 x ( 1 - x )   </strong> A)  \frac { 5 } { 3 }  B)  \frac { 1 } { 3 }  C)  \frac { 3 } { 7 }  D)  \frac { 1 } { 2 }  E)None of the above

A) 53\frac { 5 } { 3 }
B) 13\frac { 1 } { 3 }
C) 37\frac { 3 } { 7 }
D) 12\frac { 1 } { 2 }
E)None of the above
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
49
Find the area of the region bounded by the graphs of the algebraic functions. f(x)=x2+18x+81g(x)=11(x+9)\begin{array} { l } f ( x ) = x ^ { 2 } + 18 x + 81 \\g ( x ) = 11 ( x + 9 )\end{array}

A) A=13316A = \frac { 1331 } { 6 }
B) A=13313A = \frac { 1331 } { 3 }
C) A=133112A = \frac { 1331 } { 12 }
D) A=14936A = \frac { 1493 } { 6 }
E) A=18176A = \frac { 1817 } { 6 }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
50
The rate of depreciation of a building is given by D(t)=8,300(20t)D ^ { \prime } ( t ) = 8,300 ( 20 - t ) dollars per year, 0t200 \leq t \leq 20 Use the definite integral to find the total depreciation over the first 2020 years.

A) $1,660,000\$ 1,660,000
B) $83,000\$ 83,000
C) $830,000\$ 830,000
D) $474,286\$ 474,286
E) $3,320,000\$ 3,320,000
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
51
Determine the graph whose area (the shaded region) is represented by the integral. 14(x24x+5)(x+1)dx\int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x

A)  <strong>Determine the graph whose area (the shaded region) is represented by the integral.  \int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x </strong> A)   B)   C)   D)   E)
B)  <strong>Determine the graph whose area (the shaded region) is represented by the integral.  \int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x </strong> A)   B)   C)   D)   E)
C)  <strong>Determine the graph whose area (the shaded region) is represented by the integral.  \int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x </strong> A)   B)   C)   D)   E)
D)  <strong>Determine the graph whose area (the shaded region) is represented by the integral.  \int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x </strong> A)   B)   C)   D)   E)
E)  <strong>Determine the graph whose area (the shaded region) is represented by the integral.  \int _ { 1 } ^ { 4 } \left( x ^ { 2 } - 4 x + 5 \right) - ( x + 1 ) d x </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
52
Find the average value of the function over the given interval. f(x)=9x2f ( x ) = 9 - x ^ { 2 } on [-3,3]

A)6
B)21
C)36
D)4
E)20
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
53
Sketch the region whose area is given by the definite integral and then use a geometric formula to evaluate the integral. 375t dt\int _ { 3 } ^ { 7 } 5 t ~d t

A)-145
B)290
C)200
D)100
E)10
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
54
The integrand of the following definite integral is a difference of two functions. 04[(x+1)12x]dx\int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x Sketch the graph of the two functions and shade the region whose area is represented by the integral.

A)  <strong>The integrand of the following definite integral is a difference of two functions.  \int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x  Sketch the graph of the two functions and shade the region whose area is represented by the integral.</strong> A)   B)   C)   D)   E)
B)  <strong>The integrand of the following definite integral is a difference of two functions.  \int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x  Sketch the graph of the two functions and shade the region whose area is represented by the integral.</strong> A)   B)   C)   D)   E)
C)  <strong>The integrand of the following definite integral is a difference of two functions.  \int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x  Sketch the graph of the two functions and shade the region whose area is represented by the integral.</strong> A)   B)   C)   D)   E)
D)  <strong>The integrand of the following definite integral is a difference of two functions.  \int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x  Sketch the graph of the two functions and shade the region whose area is represented by the integral.</strong> A)   B)   C)   D)   E)
E)  <strong>The integrand of the following definite integral is a difference of two functions.  \int _ { 0 } ^ { 4 } \left[ ( x + 1 ) - \frac { 1 } { 2 } x \right] d x  Sketch the graph of the two functions and shade the region whose area is represented by the integral.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
55
Evaluate the definite integral of the algebraic function. 24(6z+4)dz\int _ { 2 } ^ { 4 } ( - 6 z + 4 ) d z Use a graphing utility to verify your results.

A)-12
B)-56
C)-36
D)8
E)-28
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
56
Find the area of the shaded region.  <strong>Find the area of the shaded region.  </strong> A)  \frac { 13 } { 6 }  B)  \frac { 37 } { 12 }  C)  \frac { 37 } { 6 }  D)  \frac { 13 } { 12 }  E)  \frac { 13 } { 7 }

A) 136\frac { 13 } { 6 }
B) 3712\frac { 37 } { 12 }
C) 376\frac { 37 } { 6 }
D) 1312\frac { 13 } { 12 }
E) 137\frac { 13 } { 7 }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
57
Use the values 02f(x)dx=8\int _ { 0 } ^ { 2 } f ( x ) d x = 8 and 02g(x)dx=3\int _ { 0 } ^ { 2 } g ( x ) d x = 3 to evaluate the definite integral 02[f(x)2g(x)]dx\int _ { 0 } ^ { 2 } [ f ( x ) - 2 g ( x ) ] d x .

A)14
B)2
C)5
D)11
E)4
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
58
Find the equation of the function whose derivative is f(x)=x2+9x+7x1f ^ { \prime } ( x ) = \frac { x ^ { 2 } + 9 x + 7 } { x - 1 } and whose graph passes through the point (2,4)( 2,4 ) .

A) x22+10x+17lnx119\frac { x ^ { 2 } } { 2 } + 10 x + 17 \ln | x - 1 | - 19
B) x22+9x+17lnx118\frac { x ^ { 2 } } { 2 } + 9 x + 17 \ln | x - 1 | - 18
C) x22+10x+17lnx118\frac { x ^ { 2 } } { 2 } + 10 x + 17 \ln | x - 1 | - 18
D) x22+9x+7lnx118\frac { x ^ { 2 } } { 2 } + 9 x + 7 \ln | x - 1 | - 18
E) x22+10x+7lnx119\frac { x ^ { 2 } } { 2 } + 10 x + 7 \ln | x - 1 | - 19
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
59
Evaluate the definite integral 47(x7)5dx\int _ { 4 } ^ { 7 } ( x - 7 ) ^ { 5 } d x .

A) 7295\frac { 729 } { 5 }
B) 7297- \frac { 729 } { 7 }
C) 7295- \frac { 729 } { 5 }
D) 2432\frac { 243 } { 2 }
E) 2432- \frac { 243 } { 2 }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
60
Evaluate the definite integral of the algebraic function. 38(u65u56)du\int _ { 3 } ^ { 8 } \left( u ^ { \frac { 6 } { 5 } } - u ^ { \frac { 5 } { 6 } } \right) d u Use a graphing utility to verify your results.

A)18.4007
B)29.6329
C)59.5941
D)38.9974
E)48.0336
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
61
Estimate the surface area of the pond shown in the figure using the Midpoint Rule.  <strong>Estimate the surface area of the pond shown in the figure using the Midpoint Rule.  </strong> A)  \approx 990 \mathrm { ft } ^ { 2 }  B)  \approx 9920 \mathrm {f t } ^ { 2 }  C)  \approx 9020 \mathrm {f t } ^ { 2 }  D)  \approx 9990 \mathrm { ft } ^ { 2 }  E)  \approx 920 \mathrm { ft } ^ { 2 }

A) 990ft2\approx 990 \mathrm { ft } ^ { 2 }
B) 9920ft2\approx 9920 \mathrm {f t } ^ { 2 }
C) 9020ft2\approx 9020 \mathrm {f t } ^ { 2 }
D) 9990ft2\approx 9990 \mathrm { ft } ^ { 2 }
E) 920ft2\approx 920 \mathrm { ft } ^ { 2 }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
62
Use the Midpoint Rule with n = 4 to approximate the area of the following region. f(x)=1x,[1,5]f ( x ) = \frac { 1 } { x } , [ 1,5 ]  <strong>Use the Midpoint Rule with n = 4 to approximate the area of the following region.  f ( x ) = \frac { 1 } { x } , [ 1,5 ]   </strong> A)1.156 B)1.324 C)1.575 D)1.275 E)1.876

A)1.156
B)1.324
C)1.575
D)1.275
E)1.876
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
63
The demand function for a product is p=1404xp = 140 - 4 x , where p is the number of dollars and x is the number of units. If the equilibrium price is $40\$ 40 , what is the consumer's surplus?

A)$ 11751175
B)$ 12501250
C)$ 13751375
D)$ 12201220
E)$ 13401340
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
64
Use the Midpoint Rule with n = 4 to approximate the area of the region bounded by the graph of f(x)=4x2f ( x ) = 4 - x ^ { 2 } and the x-axis over the interval [ 2,2- 2,2 ].

A)11.4421
B)11.0023
C)11.2114
D)11.0000
E)12.0000
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
65
The revenue from a manufacturing process (in millions of dollars per year) is projected to follow the model R=400+0.07tR = 400 + 0.07 t for 10 years. Over the same period of time, the cost (in millions of dollars per year) is projected to follow the model C=60+0.5t2C = 60 + 0.5 t ^ { 2 } , where t is the time (in years). Approximate the profit over the 10-year period, beginning with t = 0. Round your answer to two decimal places.

A) $3236.83\$ 3236.83 million
B) $3378.50\$ 3378.50 million
C) $3153.50\$ 3153.50 million
D) $3235.67\$ 3235.67 million
E) $3385.67\$ 3385.67 million
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
66
Use the Midpoint Rule n = 4 to approximate the area of the following region. f(y)=14y,[2,4]f ( y ) = \frac { 1 } { 4 } y , [ 2,4 ]  <strong>Use the Midpoint Rule n = 4 to approximate the area of the following region.  f ( y ) = \frac { 1 } { 4 } y , [ 2,4 ]   </strong> A)2.5 B)1.2 C)1.5 D)1.9 E)2.3

A)2.5
B)1.2
C)1.5
D)1.9
E)2.3
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
67
Estimate the surface area of the oil spill shown in the figure using the Midpoint Rule.  <strong>Estimate the surface area of the oil spill shown in the figure using the Midpoint Rule.  </strong> A)  \approx  481.6  m i ^ { 2 }  B)  \approx  301.6  m i ^ { 2 }  C)  \approx  311.6  m i ^ { 2 }  D)  \approx  431.6  m i ^ { 2 }  E)  \approx  381.6  m i ^ { 2 }

A) \approx 481.6 mi2m i ^ { 2 }
B) \approx 301.6 mi2m i ^ { 2 }
C) \approx 311.6 mi2m i ^ { 2 }
D) \approx 431.6 mi2m i ^ { 2 }
E) \approx 381.6 mi2m i ^ { 2 }
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
68
Use the Midpoint Rule with n=4n = 4 to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region. f(x)=(x24)2,[2,2]f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ]

A)The approximate area is: 30.25\approx 30.25  <strong>Use the Midpoint Rule with  n = 4  to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region.  f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ] </strong> A)The approximate area is:  \approx 30.25    B)The approximate area is:  \approx 24.25    C)The approximate area is:  \approx 34.25    D)The approximate area is:  \approx 14.25    E)The approximate area is:  \approx 34.99
B)The approximate area is: 24.25\approx 24.25  <strong>Use the Midpoint Rule with  n = 4  to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region.  f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ] </strong> A)The approximate area is:  \approx 30.25    B)The approximate area is:  \approx 24.25    C)The approximate area is:  \approx 34.25    D)The approximate area is:  \approx 14.25    E)The approximate area is:  \approx 34.99
C)The approximate area is: 34.25\approx 34.25  <strong>Use the Midpoint Rule with  n = 4  to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region.  f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ] </strong> A)The approximate area is:  \approx 30.25    B)The approximate area is:  \approx 24.25    C)The approximate area is:  \approx 34.25    D)The approximate area is:  \approx 14.25    E)The approximate area is:  \approx 34.99
D)The approximate area is: 14.25\approx 14.25  <strong>Use the Midpoint Rule with  n = 4  to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region.  f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ] </strong> A)The approximate area is:  \approx 30.25    B)The approximate area is:  \approx 24.25    C)The approximate area is:  \approx 34.25    D)The approximate area is:  \approx 14.25    E)The approximate area is:  \approx 34.99
E)The approximate area is: 34.99\approx 34.99  <strong>Use the Midpoint Rule with  n = 4  to approximate the area of the region bounded by the graph of and the -axis over the interval. Sketch the region.  f ( x ) = \left( x ^ { 2 } - 4 \right) ^ { 2 } , [ - 2,2 ] </strong> A)The approximate area is:  \approx 30.25    B)The approximate area is:  \approx 24.25    C)The approximate area is:  \approx 34.25    D)The approximate area is:  \approx 14.25    E)The approximate area is:  \approx 34.99
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
69
Use the Midpoint Rule with n = 4 to approximate the area of the region bounded by the graph of f(x)=3xx4f ( x ) = 3 x - x ^ { 4 } and the x-axis over the interval [0,1].

A)1.7524
B)1.3126
C)1.5217
D)2.3103
E)1.3103
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
70
Two models, R1=7.21+0.58tR _ { 1 } = 7.21 + 0.58 t and R2=7.21+0.43tR _ { 2 } = 7.21 + 0.43 t , are given for revenue (in billions of dollars per year) for a large corporation. Both models are estimates of revenues for 2007 through 2011, with t = 7 corresponding to 2007. Which model is projecting the greater revenue? How much more total revenue does that model project over the five-year period?

A)The model R1R _ { 1 } projects greater revenue than R2R _ { 2 } . $8.75\$ 8.75 billion
B)The model R2R _ { 2 } projects greater revenue than R1R _ { 1 } . $7.75\$ 7.75 billion
C)The model R1R _ { 1 } projects greater revenue than R2R _ { 2 } . $6.75\$ 6.75 billion
D)The model R1R _ { 1 } projects greater revenue than R2R _ { 2 } . $10.75\$ 10.75 billion
E)The model R2R _ { 2 } projects greater revenue than R1R _ { 1 } . $16.75\$ 16.75 billion
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
71
Find the consumer and producer surpluses by using the demand and supply functions, where p is the price (in dollars) and x is the number of units (in millions). Demand Function                 ~~~~~~~~~~~~~~~~ Supply Function
P=97523x           42xP = 975 - 23 x ~~~~~~~~~~~\quad 42 x

A)a. $2587.50b. $3725.00
B)a. $5587.50b. $4725.00
C)a. $2587.50b. $1725.00
D)a. $1587.50b. $4725.00
E)a. $3587.50b. $4725.00
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
72
Estimate the surface area of the golf green shown in the figure using the midpoint rule. <strong>Estimate the surface area of the golf green shown in the figure using the midpoint rule.  </strong> A)966 B)161 C)1449 D)1550 E)234

A)966
B)161
C)1449
D)1550
E)234
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
73
Use the Midpoint Rule with n=4n = 4 to approximate π\pi where π=0141+x2dx\pi = \int _ { 0 } ^ { 1 } \frac { 4 } { 1 + x ^ { 2 } } d x . Then use a graphing utility to evaluate the definite integral. Compare your results.

A)a. Midpoint Rule: 0.146801\approx 0.146801 b. Graphing utility: 3.141593\approx 3.141593
B)a. Midpoint Rule: 3.146801\approx 3.146801 b. Graphing utility: 0.141593\approx 0.141593
C)a. Midpoint Rule: 1.146801\approx 1.146801 b. Graphing utility: 3.141593\approx 3.141593
D)a. Midpoint Rule: 3.146801\approx 3.146801 b. Graphing utility: 3.141593\approx 3.141593
E)a. Midpoint Rule: 3.146801\approx 3.146801 b. Graphing utility: 1.141593\approx 1.141593
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
74
Use the rectangles to approximate the area of the region. Compare your result with the exact area obtained with a definite integral. f(x)=2x+3,[0,1]f ( x ) = - 2 x + 3 , [ 0,1 ]  <strong>Use the rectangles to approximate the area of the region. Compare your result with the exact area obtained with a definite integral.  f ( x ) = - 2 x + 3 , [ 0,1 ]   </strong> A)a. The approximate area: 3b. The exact area: 2 B)a. The approximate area: 2b. The exact area: 3 C)a. The approximate area: 2b. The exact area: 1 D)a. The approximate area: 2b. The exact area: 2 E)a. The approximate area: 1b. The exact area: 2

A)a. The approximate area: 3b. The exact area: 2
B)a. The approximate area: 2b. The exact area: 3
C)a. The approximate area: 2b. The exact area: 1
D)a. The approximate area: 2b. The exact area: 2
E)a. The approximate area: 1b. The exact area: 2
Unlock Deck
Unlock for access to all 74 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 74 flashcards in this deck.