Deck 15: Trigonometric Functions Web

Full screen (f)
exit full mode
Question
Solve the triangle for the indicated side and angle.  <strong>Solve the triangle for the indicated side and angle.  </strong> A)  \begin{array} { l l } \text { angle } \theta : & 30 ^ { \circ } \\ \text { side } c : & 10 \end{array}  B)  \begin{array} { l l } \text { angle } \theta : & 60 ^ { \circ } \\ \text { side } c : & 10 \end{array}  C) angle  \theta : 30 ^ { \circ }  side  c  :  \quad 4 \sqrt { 2 }  D)  \begin{array} { l l } \text { angle } \theta : & 35 ^ { \circ } \\ \text { side } c : & 4 \sqrt { 2 } \end{array}  E) angle  \theta : 50 ^ { \circ }  side  c : \quad 10  <div style=padding-top: 35px>

A)  angle θ:30 side c:10\begin{array} { l l } \text { angle } \theta : & 30 ^ { \circ } \\\text { side } c : & 10\end{array}
B)  angle θ:60 side c:10\begin{array} { l l } \text { angle } \theta : & 60 ^ { \circ } \\\text { side } c : & 10\end{array}
C) angle θ:30\theta : 30 ^ { \circ }
side cc : 42\quad 4 \sqrt { 2 }
D)  angle θ:35 side c:42\begin{array} { l l } \text { angle } \theta : & 35 ^ { \circ } \\\text { side } c : & 4 \sqrt { 2 }\end{array}
E) angle θ:50\theta : 50 ^ { \circ }
side c:10c : \quad 10
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the radian measure of the given angle. 225o

A) 5π2\frac { 5 \pi } { 2 }
B) 15π4\frac { 15 \pi } { 4 }
C) 45π4\frac { 45 \pi } { 4 }
D) 5π4\frac { 5 \pi } { 4 }
E) 5π8\frac { 5 \pi } { 8 }
Question
A guy wire is stretched from a broadcasting tower at a point 300 feet above the ground to an anchor 175 feet from the base (see figure). How long is the wire? <strong>A guy wire is stretched from a broadcasting tower at a point 300 feet above the ground to an anchor 175 feet from the base (see figure). How long is the wire?  </strong> A)347.31 feet B)173.66 feet C)243.67 feet D)121.83 feet E)237.50 feet <div style=padding-top: 35px>

A)347.31 feet
B)173.66 feet
C)243.67 feet
D)121.83 feet
E)237.50 feet
Question
Find sinθ\sin \theta given that secθ=4\sec \theta = 4 and 0<θ<π20 < \theta < \frac { \pi } { 2 } .

A) 44
B) 15\sqrt { 15 }
C) 154\frac { \sqrt { 15 } } { 4 }
D) 115\frac { 1 } { \sqrt { 15 } }
E) 116\frac { 1 } { 16 }
Question
From the given function cosθ=45\cos \theta = \frac { 4 } { 5 } , find the following trigonometric function. sinθ\sin \theta  <strong>From the given function  \cos \theta = \frac { 4 } { 5 }  , find the following trigonometric function.  \sin \theta   </strong> A)  \frac { 5 } { 3 }  B)  \frac { 5 } { 4 }  C)  \frac { 3 } { 5 }  D)  \frac { 4 } { 5 }  E)  \frac { 3 } { 9 }  <div style=padding-top: 35px>

A) 53\frac { 5 } { 3 }
B) 54\frac { 5 } { 4 }
C) 35\frac { 3 } { 5 }
D) 45\frac { 4 } { 5 }
E) 39\frac { 3 } { 9 }
Question
Evaluate without using a calculator, leaving the answers in exact form. sin3π4\sin \frac { 3 \pi } { 4 }

A) 22\frac { \sqrt { 2 } } { 2 }
B) 12\frac { 1 } { 2 }
C)1
D)0
E) 32\frac { 3 } { 2 }
Question
Determine two coterminal angles (one positive and one negative) for each angle. Give the answers in radians.  <strong>Determine two coterminal angles (one positive and one negative) for each angle. Give the answers in radians.  </strong> A) positive:  \frac { 19 \pi } { 9 }   negative:  \frac { 37 \pi } { 19 }  B) positive:  \quad - \frac { 35 \pi } { 18 }   negative:  \frac { 37 \pi } { 18 }  C) positive:  \quad - \frac { 37 \pi } { 18 }   negative:  \frac { 35 \pi } { 18 }  D) positive:  \frac { 37 \pi } { 18 }   negative:  \quad - \frac { 35 \pi } { 18 }  E) positive:  \frac { 37 \pi } { 19 }   negative:  \quad - \frac { 35 \pi } { 17 }  <div style=padding-top: 35px>

A) positive: 19π9\frac { 19 \pi } { 9 }

negative: 37π19\frac { 37 \pi } { 19 }
B) positive: 35π18\quad - \frac { 35 \pi } { 18 }

negative: 37π18\frac { 37 \pi } { 18 }
C) positive: 37π18\quad - \frac { 37 \pi } { 18 }

negative: 35π18\frac { 35 \pi } { 18 }
D) positive: 37π18\frac { 37 \pi } { 18 }

negative: 35π18\quad - \frac { 35 \pi } { 18 }
E) positive: 37π19\frac { 37 \pi } { 19 }

negative: 35π17\quad - \frac { 35 \pi } { 17 }
Question
Find the cosine of θ\theta .  <strong>Find the cosine of  \theta  .  </strong> A)  - \frac { 5 } { 12 }  B)  - \frac { 13 } { 12 }  C)  \frac { 13 } { 5 }  D)  - \frac { 12 } { 13 }  E)  \frac { 5 } { 13 }  <div style=padding-top: 35px>

A) 512- \frac { 5 } { 12 }
B) 1312- \frac { 13 } { 12 }
C) 135\frac { 13 } { 5 }
D) 1213- \frac { 12 } { 13 }
E) 513\frac { 5 } { 13 }
Question
Find the cosine of θ\theta .  <strong>Find the cosine of  \theta  .  </strong> A)  \frac { 8 } { 17 }  B)  \frac { 8 } { 15 }  C)  \frac { 15 } { 17 }  D)  \frac { 17 } { 8 }  E)  \frac { 17 } { 15 }  <div style=padding-top: 35px>

A) 817\frac { 8 } { 17 }
B) 815\frac { 8 } { 15 }
C) 1517\frac { 15 } { 17 }
D) 178\frac { 17 } { 8 }
E) 1715\frac { 17 } { 15 }
Question
Evaluate without using a calculator. tanπ4\tan \frac { \pi } { 4 }

A) 11
B)  undefined \text { undefined }
C) 32\frac { \sqrt { 3 } } { 2 }
D) 23\frac { \sqrt { 2 } } { 3 }
E)0
Question
Find the area of the equilateral triangle with sides of length s=18s = 18 in. Round your answer to two decimal places.

A)121.50 square inches
B)561.18 square inches
C)140.30 square inches
D)162.00 square inches
E)486.00 square inches
Question
Find the radian measure of the given angle. 750o

A) 25π3\frac { 25 \pi } { 3 }
B) 25π6\frac { 25 \pi } { 6 }
C) 75π2\frac { 75 \pi } { 2 }
D) 25π2\frac { 25 \pi } { 2 }
E) 25π12\frac { 25 \pi } { 12 }
Question
A sector of a circle is the region bounded by two radii of the circle and their intercepted arc (see figure).  <strong>A sector of a circle is the region bounded by two radii of the circle and their intercepted arc (see figure).   For a circle of radius  r,  the area  A  of a sector of the circle with central angle  \theta  (measured in radians) is given by  A = \frac { 1 } { 2 } r ^ { 2 } \theta  . A sprinkler system on a farm is set to spray water over a distance of  60  feet and rotates through an angle of  110 ^ { \circ }  . Use the above given information to find the area of the region. Round your answer to two decimal places.</strong> A)3457.14 B)314.29 C)3300.00 D)1728.57 E)12,100.00 <div style=padding-top: 35px>  For a circle of radius r,r, the area AA of a sector of the circle with central angle θ\theta (measured in radians) is given by A=12r2θA = \frac { 1 } { 2 } r ^ { 2 } \theta . A sprinkler system on a farm is set to spray water over a distance of 6060 feet and rotates through an angle of 110110 ^ { \circ } . Use the above given information to find the area of the region. Round your answer to two decimal places.

A)3457.14
B)314.29
C)3300.00
D)1728.57
E)12,100.00
Question
A compact disc can have an angular speed up to 3146 radians per minute. At this angular speed, how many revolutions per minute would the CD make? Round your answer to the nearest integer.

A)122
B)143
C)919
D)501
E)72
Question
Find cscθ\csc \theta from the given graph.  <strong>Find  \csc \theta  from the given graph.  </strong> A)  \frac { 15 } { 17 }  B)  - \frac { 8 } { 17 }  C)  - \frac { 17 } { 8 }  D)  \frac { 17 } { 8 }  E)  - \frac { 17 } { 15 }  <div style=padding-top: 35px>

A) 1517\frac { 15 } { 17 }
B) 817- \frac { 8 } { 17 }
C) 178- \frac { 17 } { 8 }
D) 178\frac { 17 } { 8 }
E) 1715- \frac { 17 } { 15 }
Question
Find the degree measure of the given angle. 4π7\frac { 4 \pi } { 7 }

A)280.0o
B)102.9o
C)157.5o
D)315.0o
E)32.7o
Question
Solve the triangle for the indicated angle.  <strong>Solve the triangle for the indicated angle.  </strong> A)angle  \theta :  40  ^\circ  B)angle  \theta :  90  ^\circ  C)angle  \theta :  140  ^\circ  D)angle  \theta :  50  ^\circ  E)angle  \theta :  130  ^\circ  <div style=padding-top: 35px>

A)angle θ:\theta : 40 ^\circ
B)angle θ:\theta : 90 ^\circ
C)angle θ:\theta : 140 ^\circ
D)angle θ:\theta : 50 ^\circ
E)angle θ:\theta : 130 ^\circ
Question
Solve the triangle for the indicated side.  <strong>Solve the triangle for the indicated side.  </strong> A)  \text { side } h : \frac { 7 } { 8 }  B)  \text { side } h : \quad \frac { 15 } { 7 }  C)  \text { side } h : \quad \frac { 8 } { 7 }  D)  \text { side } h : \frac { 7 } { 15 }  E)  \text { side } h : \frac { 4 } { 7 }  <div style=padding-top: 35px>

A)  side h:78\text { side } h : \frac { 7 } { 8 }
B)  side h:157\text { side } h : \quad \frac { 15 } { 7 }
C)  side h:87\text { side } h : \quad \frac { 8 } { 7 }
D)  side h:715\text { side } h : \frac { 7 } { 15 }
E)  side h:47\text { side } h : \frac { 4 } { 7 }
Question
Find the cosine of θ\theta .  <strong>Find the cosine of  \theta  .  </strong> A)  \frac { 4 } { 3 }  B)  \frac { 4 } { 5 }  C)  \frac { 3 } { 5 }  D)  \frac { 5 } { 4 }  E)  \frac { 5 } { 3 }  <div style=padding-top: 35px>

A) 43\frac { 4 } { 3 }
B) 45\frac { 4 } { 5 }
C) 35\frac { 3 } { 5 }
D) 54\frac { 5 } { 4 }
E) 53\frac { 5 } { 3 }
Question
Determine the quadrant in which θ\theta lies if sin q < 0 and cos q > 0.

A)fourth quadrant
B)third quadrant
C)first quadrant
D)second quadrant
E)second or third quadrants
Question
Find the period of the trigonometric function. y=cotπx6y = \cot \frac { \pi x } { 6 }

A) π6\frac { \pi } { 6 }
B) 66
C) π3\frac { \pi } { 3 }
D) π2\frac { \pi } { 2 }
E) π\pi
Question
Find two values of q that satisfy the equation below. Give values of q in radians (0θ2π)( 0 \leq \theta \leq 2 \pi ) . Do not use a calculator. sin q = 22\frac { \sqrt { 2 } } { 2 }

A) θ=π3,\theta = \frac { \pi } { 3 }, θ=3π4\theta = \frac { 3 \pi } { 4 }
B) θ=π4\theta = \frac { \pi } { 4 } , θ=3π4\theta = \frac { 3 \pi } { 4 }
C) θ=π4,\theta = \frac { \pi } { 4 }, θ=π\theta = \pi
D) θ=π6,\theta = \frac { \pi } { 6 }, θ=5π6\theta = \frac { 5 \pi } { 6 }
E) θ=π4,\theta = \frac { \pi } { 4 }, θ=4π3\theta = \frac { 4 \pi } { 3 }
Question
Find the derivative of the trigonometric function. y=cos3x+sin2xy = \cos 3 x + \sin ^ { 2 } x

A) 3sin3x+2sinxcosx- 3 \sin 3 x + 2 \sin x \cos x
B) 3sin3x2sinxcosx3 \sin 3 x - 2 \sin x \cos x
C) 3sin3x+2sin2xcosx3 \sin 3 x + 2 \sin ^ { 2 } x \cos x
D) sin3x+2sin2xcos2x- \sin 3 x + 2 \sin ^ { 2 } x \cos ^ { 2 } x
E) 3sin2x+sin2xcos2x- 3 \sin ^ { 2 } x + \sin ^ { 2 } x \cos ^ { 2 } x
Question
Approximate using a calculator (set for radians). Round answers to two decimal places. sin2\sin 2

A)1.00
B)0.91
C)0.08
D)-0.42
E)-1.00
Question
Solve the equation below for θ\theta (0θ2π)( 0 \leq \theta \leq 2 \pi ) . For some of the equations you should use the trigonometric identities listed in this section. Use the trace feature of a graphing utility to verify your results. sin2θcosθ=0\sin 2 \theta - \cos \theta = 0

A) π4,5π4\frac { \pi } { 4 } , \frac { 5 \pi } { 4 }
B) π4,3π4,5π4,7π4\frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }
C) π6,5π6,3π6\frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { 3 \pi } { 6 }
D) π6,5π6,π2,3π2\frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
E) π6,5π6,7π6\frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { 7 \pi } { 6 }
Question
Sketch the graph of the function y=3tanπxy = 3 \tan \pi x .

A)  <strong>Sketch the graph of the function  y = 3 \tan \pi x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  y = 3 \tan \pi x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  y = 3 \tan \pi x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  y = 3 \tan \pi x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  y = 3 \tan \pi x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Solve the equation below for θ\theta (0θ2π)( 0 \leq \theta \leq 2 \pi ) . For some of the equations you should use the trigonometric identities listed in this section. Use the trace feature of a graphing utility to verify your results. cos2θ+sinθ=1\cos ^ { 2 } \theta + \sin \theta = 1

A) 0,π,2π0 , \pi , 2 \pi
B) 0,π2,π,2π0 , \frac { \pi } { 2 } , \pi , 2 \pi
C) π,2π3\pi , \frac { 2 \pi } { 3 }
D) π3,5π3\frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
E) 0,π2,3π2,π0 , \frac { \pi } { 2 } , \frac { 3 \pi } { 2 } , \pi
Question
Find the period and amplitude of the function y=72sin(πx2)y = \frac { 7 } { 2 } \sin \left( \frac { \pi x } { 2 } \right) .  <strong>Find the period and amplitude of the function  y = \frac { 7 } { 2 } \sin \left( \frac { \pi x } { 2 } \right)  .  </strong> A)Period:  2 \pi  ; Amplitude:7 B)Period:  2 \pi  ; Amplitude:  \frac { 7 } { 2 }  C)Period:  2  ; Amplitude:  \frac { 7 } { 2 }  D)Period:  4  ; Amplitude: 7 E)Period:  4  ; Amplitude:  \frac { 7 } { 2 }  <div style=padding-top: 35px>

A)Period: 2π2 \pi ; Amplitude:7
B)Period: 2π2 \pi ; Amplitude: 72\frac { 7 } { 2 }
C)Period: 22 ; Amplitude: 72\frac { 7 } { 2 }
D)Period: 44 ; Amplitude: 7
E)Period: 44 ; Amplitude: 72\frac { 7 } { 2 }
Question
Match the function below with the correct graph. y=sinxy = \sin x

A)  <strong>Match the function below with the correct graph.  y = \sin x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the function below with the correct graph.  y = \sin x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the function below with the correct graph.  y = \sin x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the function below with the correct graph.  y = \sin x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the function below with the correct graph.  y = \sin x </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find a and d for f(x)=acosx+df ( x ) = a \cos x + d such that the graph of f matches the figure.  <strong>Find a and d for  f ( x ) = a \cos x + d  such that the graph of f matches the figure.  </strong> A)  a = 2 ; d = 3  B)  a = 5 ; d = 2  C)  a = 3 ; d = 5  D)  a = 3 ; d = 2  E)  a = 5 ; d = 5  <div style=padding-top: 35px>

A) a=2;d=3a = 2 ; d = 3
B) a=5;d=2a = 5 ; d = 2
C) a=3;d=5a = 3 ; d = 5
D) a=3;d=2a = 3 ; d = 2
E) a=5;d=5a = 5 ; d = 5
Question
Find the period of the trigonometric function. y=3sec5xy = 3 \sec 5 x

A) π5\frac { \pi } { 5 }
B) 2π3\frac { 2 \pi } { 3 }
C) π3\frac { \pi } { 3 }
D) 2π5\frac { 2 \pi } { 5 }
E) 3π5\frac { 3 \pi } { 5 }
Question
Sketch the graph of the function y=2sec3xy = 2 \sec 3 x .

A)  <strong>Sketch the graph of the function  y = 2 \sec 3 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  y = 2 \sec 3 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  y = 2 \sec 3 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  y = 2 \sec 3 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  y = 2 \sec 3 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Solve the equation for θ\theta (0θ2π)( 0 \leq \theta \leq 2 \pi ) . For some of the equations you should use the trigonometric identities listed in this section. Use the trace feature of a graphing utility to verify your results. cos2θ+3cosθ+2=0\cos 2 \theta + 3 \cos \theta + 2 = 0

A) 2π3,4π3,π\frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 } , \pi
B) 2π3,4π3,2π\frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 } , 2 \pi
C) 0,2π3,4π3,π0 , \frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 } , \pi
D) 0,π3,4π30 , \frac { \pi } { 3 } , \frac { 4 \pi } { 3 }
E) 0,π3,4π3,π0 , \frac { \pi } { 3 } , \frac { 4 \pi } { 3 } , \pi
Question
Use a calculator to evaluate the trigonometric function cos400\cos 400 ^ { \circ } to four decimal places.

A)-1.0827
B)1.1918
C)-0.9236
D)0.7660
E)0.8391
Question
Sketch the graph of the function y=csc2xy = \csc 2 x .

A)  <strong>Sketch the graph of the function  y = \csc 2 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Sketch the graph of the function  y = \csc 2 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Sketch the graph of the function  y = \csc 2 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Sketch the graph of the function  y = \csc 2 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Sketch the graph of the function  y = \csc 2 x  .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find two values of q that satisfy the equation below. Give values of q in radians (0θ2π)( 0 \leq \theta \leq 2 \pi ) . Do not use a calculator. sin q = 32- \frac { \sqrt { 3 } } { 2 }

A) θ=π3,\theta = \frac { \pi } { 3 }, θ=5π3\theta = \frac { 5 \pi } { 3 }
B) θ=π3,\theta = \frac { \pi } { 3 }, θ=π\theta = \pi
C) θ=4π3\theta = \frac { 4 \pi } { 3 } , θ=5π3\theta = \frac { 5 \pi } { 3 }
D) θ=π6,\theta = \frac { \pi } { 6 }, θ=7π6\theta = \frac { 7 \pi } { 6 }
E) θ=π3\theta = \frac { \pi } { 3 } , θ=5π3\theta = \frac { 5 \pi } { 3 }
Question
In traveling across flat land, you notice a mountain directly in front of you. Its angle of elevation (to the peak) is 4.5 ^\circ . After you drive 13 miles closer to the mountain, the angle of elevation is 11 ^\circ . Approximate the height of the mountain. Round your answer to two decimal places.  <strong>In traveling across flat land, you notice a mountain directly in front of you. Its angle of elevation (to the peak) is 4.5  ^\circ  . After you drive 13 miles closer to the mountain, the angle of elevation is 11  ^\circ  . Approximate the height of the mountain. Round your answer to two decimal places.  </strong> A)45.50 miles B)8.84 miles C)1.94 miles D)1.72 miles E)17.69 miles <div style=padding-top: 35px>

A)45.50 miles
B)8.84 miles
C)1.94 miles
D)1.72 miles
E)17.69 miles
Question
Evaluate without using a calculator, leaving the answers in exact form. cos2π3\cos \frac { 2 \pi } { 3 }

A) 32\frac { \sqrt { 3 } } { 2 }
B) 22\frac { \sqrt { 2 } } { 2 }
C)1
D) 12\frac { 1 } { 2 }
E) 12- \frac { 1 } { 2 }
Question
Find the period and amplitude of the function y=3cos2xy = 3 \cos 2 x .  <strong>Find the period and amplitude of the function  y = 3 \cos 2 x  .  </strong> A)period:  2 \pi  ; amplitude: 6 B)period:  2 \pi  ; amplitude: 3 C)period:  \pi  ; amplitude: 3 D)period:  \pi  ; amplitude: 6 E)period:  \frac { \pi } { 2 }  ; amplitude: 3 <div style=padding-top: 35px>

A)period: 2π2 \pi ; amplitude: 6
B)period: 2π2 \pi ; amplitude: 3
C)period: π\pi ; amplitude: 3
D)period: π\pi ; amplitude: 6
E)period: π2\frac { \pi } { 2 } ; amplitude: 3
Question
A 20-foot ladder leaning against the side of a house makes a 75 ^\circ angle with the ground (see figure). How far up the side of the house does the ladder reach? Round your answer to four decimal places.  <strong>A 20-foot ladder leaning against the side of a house makes a 75  ^\circ  angle with the ground (see figure). How far up the side of the house does the ladder reach? Round your answer to four decimal places.  </strong> A)19.3185 feet B)20.7055 feet C)5.1764 feet D)5.3590 feet E)77.2741 feet <div style=padding-top: 35px>

A)19.3185 feet
B)20.7055 feet
C)5.1764 feet
D)5.3590 feet
E)77.2741 feet
Question
Find the derivative of the function. f(θ)=37sin23θf ( \theta ) = \frac { 3 } { 7 } \sin ^ { 2 } 3 \theta

A) f(θ)=3sin3θcos3θ7f ^ { \prime } ( \theta ) = \frac { 3 \sin 3 \theta \cos 3 \theta } { 7 }
B) f(θ)=18sin3θcos3θ7f ^ { \prime } ( \theta ) = \frac { 18 \sin 3 \theta \cos 3 \theta } { 7 }
C) f(θ)=18cos3θ7f ^ { \prime } ( \theta ) = \frac { 18 \cos 3 \theta } { 7 }
D) f(θ)=18sin3θcos3θ7f ^ { \prime } ( \theta ) = - \frac { 18 \sin 3 \theta \cos 3 \theta } { 7 }
E) f(θ)=18sin3θ7f ^ { \prime } ( \theta ) = \frac { 18 \sin 3 \theta } { 7 }
Question
Find the derivative of the function. y=2cos5xy = 2 \cos 5 x

A) y=10sin5xy ^ { \prime } = - 10 \sin 5 x
B) y=10sin5xy ^ { \prime } = 10 \sin 5 x
C) y=2sin5xy ^ { \prime } = - 2 \sin 5 x
D) y=10cos5xy ^ { \prime } = - 10 \cos 5 x
E) y=5sin5xy ^ { \prime } = - 5 \sin 5 x
Question
Find the indefinite integral of exsinexdx\int e ^ { x } \sin e ^ { x } d x .

A) excosex+Ce ^ { x } \cos e ^ { x } + C
B) exsinex+Ce ^ { x } - \sin e ^ { x } + C
C) cosex+C- \cos e ^ { x } + C
D) cosex+C\cos e ^ { x } + C
E) sinex+C\sin e ^ { x } + C
Question
The normal average daily temperature in degrees Fahrenheit for a city is given by 5123cos5π(t33)36551 - 23 \cos \frac { 5 \pi ( t - 33 ) } { 365 } where t is the time in days, with t=1t = 1 corresponding to January 1. Find the warmest day.

A)March 17
B)March 16
C)April 17
D)April 16
E)April 15
Question
Evaluate the definite integral π36π22csc6xcot6xdx\int _ { \frac { \pi } { 36 } } ^ { \frac { \pi } { 22 } } \csc 6 x \cot 6 x d x .

A)6
B)-6
C) 16- \frac { 1 } { 6 }
D) 16\frac { 1 } { 6 }
E) \infty
Question
The average monthly precipitation P (in inches), including rain, snow, and ice, for Sacramento, California can be modeled by P=2.47sin(0.40t+1.80)+2.08,P = 2.47 \sin ( 0.40 t + 1.80 ) + 2.08, 0t120 \leq t \leq 12 where tt is the time (in months), with t=1t = 1 corresponding to January. Find the total annual precipitation for Sacramento.

A) 18.0218.02 in.
B) 17.6917.69 in.
C) 14.5214.52 in.
D) 16.5716.57 in.
E) 18.9018.90 in.
Question
Suppose that the numbers W (in thousands) of construction workers employed in the United States during 2006 can be modeled by W=9094+455.2sin(0.6t1.813)W = 9094 + 455.2 \sin ( 0.6 t - 1.813 ) where t is the time in months, with t=1t = 1 corresponding to January 1. Approximate the month t in which the number of construction workers employed was a maximum. What was the maximum number of construction workers employed? Round your answer to nearest hundredth.

A)July; The maximum number of construction workers employed is 9559.
B)May; The maximum number of construction workers employed is 9539.
C)June; The maximum number of construction workers employed is 9539.
D)May; The maximum number of construction workers employed is 9549.
E)June; The maximum number of construction workers employed is 9549.
Question
Determine the relative extrema of the function y=2cosx+sin2xy = 2 \cos x + \sin 2 x on the interval (0,2π)( 0,2 \pi ) .

A)relative minimum: (5π6,332)\left( \frac { 5 \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (5π6,332)\left( \frac { 5 \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right)
B)relative minimum: (5π6,332)\left( \frac { 5 \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (π6,332)\left( \frac { \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right)
C)relative minimum: (π6,332)\left( \frac { \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (5π6,332)\left( \frac { 5 \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right)
D)relative minimum: (π6,332)\left( \frac { \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (5π6,332)\left( \frac { 5 \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right)
E)relative minimum: (5π6,332)\left( \frac { 5 \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (π6,332)\left( \frac { \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right)
Question
Evaluate the definite integral. 0π/44sec23tct\int _ { 0 } ^ { \pi / 4 } 4 \sec ^ { 2 } 3 t c t

A) 4- 4
B) 77
C)0
D)undefined
E)4
Question
Find the indefinite integral. tan3xsec2xdx\int \tan ^ { 3 } x \sec ^ { 2 } x d x

A) 16tan3xsec2x+C- \frac { 1 } { 6 } \tan ^ { 3 } x \sec ^ { 2 } x + C
B) 112tan4xsec3x+C\frac { 1 } { 12 } \tan ^ { 4 } x \sec ^ { 3 } x + C
C) 14tan4x+C\frac { 1 } { 4 } \tan ^ { 4 } x + C
D) 14tan4xsec4x+C\frac { 1 } { 4 } \tan ^ { 4 } x \sec ^ { 4 } x + C
E) 14sec4x+C\frac { 1 } { 4 } \sec ^ { 4 } x + C
Question
Find the indefinite integral of the following function. cos2tdt\int \cos 2 t d t

A) cos2t+C\cos 2 t + C
B) sin2t+C\sin 2 t + C
C) 2sin2t2 \sin 2 t
D) sin2t2+C\frac { \sin 2 t } { 2 } + C
E) sin2t3\frac { \sin 2 t } { 3 }
Question
For a person at rest, the velocity v (in liters per second) of air flow into and out of the lungs during a respiratory cycle is given by 0.9sinπt70.9 \sin \frac { \pi t } { 7 } , where t is the time in seconds. Inhalation occurs when v>0v > 0 and exhalation occurs when v<0v < 0 . Find the time for one full respiratory cycle.

A) 14π14 \pi seconds
B) π\pi seconds
C)14 seconds
D) 2π2 \pi seconds
E)7 seconds
Question
Find the derivative of the function y=ln(cos2x)y = \ln \left( \cos ^ { 2 } x \right) and simplify your answer by using the trigonometric identities.

A) y=2tanxy = 2 \tan x
B) y=2cosxsinxy = \frac { 2 } { \cos x \sin x }
C) y=2tanxy = - 2 \tan x
D) y=2cotxy = 2 \cot x
E) y=2cotxy = - 2 \cot x
Question
Find the indefinite integral of secxtanxsecx2dx\int \frac { \sec x \tan x } { \sec x - 2 } d x .

A) lnsecx+2+C\ln | \sec x + 2 | + C
B) lnsecx2+C\ln | \sec x - 2 | + C
C) ln2cosx+secx+C\ln | 2 \cos x + \sec x | + C
D) lncosx2+C\ln | \cos x - 2 | + C
E) lncosx+2+C\ln | \cos x + 2 | + C
Question
Find the indefinite integral of the following function. 4x3cosx4dx\int 4 x ^ { 3 } \cos x ^ { 4 } d x

A) cosx4+C\cos x ^ { 4 } + C
B) sinx4+C\sin x ^ { 4 } + C
C) sinx3\sin x ^ { 3 }
D) sinx44+C\frac { \sin x ^ { 4 } } { 4 } + C
E) sinx4\sin x ^ { 4 }
Question
Find the indefinite integral. sec6x4tanx4dx\int \sec ^ { 6 } \frac { x } { 4 } \tan \frac { x } { 4 } d x

A) 23sec6x4tanx4+C\frac { 2 } { 3 } \sec ^ { 6 } \frac { x } { 4 } \tan \frac { x } { 4 } + C
B) 23sec6x4+C\frac { 2 } { 3 } \sec ^ { 6 } \frac { x } { 4 } + C
C) 16sec7x4+C\frac { 1 } { 6 } \sec ^ { 7 } \frac { x } { 4 } + C
D) 14sec6x4tanx4+C\frac { 1 } { 4 } \sec ^ { 6 } \frac { x } { 4 } \tan \frac { x } { 4 } + C
E) 13tanx4+C\frac { 1 } { 3 } \tan \frac { x } { 4 } + C
Question
Find an equation of the tangent line to the graph of the function at the given point. y=cotxy = \cot x (3π4,1)\left( \frac { 3 \pi } { 4 } , - 1 \right)

A) y=2x+32π1y = - 2 x + \frac { 3 } { 2 } \pi - 1
B) y=2x+12π1y = 2 x + \frac { 1 } { 2 } \pi - 1
C) y=2x12πy = - 2 x - \frac { 1 } { 2 } \pi
D) y=x52π1y = - x - \frac { 5 } { 2 } \pi - 1
E) y=2x32π+1y = 2 x - \frac { 3 } { 2 } \pi + 1
Question
Determine the relative extrema of the function e5xcosxe ^ { 5 x } \cos x on the interval (0,2π)( 0,2 \pi ) .

A)relative minimum: (22e25π4,5π4)\left( - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } , \frac { 5 \pi } { 4 } \right) relative maximum: (22e5π4,π4)\left( \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } , \frac { \pi } { 4 } \right)
B)relative minimum: (π4,22e5π4)\left( \frac { \pi } { 4 } , - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } \right) relative maximum: (5π4,22e25π4)\left( \frac { 5 \pi } { 4 } , \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } \right)
C)relative minimum: (5π4,22e25π4)\left( \frac { 5 \pi } { 4 } , - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } \right) relative maximum: (π4,22e5π4)\left( \frac { \pi } { 4 } , \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } \right)
D)relative minimum: (5π4,22e5π4)\left( \frac { 5 \pi } { 4 } , \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } \right) relative maximum: (π4,22e25π4)\left( \frac { \pi } { 4 } , - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } \right)
E)relative minimum: (22e5π4,5π4)\left( \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } , \frac { 5 \pi } { 4 } \right) relative maximum: (22e25π4,π4)\left( - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } , \frac { \pi } { 4 } \right)
Question
Find the derivative of the function and simplify your answer by using the trigonometric identities y=cos2xy = \cos ^ { 2 } x

A) 2cos2xsin2x=2sin2x- 2 \cos ^ { 2 } x \sin ^ { 2 } x = 2 \sin 2 x
B) 2cosxsinx=sin2x2 \cos x \sin x = \sin 2 x
C) 2cosxsinx=sin2x- 2 \cos x \sin x = - \sin 2 x
D) 2cos2xsinx=2sinx2 \cos ^ { 2 } x \sin x = 2 \sin x
E) 2cos2xsin2x=2sin2x2 \cos ^ { 2 } x \sin ^ { 2 } x = 2 \sin 2 x
Question
Use integration by parts to find the indefinite integral. xcos2xdx\int x \cos 2 x d x

A) 12xcos2x14sin2x+C\frac { 1 } { 2 } x \cos 2 x - \frac { 1 } { 4 } \sin 2 x + C
B) 12xsin2x14cos2x+C\frac { 1 } { 2 } x \sin 2 x - \frac { 1 } { 4 } \cos 2 x + C
C) 12sin2x+12cos2x+C\frac { 1 } { 2 } \sin 2 x + \frac { 1 } { 2 } \cos 2 x + C
D) 12xsin2x+14cos2x+C\frac { 1 } { 2 } x \sin 2 x + \frac { 1 } { 4 } \cos 2 x + C  <strong>Use integration by parts to find the indefinite integral.  \int x \cos 2 x d x </strong> A)  \frac { 1 } { 2 } x \cos 2 x - \frac { 1 } { 4 } \sin 2 x + C  B)  \frac { 1 } { 2 } x \sin 2 x - \frac { 1 } { 4 } \cos 2 x + C  C)  \frac { 1 } { 2 } \sin 2 x + \frac { 1 } { 2 } \cos 2 x + C  D)  \frac { 1 } { 2 } x \sin 2 x + \frac { 1 } { 4 } \cos 2 x + C    E)  \frac { 1 } { 4 } x \cos 2 x + \frac { 1 } { 2 } \sin 2 x + C  <div style=padding-top: 35px>
E) 14xcos2x+12sin2x+C\frac { 1 } { 4 } x \cos 2 x + \frac { 1 } { 2 } \sin 2 x + C
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/60
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 15: Trigonometric Functions Web
1
Solve the triangle for the indicated side and angle.  <strong>Solve the triangle for the indicated side and angle.  </strong> A)  \begin{array} { l l } \text { angle } \theta : & 30 ^ { \circ } \\ \text { side } c : & 10 \end{array}  B)  \begin{array} { l l } \text { angle } \theta : & 60 ^ { \circ } \\ \text { side } c : & 10 \end{array}  C) angle  \theta : 30 ^ { \circ }  side  c  :  \quad 4 \sqrt { 2 }  D)  \begin{array} { l l } \text { angle } \theta : & 35 ^ { \circ } \\ \text { side } c : & 4 \sqrt { 2 } \end{array}  E) angle  \theta : 50 ^ { \circ }  side  c : \quad 10

A)  angle θ:30 side c:10\begin{array} { l l } \text { angle } \theta : & 30 ^ { \circ } \\\text { side } c : & 10\end{array}
B)  angle θ:60 side c:10\begin{array} { l l } \text { angle } \theta : & 60 ^ { \circ } \\\text { side } c : & 10\end{array}
C) angle θ:30\theta : 30 ^ { \circ }
side cc : 42\quad 4 \sqrt { 2 }
D)  angle θ:35 side c:42\begin{array} { l l } \text { angle } \theta : & 35 ^ { \circ } \\\text { side } c : & 4 \sqrt { 2 }\end{array}
E) angle θ:50\theta : 50 ^ { \circ }
side c:10c : \quad 10
 angle θ:60 side c:10\begin{array} { l l } \text { angle } \theta : & 60 ^ { \circ } \\\text { side } c : & 10\end{array}
2
Find the radian measure of the given angle. 225o

A) 5π2\frac { 5 \pi } { 2 }
B) 15π4\frac { 15 \pi } { 4 }
C) 45π4\frac { 45 \pi } { 4 }
D) 5π4\frac { 5 \pi } { 4 }
E) 5π8\frac { 5 \pi } { 8 }
5π4\frac { 5 \pi } { 4 }
3
A guy wire is stretched from a broadcasting tower at a point 300 feet above the ground to an anchor 175 feet from the base (see figure). How long is the wire? <strong>A guy wire is stretched from a broadcasting tower at a point 300 feet above the ground to an anchor 175 feet from the base (see figure). How long is the wire?  </strong> A)347.31 feet B)173.66 feet C)243.67 feet D)121.83 feet E)237.50 feet

A)347.31 feet
B)173.66 feet
C)243.67 feet
D)121.83 feet
E)237.50 feet
347.31 feet
4
Find sinθ\sin \theta given that secθ=4\sec \theta = 4 and 0<θ<π20 < \theta < \frac { \pi } { 2 } .

A) 44
B) 15\sqrt { 15 }
C) 154\frac { \sqrt { 15 } } { 4 }
D) 115\frac { 1 } { \sqrt { 15 } }
E) 116\frac { 1 } { 16 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
5
From the given function cosθ=45\cos \theta = \frac { 4 } { 5 } , find the following trigonometric function. sinθ\sin \theta  <strong>From the given function  \cos \theta = \frac { 4 } { 5 }  , find the following trigonometric function.  \sin \theta   </strong> A)  \frac { 5 } { 3 }  B)  \frac { 5 } { 4 }  C)  \frac { 3 } { 5 }  D)  \frac { 4 } { 5 }  E)  \frac { 3 } { 9 }

A) 53\frac { 5 } { 3 }
B) 54\frac { 5 } { 4 }
C) 35\frac { 3 } { 5 }
D) 45\frac { 4 } { 5 }
E) 39\frac { 3 } { 9 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
6
Evaluate without using a calculator, leaving the answers in exact form. sin3π4\sin \frac { 3 \pi } { 4 }

A) 22\frac { \sqrt { 2 } } { 2 }
B) 12\frac { 1 } { 2 }
C)1
D)0
E) 32\frac { 3 } { 2 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
7
Determine two coterminal angles (one positive and one negative) for each angle. Give the answers in radians.  <strong>Determine two coterminal angles (one positive and one negative) for each angle. Give the answers in radians.  </strong> A) positive:  \frac { 19 \pi } { 9 }   negative:  \frac { 37 \pi } { 19 }  B) positive:  \quad - \frac { 35 \pi } { 18 }   negative:  \frac { 37 \pi } { 18 }  C) positive:  \quad - \frac { 37 \pi } { 18 }   negative:  \frac { 35 \pi } { 18 }  D) positive:  \frac { 37 \pi } { 18 }   negative:  \quad - \frac { 35 \pi } { 18 }  E) positive:  \frac { 37 \pi } { 19 }   negative:  \quad - \frac { 35 \pi } { 17 }

A) positive: 19π9\frac { 19 \pi } { 9 }

negative: 37π19\frac { 37 \pi } { 19 }
B) positive: 35π18\quad - \frac { 35 \pi } { 18 }

negative: 37π18\frac { 37 \pi } { 18 }
C) positive: 37π18\quad - \frac { 37 \pi } { 18 }

negative: 35π18\frac { 35 \pi } { 18 }
D) positive: 37π18\frac { 37 \pi } { 18 }

negative: 35π18\quad - \frac { 35 \pi } { 18 }
E) positive: 37π19\frac { 37 \pi } { 19 }

negative: 35π17\quad - \frac { 35 \pi } { 17 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
8
Find the cosine of θ\theta .  <strong>Find the cosine of  \theta  .  </strong> A)  - \frac { 5 } { 12 }  B)  - \frac { 13 } { 12 }  C)  \frac { 13 } { 5 }  D)  - \frac { 12 } { 13 }  E)  \frac { 5 } { 13 }

A) 512- \frac { 5 } { 12 }
B) 1312- \frac { 13 } { 12 }
C) 135\frac { 13 } { 5 }
D) 1213- \frac { 12 } { 13 }
E) 513\frac { 5 } { 13 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
9
Find the cosine of θ\theta .  <strong>Find the cosine of  \theta  .  </strong> A)  \frac { 8 } { 17 }  B)  \frac { 8 } { 15 }  C)  \frac { 15 } { 17 }  D)  \frac { 17 } { 8 }  E)  \frac { 17 } { 15 }

A) 817\frac { 8 } { 17 }
B) 815\frac { 8 } { 15 }
C) 1517\frac { 15 } { 17 }
D) 178\frac { 17 } { 8 }
E) 1715\frac { 17 } { 15 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate without using a calculator. tanπ4\tan \frac { \pi } { 4 }

A) 11
B)  undefined \text { undefined }
C) 32\frac { \sqrt { 3 } } { 2 }
D) 23\frac { \sqrt { 2 } } { 3 }
E)0
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
11
Find the area of the equilateral triangle with sides of length s=18s = 18 in. Round your answer to two decimal places.

A)121.50 square inches
B)561.18 square inches
C)140.30 square inches
D)162.00 square inches
E)486.00 square inches
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
12
Find the radian measure of the given angle. 750o

A) 25π3\frac { 25 \pi } { 3 }
B) 25π6\frac { 25 \pi } { 6 }
C) 75π2\frac { 75 \pi } { 2 }
D) 25π2\frac { 25 \pi } { 2 }
E) 25π12\frac { 25 \pi } { 12 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
13
A sector of a circle is the region bounded by two radii of the circle and their intercepted arc (see figure).  <strong>A sector of a circle is the region bounded by two radii of the circle and their intercepted arc (see figure).   For a circle of radius  r,  the area  A  of a sector of the circle with central angle  \theta  (measured in radians) is given by  A = \frac { 1 } { 2 } r ^ { 2 } \theta  . A sprinkler system on a farm is set to spray water over a distance of  60  feet and rotates through an angle of  110 ^ { \circ }  . Use the above given information to find the area of the region. Round your answer to two decimal places.</strong> A)3457.14 B)314.29 C)3300.00 D)1728.57 E)12,100.00  For a circle of radius r,r, the area AA of a sector of the circle with central angle θ\theta (measured in radians) is given by A=12r2θA = \frac { 1 } { 2 } r ^ { 2 } \theta . A sprinkler system on a farm is set to spray water over a distance of 6060 feet and rotates through an angle of 110110 ^ { \circ } . Use the above given information to find the area of the region. Round your answer to two decimal places.

A)3457.14
B)314.29
C)3300.00
D)1728.57
E)12,100.00
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
14
A compact disc can have an angular speed up to 3146 radians per minute. At this angular speed, how many revolutions per minute would the CD make? Round your answer to the nearest integer.

A)122
B)143
C)919
D)501
E)72
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
15
Find cscθ\csc \theta from the given graph.  <strong>Find  \csc \theta  from the given graph.  </strong> A)  \frac { 15 } { 17 }  B)  - \frac { 8 } { 17 }  C)  - \frac { 17 } { 8 }  D)  \frac { 17 } { 8 }  E)  - \frac { 17 } { 15 }

A) 1517\frac { 15 } { 17 }
B) 817- \frac { 8 } { 17 }
C) 178- \frac { 17 } { 8 }
D) 178\frac { 17 } { 8 }
E) 1715- \frac { 17 } { 15 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
16
Find the degree measure of the given angle. 4π7\frac { 4 \pi } { 7 }

A)280.0o
B)102.9o
C)157.5o
D)315.0o
E)32.7o
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
17
Solve the triangle for the indicated angle.  <strong>Solve the triangle for the indicated angle.  </strong> A)angle  \theta :  40  ^\circ  B)angle  \theta :  90  ^\circ  C)angle  \theta :  140  ^\circ  D)angle  \theta :  50  ^\circ  E)angle  \theta :  130  ^\circ

A)angle θ:\theta : 40 ^\circ
B)angle θ:\theta : 90 ^\circ
C)angle θ:\theta : 140 ^\circ
D)angle θ:\theta : 50 ^\circ
E)angle θ:\theta : 130 ^\circ
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
18
Solve the triangle for the indicated side.  <strong>Solve the triangle for the indicated side.  </strong> A)  \text { side } h : \frac { 7 } { 8 }  B)  \text { side } h : \quad \frac { 15 } { 7 }  C)  \text { side } h : \quad \frac { 8 } { 7 }  D)  \text { side } h : \frac { 7 } { 15 }  E)  \text { side } h : \frac { 4 } { 7 }

A)  side h:78\text { side } h : \frac { 7 } { 8 }
B)  side h:157\text { side } h : \quad \frac { 15 } { 7 }
C)  side h:87\text { side } h : \quad \frac { 8 } { 7 }
D)  side h:715\text { side } h : \frac { 7 } { 15 }
E)  side h:47\text { side } h : \frac { 4 } { 7 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
19
Find the cosine of θ\theta .  <strong>Find the cosine of  \theta  .  </strong> A)  \frac { 4 } { 3 }  B)  \frac { 4 } { 5 }  C)  \frac { 3 } { 5 }  D)  \frac { 5 } { 4 }  E)  \frac { 5 } { 3 }

A) 43\frac { 4 } { 3 }
B) 45\frac { 4 } { 5 }
C) 35\frac { 3 } { 5 }
D) 54\frac { 5 } { 4 }
E) 53\frac { 5 } { 3 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
20
Determine the quadrant in which θ\theta lies if sin q < 0 and cos q > 0.

A)fourth quadrant
B)third quadrant
C)first quadrant
D)second quadrant
E)second or third quadrants
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
21
Find the period of the trigonometric function. y=cotπx6y = \cot \frac { \pi x } { 6 }

A) π6\frac { \pi } { 6 }
B) 66
C) π3\frac { \pi } { 3 }
D) π2\frac { \pi } { 2 }
E) π\pi
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
22
Find two values of q that satisfy the equation below. Give values of q in radians (0θ2π)( 0 \leq \theta \leq 2 \pi ) . Do not use a calculator. sin q = 22\frac { \sqrt { 2 } } { 2 }

A) θ=π3,\theta = \frac { \pi } { 3 }, θ=3π4\theta = \frac { 3 \pi } { 4 }
B) θ=π4\theta = \frac { \pi } { 4 } , θ=3π4\theta = \frac { 3 \pi } { 4 }
C) θ=π4,\theta = \frac { \pi } { 4 }, θ=π\theta = \pi
D) θ=π6,\theta = \frac { \pi } { 6 }, θ=5π6\theta = \frac { 5 \pi } { 6 }
E) θ=π4,\theta = \frac { \pi } { 4 }, θ=4π3\theta = \frac { 4 \pi } { 3 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
23
Find the derivative of the trigonometric function. y=cos3x+sin2xy = \cos 3 x + \sin ^ { 2 } x

A) 3sin3x+2sinxcosx- 3 \sin 3 x + 2 \sin x \cos x
B) 3sin3x2sinxcosx3 \sin 3 x - 2 \sin x \cos x
C) 3sin3x+2sin2xcosx3 \sin 3 x + 2 \sin ^ { 2 } x \cos x
D) sin3x+2sin2xcos2x- \sin 3 x + 2 \sin ^ { 2 } x \cos ^ { 2 } x
E) 3sin2x+sin2xcos2x- 3 \sin ^ { 2 } x + \sin ^ { 2 } x \cos ^ { 2 } x
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
24
Approximate using a calculator (set for radians). Round answers to two decimal places. sin2\sin 2

A)1.00
B)0.91
C)0.08
D)-0.42
E)-1.00
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
25
Solve the equation below for θ\theta (0θ2π)( 0 \leq \theta \leq 2 \pi ) . For some of the equations you should use the trigonometric identities listed in this section. Use the trace feature of a graphing utility to verify your results. sin2θcosθ=0\sin 2 \theta - \cos \theta = 0

A) π4,5π4\frac { \pi } { 4 } , \frac { 5 \pi } { 4 }
B) π4,3π4,5π4,7π4\frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }
C) π6,5π6,3π6\frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { 3 \pi } { 6 }
D) π6,5π6,π2,3π2\frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
E) π6,5π6,7π6\frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { 7 \pi } { 6 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
26
Sketch the graph of the function y=3tanπxy = 3 \tan \pi x .

A)  <strong>Sketch the graph of the function  y = 3 \tan \pi x  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  y = 3 \tan \pi x  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  y = 3 \tan \pi x  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  y = 3 \tan \pi x  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  y = 3 \tan \pi x  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
27
Solve the equation below for θ\theta (0θ2π)( 0 \leq \theta \leq 2 \pi ) . For some of the equations you should use the trigonometric identities listed in this section. Use the trace feature of a graphing utility to verify your results. cos2θ+sinθ=1\cos ^ { 2 } \theta + \sin \theta = 1

A) 0,π,2π0 , \pi , 2 \pi
B) 0,π2,π,2π0 , \frac { \pi } { 2 } , \pi , 2 \pi
C) π,2π3\pi , \frac { 2 \pi } { 3 }
D) π3,5π3\frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
E) 0,π2,3π2,π0 , \frac { \pi } { 2 } , \frac { 3 \pi } { 2 } , \pi
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
28
Find the period and amplitude of the function y=72sin(πx2)y = \frac { 7 } { 2 } \sin \left( \frac { \pi x } { 2 } \right) .  <strong>Find the period and amplitude of the function  y = \frac { 7 } { 2 } \sin \left( \frac { \pi x } { 2 } \right)  .  </strong> A)Period:  2 \pi  ; Amplitude:7 B)Period:  2 \pi  ; Amplitude:  \frac { 7 } { 2 }  C)Period:  2  ; Amplitude:  \frac { 7 } { 2 }  D)Period:  4  ; Amplitude: 7 E)Period:  4  ; Amplitude:  \frac { 7 } { 2 }

A)Period: 2π2 \pi ; Amplitude:7
B)Period: 2π2 \pi ; Amplitude: 72\frac { 7 } { 2 }
C)Period: 22 ; Amplitude: 72\frac { 7 } { 2 }
D)Period: 44 ; Amplitude: 7
E)Period: 44 ; Amplitude: 72\frac { 7 } { 2 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
29
Match the function below with the correct graph. y=sinxy = \sin x

A)  <strong>Match the function below with the correct graph.  y = \sin x </strong> A)   B)   C)   D)   E)
B)  <strong>Match the function below with the correct graph.  y = \sin x </strong> A)   B)   C)   D)   E)
C)  <strong>Match the function below with the correct graph.  y = \sin x </strong> A)   B)   C)   D)   E)
D)  <strong>Match the function below with the correct graph.  y = \sin x </strong> A)   B)   C)   D)   E)
E)  <strong>Match the function below with the correct graph.  y = \sin x </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
30
Find a and d for f(x)=acosx+df ( x ) = a \cos x + d such that the graph of f matches the figure.  <strong>Find a and d for  f ( x ) = a \cos x + d  such that the graph of f matches the figure.  </strong> A)  a = 2 ; d = 3  B)  a = 5 ; d = 2  C)  a = 3 ; d = 5  D)  a = 3 ; d = 2  E)  a = 5 ; d = 5

A) a=2;d=3a = 2 ; d = 3
B) a=5;d=2a = 5 ; d = 2
C) a=3;d=5a = 3 ; d = 5
D) a=3;d=2a = 3 ; d = 2
E) a=5;d=5a = 5 ; d = 5
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
31
Find the period of the trigonometric function. y=3sec5xy = 3 \sec 5 x

A) π5\frac { \pi } { 5 }
B) 2π3\frac { 2 \pi } { 3 }
C) π3\frac { \pi } { 3 }
D) 2π5\frac { 2 \pi } { 5 }
E) 3π5\frac { 3 \pi } { 5 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
32
Sketch the graph of the function y=2sec3xy = 2 \sec 3 x .

A)  <strong>Sketch the graph of the function  y = 2 \sec 3 x  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  y = 2 \sec 3 x  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  y = 2 \sec 3 x  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  y = 2 \sec 3 x  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  y = 2 \sec 3 x  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
33
Solve the equation for θ\theta (0θ2π)( 0 \leq \theta \leq 2 \pi ) . For some of the equations you should use the trigonometric identities listed in this section. Use the trace feature of a graphing utility to verify your results. cos2θ+3cosθ+2=0\cos 2 \theta + 3 \cos \theta + 2 = 0

A) 2π3,4π3,π\frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 } , \pi
B) 2π3,4π3,2π\frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 } , 2 \pi
C) 0,2π3,4π3,π0 , \frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 } , \pi
D) 0,π3,4π30 , \frac { \pi } { 3 } , \frac { 4 \pi } { 3 }
E) 0,π3,4π3,π0 , \frac { \pi } { 3 } , \frac { 4 \pi } { 3 } , \pi
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
34
Use a calculator to evaluate the trigonometric function cos400\cos 400 ^ { \circ } to four decimal places.

A)-1.0827
B)1.1918
C)-0.9236
D)0.7660
E)0.8391
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
35
Sketch the graph of the function y=csc2xy = \csc 2 x .

A)  <strong>Sketch the graph of the function  y = \csc 2 x  .</strong> A)   B)   C)   D)   E)
B)  <strong>Sketch the graph of the function  y = \csc 2 x  .</strong> A)   B)   C)   D)   E)
C)  <strong>Sketch the graph of the function  y = \csc 2 x  .</strong> A)   B)   C)   D)   E)
D)  <strong>Sketch the graph of the function  y = \csc 2 x  .</strong> A)   B)   C)   D)   E)
E)  <strong>Sketch the graph of the function  y = \csc 2 x  .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
36
Find two values of q that satisfy the equation below. Give values of q in radians (0θ2π)( 0 \leq \theta \leq 2 \pi ) . Do not use a calculator. sin q = 32- \frac { \sqrt { 3 } } { 2 }

A) θ=π3,\theta = \frac { \pi } { 3 }, θ=5π3\theta = \frac { 5 \pi } { 3 }
B) θ=π3,\theta = \frac { \pi } { 3 }, θ=π\theta = \pi
C) θ=4π3\theta = \frac { 4 \pi } { 3 } , θ=5π3\theta = \frac { 5 \pi } { 3 }
D) θ=π6,\theta = \frac { \pi } { 6 }, θ=7π6\theta = \frac { 7 \pi } { 6 }
E) θ=π3\theta = \frac { \pi } { 3 } , θ=5π3\theta = \frac { 5 \pi } { 3 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
37
In traveling across flat land, you notice a mountain directly in front of you. Its angle of elevation (to the peak) is 4.5 ^\circ . After you drive 13 miles closer to the mountain, the angle of elevation is 11 ^\circ . Approximate the height of the mountain. Round your answer to two decimal places.  <strong>In traveling across flat land, you notice a mountain directly in front of you. Its angle of elevation (to the peak) is 4.5  ^\circ  . After you drive 13 miles closer to the mountain, the angle of elevation is 11  ^\circ  . Approximate the height of the mountain. Round your answer to two decimal places.  </strong> A)45.50 miles B)8.84 miles C)1.94 miles D)1.72 miles E)17.69 miles

A)45.50 miles
B)8.84 miles
C)1.94 miles
D)1.72 miles
E)17.69 miles
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
38
Evaluate without using a calculator, leaving the answers in exact form. cos2π3\cos \frac { 2 \pi } { 3 }

A) 32\frac { \sqrt { 3 } } { 2 }
B) 22\frac { \sqrt { 2 } } { 2 }
C)1
D) 12\frac { 1 } { 2 }
E) 12- \frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
39
Find the period and amplitude of the function y=3cos2xy = 3 \cos 2 x .  <strong>Find the period and amplitude of the function  y = 3 \cos 2 x  .  </strong> A)period:  2 \pi  ; amplitude: 6 B)period:  2 \pi  ; amplitude: 3 C)period:  \pi  ; amplitude: 3 D)period:  \pi  ; amplitude: 6 E)period:  \frac { \pi } { 2 }  ; amplitude: 3

A)period: 2π2 \pi ; amplitude: 6
B)period: 2π2 \pi ; amplitude: 3
C)period: π\pi ; amplitude: 3
D)period: π\pi ; amplitude: 6
E)period: π2\frac { \pi } { 2 } ; amplitude: 3
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
40
A 20-foot ladder leaning against the side of a house makes a 75 ^\circ angle with the ground (see figure). How far up the side of the house does the ladder reach? Round your answer to four decimal places.  <strong>A 20-foot ladder leaning against the side of a house makes a 75  ^\circ  angle with the ground (see figure). How far up the side of the house does the ladder reach? Round your answer to four decimal places.  </strong> A)19.3185 feet B)20.7055 feet C)5.1764 feet D)5.3590 feet E)77.2741 feet

A)19.3185 feet
B)20.7055 feet
C)5.1764 feet
D)5.3590 feet
E)77.2741 feet
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
41
Find the derivative of the function. f(θ)=37sin23θf ( \theta ) = \frac { 3 } { 7 } \sin ^ { 2 } 3 \theta

A) f(θ)=3sin3θcos3θ7f ^ { \prime } ( \theta ) = \frac { 3 \sin 3 \theta \cos 3 \theta } { 7 }
B) f(θ)=18sin3θcos3θ7f ^ { \prime } ( \theta ) = \frac { 18 \sin 3 \theta \cos 3 \theta } { 7 }
C) f(θ)=18cos3θ7f ^ { \prime } ( \theta ) = \frac { 18 \cos 3 \theta } { 7 }
D) f(θ)=18sin3θcos3θ7f ^ { \prime } ( \theta ) = - \frac { 18 \sin 3 \theta \cos 3 \theta } { 7 }
E) f(θ)=18sin3θ7f ^ { \prime } ( \theta ) = \frac { 18 \sin 3 \theta } { 7 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
42
Find the derivative of the function. y=2cos5xy = 2 \cos 5 x

A) y=10sin5xy ^ { \prime } = - 10 \sin 5 x
B) y=10sin5xy ^ { \prime } = 10 \sin 5 x
C) y=2sin5xy ^ { \prime } = - 2 \sin 5 x
D) y=10cos5xy ^ { \prime } = - 10 \cos 5 x
E) y=5sin5xy ^ { \prime } = - 5 \sin 5 x
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
43
Find the indefinite integral of exsinexdx\int e ^ { x } \sin e ^ { x } d x .

A) excosex+Ce ^ { x } \cos e ^ { x } + C
B) exsinex+Ce ^ { x } - \sin e ^ { x } + C
C) cosex+C- \cos e ^ { x } + C
D) cosex+C\cos e ^ { x } + C
E) sinex+C\sin e ^ { x } + C
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
44
The normal average daily temperature in degrees Fahrenheit for a city is given by 5123cos5π(t33)36551 - 23 \cos \frac { 5 \pi ( t - 33 ) } { 365 } where t is the time in days, with t=1t = 1 corresponding to January 1. Find the warmest day.

A)March 17
B)March 16
C)April 17
D)April 16
E)April 15
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
45
Evaluate the definite integral π36π22csc6xcot6xdx\int _ { \frac { \pi } { 36 } } ^ { \frac { \pi } { 22 } } \csc 6 x \cot 6 x d x .

A)6
B)-6
C) 16- \frac { 1 } { 6 }
D) 16\frac { 1 } { 6 }
E) \infty
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
46
The average monthly precipitation P (in inches), including rain, snow, and ice, for Sacramento, California can be modeled by P=2.47sin(0.40t+1.80)+2.08,P = 2.47 \sin ( 0.40 t + 1.80 ) + 2.08, 0t120 \leq t \leq 12 where tt is the time (in months), with t=1t = 1 corresponding to January. Find the total annual precipitation for Sacramento.

A) 18.0218.02 in.
B) 17.6917.69 in.
C) 14.5214.52 in.
D) 16.5716.57 in.
E) 18.9018.90 in.
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
47
Suppose that the numbers W (in thousands) of construction workers employed in the United States during 2006 can be modeled by W=9094+455.2sin(0.6t1.813)W = 9094 + 455.2 \sin ( 0.6 t - 1.813 ) where t is the time in months, with t=1t = 1 corresponding to January 1. Approximate the month t in which the number of construction workers employed was a maximum. What was the maximum number of construction workers employed? Round your answer to nearest hundredth.

A)July; The maximum number of construction workers employed is 9559.
B)May; The maximum number of construction workers employed is 9539.
C)June; The maximum number of construction workers employed is 9539.
D)May; The maximum number of construction workers employed is 9549.
E)June; The maximum number of construction workers employed is 9549.
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
48
Determine the relative extrema of the function y=2cosx+sin2xy = 2 \cos x + \sin 2 x on the interval (0,2π)( 0,2 \pi ) .

A)relative minimum: (5π6,332)\left( \frac { 5 \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (5π6,332)\left( \frac { 5 \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right)
B)relative minimum: (5π6,332)\left( \frac { 5 \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (π6,332)\left( \frac { \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right)
C)relative minimum: (π6,332)\left( \frac { \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (5π6,332)\left( \frac { 5 \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right)
D)relative minimum: (π6,332)\left( \frac { \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (5π6,332)\left( \frac { 5 \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right)
E)relative minimum: (5π6,332)\left( \frac { 5 \pi } { 6 } , \frac { 3 \sqrt { 3 } } { 2 } \right) relative maximum: (π6,332)\left( \frac { \pi } { 6 } , - \frac { 3 \sqrt { 3 } } { 2 } \right)
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
49
Evaluate the definite integral. 0π/44sec23tct\int _ { 0 } ^ { \pi / 4 } 4 \sec ^ { 2 } 3 t c t

A) 4- 4
B) 77
C)0
D)undefined
E)4
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
50
Find the indefinite integral. tan3xsec2xdx\int \tan ^ { 3 } x \sec ^ { 2 } x d x

A) 16tan3xsec2x+C- \frac { 1 } { 6 } \tan ^ { 3 } x \sec ^ { 2 } x + C
B) 112tan4xsec3x+C\frac { 1 } { 12 } \tan ^ { 4 } x \sec ^ { 3 } x + C
C) 14tan4x+C\frac { 1 } { 4 } \tan ^ { 4 } x + C
D) 14tan4xsec4x+C\frac { 1 } { 4 } \tan ^ { 4 } x \sec ^ { 4 } x + C
E) 14sec4x+C\frac { 1 } { 4 } \sec ^ { 4 } x + C
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
51
Find the indefinite integral of the following function. cos2tdt\int \cos 2 t d t

A) cos2t+C\cos 2 t + C
B) sin2t+C\sin 2 t + C
C) 2sin2t2 \sin 2 t
D) sin2t2+C\frac { \sin 2 t } { 2 } + C
E) sin2t3\frac { \sin 2 t } { 3 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
52
For a person at rest, the velocity v (in liters per second) of air flow into and out of the lungs during a respiratory cycle is given by 0.9sinπt70.9 \sin \frac { \pi t } { 7 } , where t is the time in seconds. Inhalation occurs when v>0v > 0 and exhalation occurs when v<0v < 0 . Find the time for one full respiratory cycle.

A) 14π14 \pi seconds
B) π\pi seconds
C)14 seconds
D) 2π2 \pi seconds
E)7 seconds
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
53
Find the derivative of the function y=ln(cos2x)y = \ln \left( \cos ^ { 2 } x \right) and simplify your answer by using the trigonometric identities.

A) y=2tanxy = 2 \tan x
B) y=2cosxsinxy = \frac { 2 } { \cos x \sin x }
C) y=2tanxy = - 2 \tan x
D) y=2cotxy = 2 \cot x
E) y=2cotxy = - 2 \cot x
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
54
Find the indefinite integral of secxtanxsecx2dx\int \frac { \sec x \tan x } { \sec x - 2 } d x .

A) lnsecx+2+C\ln | \sec x + 2 | + C
B) lnsecx2+C\ln | \sec x - 2 | + C
C) ln2cosx+secx+C\ln | 2 \cos x + \sec x | + C
D) lncosx2+C\ln | \cos x - 2 | + C
E) lncosx+2+C\ln | \cos x + 2 | + C
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
55
Find the indefinite integral of the following function. 4x3cosx4dx\int 4 x ^ { 3 } \cos x ^ { 4 } d x

A) cosx4+C\cos x ^ { 4 } + C
B) sinx4+C\sin x ^ { 4 } + C
C) sinx3\sin x ^ { 3 }
D) sinx44+C\frac { \sin x ^ { 4 } } { 4 } + C
E) sinx4\sin x ^ { 4 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
56
Find the indefinite integral. sec6x4tanx4dx\int \sec ^ { 6 } \frac { x } { 4 } \tan \frac { x } { 4 } d x

A) 23sec6x4tanx4+C\frac { 2 } { 3 } \sec ^ { 6 } \frac { x } { 4 } \tan \frac { x } { 4 } + C
B) 23sec6x4+C\frac { 2 } { 3 } \sec ^ { 6 } \frac { x } { 4 } + C
C) 16sec7x4+C\frac { 1 } { 6 } \sec ^ { 7 } \frac { x } { 4 } + C
D) 14sec6x4tanx4+C\frac { 1 } { 4 } \sec ^ { 6 } \frac { x } { 4 } \tan \frac { x } { 4 } + C
E) 13tanx4+C\frac { 1 } { 3 } \tan \frac { x } { 4 } + C
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
57
Find an equation of the tangent line to the graph of the function at the given point. y=cotxy = \cot x (3π4,1)\left( \frac { 3 \pi } { 4 } , - 1 \right)

A) y=2x+32π1y = - 2 x + \frac { 3 } { 2 } \pi - 1
B) y=2x+12π1y = 2 x + \frac { 1 } { 2 } \pi - 1
C) y=2x12πy = - 2 x - \frac { 1 } { 2 } \pi
D) y=x52π1y = - x - \frac { 5 } { 2 } \pi - 1
E) y=2x32π+1y = 2 x - \frac { 3 } { 2 } \pi + 1
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
58
Determine the relative extrema of the function e5xcosxe ^ { 5 x } \cos x on the interval (0,2π)( 0,2 \pi ) .

A)relative minimum: (22e25π4,5π4)\left( - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } , \frac { 5 \pi } { 4 } \right) relative maximum: (22e5π4,π4)\left( \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } , \frac { \pi } { 4 } \right)
B)relative minimum: (π4,22e5π4)\left( \frac { \pi } { 4 } , - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } \right) relative maximum: (5π4,22e25π4)\left( \frac { 5 \pi } { 4 } , \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } \right)
C)relative minimum: (5π4,22e25π4)\left( \frac { 5 \pi } { 4 } , - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } \right) relative maximum: (π4,22e5π4)\left( \frac { \pi } { 4 } , \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } \right)
D)relative minimum: (5π4,22e5π4)\left( \frac { 5 \pi } { 4 } , \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } \right) relative maximum: (π4,22e25π4)\left( \frac { \pi } { 4 } , - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } \right)
E)relative minimum: (22e5π4,5π4)\left( \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } , \frac { 5 \pi } { 4 } \right) relative maximum: (22e25π4,π4)\left( - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } , \frac { \pi } { 4 } \right)
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
59
Find the derivative of the function and simplify your answer by using the trigonometric identities y=cos2xy = \cos ^ { 2 } x

A) 2cos2xsin2x=2sin2x- 2 \cos ^ { 2 } x \sin ^ { 2 } x = 2 \sin 2 x
B) 2cosxsinx=sin2x2 \cos x \sin x = \sin 2 x
C) 2cosxsinx=sin2x- 2 \cos x \sin x = - \sin 2 x
D) 2cos2xsinx=2sinx2 \cos ^ { 2 } x \sin x = 2 \sin x
E) 2cos2xsin2x=2sin2x2 \cos ^ { 2 } x \sin ^ { 2 } x = 2 \sin 2 x
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
60
Use integration by parts to find the indefinite integral. xcos2xdx\int x \cos 2 x d x

A) 12xcos2x14sin2x+C\frac { 1 } { 2 } x \cos 2 x - \frac { 1 } { 4 } \sin 2 x + C
B) 12xsin2x14cos2x+C\frac { 1 } { 2 } x \sin 2 x - \frac { 1 } { 4 } \cos 2 x + C
C) 12sin2x+12cos2x+C\frac { 1 } { 2 } \sin 2 x + \frac { 1 } { 2 } \cos 2 x + C
D) 12xsin2x+14cos2x+C\frac { 1 } { 2 } x \sin 2 x + \frac { 1 } { 4 } \cos 2 x + C  <strong>Use integration by parts to find the indefinite integral.  \int x \cos 2 x d x </strong> A)  \frac { 1 } { 2 } x \cos 2 x - \frac { 1 } { 4 } \sin 2 x + C  B)  \frac { 1 } { 2 } x \sin 2 x - \frac { 1 } { 4 } \cos 2 x + C  C)  \frac { 1 } { 2 } \sin 2 x + \frac { 1 } { 2 } \cos 2 x + C  D)  \frac { 1 } { 2 } x \sin 2 x + \frac { 1 } { 4 } \cos 2 x + C    E)  \frac { 1 } { 4 } x \cos 2 x + \frac { 1 } { 2 } \sin 2 x + C
E) 14xcos2x+12sin2x+C\frac { 1 } { 4 } x \cos 2 x + \frac { 1 } { 2 } \sin 2 x + C
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 60 flashcards in this deck.