Deck 12: Exponential Functions and Logarithmic Functions

Full screen (f)
exit full mode
Question
Solve the problem.

-An accountant tabulated a firm's profits for four recent years in the following table:
 Year  Profits 1996$250,0001997$300,0001998$400,0001999$600,000\begin{array} { l | l } \text { Year } & \text { Profits } \\\hline 1996 & \$ 250,000 \\1997 & \$ 300,000 \\1998 & \$ 400,000 \\1999 & \$ 600,000\end{array}

The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the exponential graph to estimate the profits in the year 2002.2002 .
 <strong>Solve the problem.  -An accountant tabulated a firm's profits for four recent years in the following table:  \begin{array} { l | l } \text { Year } & \text { Profits } \\ \hline 1996 & \$ 250,000 \\ 1997 & \$ 300,000 \\ 1998 & \$ 400,000 \\ 1999 & \$ 600,000 \end{array}   The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the exponential graph to estimate the profits in the year  2002 .   </strong> A) About  \$ 1,000,000  B) About  \$ 1,700,000  C) About  \$ 1,300,000  D) About  \$ 750,000  <div style=padding-top: 35px>

A) About $1,000,000\$ 1,000,000
B) About $1,700,000\$ 1,700,000
C) About $1,300,000\$ 1,300,000
D) About $750,000\$ 750,000
Use Space or
up arrow
down arrow
to flip the card.
Question
Solve the problem.
Suppose that $40,000\$ 40,000 is invested at 6%6 \% interest, compounded annually. Find a function A for the amount in the account after tt years.

A) A(t)=$40,0000.06t\mathrm { A } ( \mathrm { t } ) = \$ 40,000 ^ { 0.06 \mathrm { t } }
B) A(t)=$40,000(1.06)t\mathrm { A } ( \mathrm { t } ) = \$ 40,000 ( 1.06 ) ^ { \mathrm { t } }
C) A(t)=$40,0001.06t\mathrm { A } ( \mathrm { t } ) = \$ 40,000 ^ { 1.06 t }
D) A(t)=$40,000(0.06)t\mathrm { A } ( \mathrm { t } ) = \$ 40,000 ( 0.06 ) ^ { t }
Question
Solve the problem.

-An accountant tabulated a firm's profits for four recent years in the following table:
 Year  Profits 1996$250,0001997$300,0001998$400,0001999$600,000\begin{array} { l | l } \text { Year } & \text { Profits } \\\hline 1996 & \$ 250,000 \\1997 & \$ 300,000 \\1998 & \$ 400,000 \\1999 & \$ 600,000\end{array}

The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the exponential graph to estimate the profits in the year 2001.2001 .

 <strong>Solve the problem.  -An accountant tabulated a firm's profits for four recent years in the following table:  \begin{array} { l | l } \text { Year } & \text { Profits } \\ \hline 1996 & \$ 250,000 \\ 1997 & \$ 300,000 \\ 1998 & \$ 400,000 \\ 1999 & \$ 600,000 \end{array}   The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the exponential graph to estimate the profits in the year  2001 .    </strong> A) About  \$ 750,000  B) About  \$ 300,000  C) About  \$ 1,300,000  D) About  \$ 1,000,000  <div style=padding-top: 35px>

A) About $750,000\$ 750,000
B) About $300,000\$ 300,000
C) About $1,300,000\$ 1,300,000
D) About $1,000,000\$ 1,000,000
Question
Graph.
x=2yx = 2 y
 <strong>Graph.  x = 2 y   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph.  x = 2 y   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph.  x = 2 y   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph.  x = 2 y   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph.  x = 2 y   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.
A computer is purchased for $4500\$ 4500 . Its value each year is about 77%77 \% of the value the preceding year. Its value, in dollars, after tt years is given by the exponential function V(t)=4500(0.77)tV ( t ) = 4500 ( 0.77 ) ^ { t } . Find the value of the computer after 6 years.

A) $556.08\$ 556.08
B) $20,790.00\$ 20,790.00
C) $937.90\$ 937.90
D) $722.18\$ 722.18
Question
Solve the problem.
The amount of particulate matter left in solution during a filtering process decreases by the equation P(n)=700(0.5)0.6n\mathrm { P } ( \mathrm { n } ) = 700 ( 0.5 ) ^ { 0.6 \mathrm { n } } , where n\mathrm { n } is the number of filtering steps. Find the amounts left for n=0\mathrm { n } = 0 and n=5\mathrm { n } = 5 . (Round to the nearest whole number.)

A) 700;22700 ; 22
B) 700;88700 ; 88
C) 1400;881400 ; 88
D) 700;5600700 ; 5600
Question
Solve the problem.

-An accountant tabulated a firm's profits for four recent years in the following table:
 Year  Profits 1996$250,0001997$300,0001998$400,0001999$600,000\begin{array} { l | l } \text { Year } & \text { Profits } \\\hline 1996 & \$ 250,000 \\1997 & \$ 300,000 \\1998 & \$ 400,000 \\1999 & \$ 600,000\end{array}

The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the linear graph to estimate the profits in the year 2002.2002 .
 <strong>Solve the problem.  -An accountant tabulated a firm's profits for four recent years in the following table:  \begin{array} { l | l } \text { Year } & \text { Profits } \\ \hline 1996 & \$ 250,000 \\ 1997 & \$ 300,000 \\ 1998 & \$ 400,000 \\ 1999 & \$ 600,000 \end{array}   The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the linear graph to estimate the profits in the year  2002 .   </strong> A) About  \$ 800,000  B) About  \$ 500,000  C) About  \$ 1,000,000  D) About  \$ 900,000  <div style=padding-top: 35px>

A) About $800,000\$ 800,000
B) About $500,000\$ 500,000
C) About $1,000,000\$ 1,000,000
D) About $900,000\$ 900,000
Question
Graph.
f(x)=4xf(x)=4^{x}
 <strong>Graph.  f(x)=4^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph.  f(x)=4^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph.  f(x)=4^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph.  f(x)=4^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph.  f(x)=4^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph.
f(x)=(13)x+2f(x)=\left(\frac{1}{3}\right)^{x}+2
 <strong>Graph.  f(x)=\left(\frac{1}{3}\right)^{x}+2    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph.  f(x)=\left(\frac{1}{3}\right)^{x}+2    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph.  f(x)=\left(\frac{1}{3}\right)^{x}+2    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph.  f(x)=\left(\frac{1}{3}\right)^{x}+2    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph.  f(x)=\left(\frac{1}{3}\right)^{x}+2    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.
The half-life of a certain radioactive substance is 8 years. Suppose that at time t=0t = 0 , there are 29 g29 \mathrm {~g} of the substance. Then after t years, the number of grams of the substance remaining will be:
N(t)=29(12)t/16N ( t ) = 29 \left( \frac { 1 } { 2 } \right) ^ { t / 16 }
How many grams of the substance will remain after 56 years? Round to the nearest hundredth when necessary.

A) 0.64 g0.64 \mathrm {~g}
B) 1.28 g1.28 \mathrm {~g}
C) 0.32 g0.32 \mathrm {~g}
D) 2.56 g2.56 \mathrm {~g}
Question
Solve the problem.
The half-life of Cesium 134 m134 \mathrm {~m} is 3.03.0 hours. If the formula P(t)=(12)t/3.0\mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 } gives the percent (as a decimal) remaining after time t\mathrm { t } (in hours), sketch P versus t\mathrm { t } .
 <strong>Solve the problem. The half-life of Cesium  134 \mathrm {~m}  is  3.0  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 }  gives the percent (as a decimal) remaining after time  \mathrm { t }  (in hours), sketch P versus  \mathrm { t } .  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Solve the problem. The half-life of Cesium  134 \mathrm {~m}  is  3.0  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 }  gives the percent (as a decimal) remaining after time  \mathrm { t }  (in hours), sketch P versus  \mathrm { t } .  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Solve the problem. The half-life of Cesium  134 \mathrm {~m}  is  3.0  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 }  gives the percent (as a decimal) remaining after time  \mathrm { t }  (in hours), sketch P versus  \mathrm { t } .  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Solve the problem. The half-life of Cesium  134 \mathrm {~m}  is  3.0  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 }  gives the percent (as a decimal) remaining after time  \mathrm { t }  (in hours), sketch P versus  \mathrm { t } .  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Solve the problem. The half-life of Cesium  134 \mathrm {~m}  is  3.0  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 }  gives the percent (as a decimal) remaining after time  \mathrm { t }  (in hours), sketch P versus  \mathrm { t } .  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph.
f(x)=2xf(x)=2^{-x}
 <strong>Graph.  f(x)=2^{-x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph.  f(x)=2^{-x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph.  f(x)=2^{-x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph.  f(x)=2^{-x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph.  f(x)=2^{-x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.
The number of bacteria growing in an incubation culture increases with time according to B(x)=9800(2)x\mathrm { B } ( \mathrm { x } ) = 9800 ( 2 ) ^ { \mathrm { x } } , where xx is time in days. Find the number of bacteria when x=0x = 0 and x=3x = 3 .

A) 19, 600;78,400600 ; 78,400
B) 9800;58,8009800 ; 58,800
C) 9800;39,2009800 ; 39,200
D) 9800;78,4009800 ; 78,400
Question
Graph.
x=(14)yx=\left(\frac{1}{4}\right)^{y}
 <strong>Graph.  x=\left(\frac{1}{4}\right)^{y}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph.  x=\left(\frac{1}{4}\right)^{y}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph.  x=\left(\frac{1}{4}\right)^{y}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph.  x=\left(\frac{1}{4}\right)^{y}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph.  x=\left(\frac{1}{4}\right)^{y}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.
The number of dislocated electric impulses per cubic inch in a transformer increases when lightning strikes by D(x)=1000(2)x\mathrm { D } ( \mathrm { x } ) = 1000 ( 2 ) ^ { \mathrm { x } } , where x\mathrm { x } is the time in milliseconds of the lightning strike. Find the number of dislocated impulses at x=0x = 0 and x=5x = 5 .

A) 2000;32,0002000 ; 32,000
B) 1000;10,0001000 ; 10,000
C) 1000;32,0001000 ; 32,000
D) 1000;40001000 ; 4000
Question
Graph.
f(x)=32x1f ( x ) = 3 ^ { 2 x - 1 }
 <strong>Graph.  f ( x ) = 3 ^ { 2 x - 1 }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph.  f ( x ) = 3 ^ { 2 x - 1 }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph.  f ( x ) = 3 ^ { 2 x - 1 }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph.  f ( x ) = 3 ^ { 2 x - 1 }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph.  f ( x ) = 3 ^ { 2 x - 1 }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph.
f(x)=3x1f(x)=3 x-1
 <strong>Graph.  f(x)=3 x-1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph.  f(x)=3 x-1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph.  f(x)=3 x-1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph.  f(x)=3 x-1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph.  f(x)=3 x-1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.

-An accountant tabulated a firm's profits for four recent years in the following table:
 Year  Profits 1996$250,0001997$300,0001998$400,0001999$600,000\begin{array} { l | l } \text { Year } & \text { Profits } \\\hline 1996 & \$ 250,000 \\1997 & \$ 300,000 \\1998 & \$ 400,000 \\1999 & \$ 600,000\end{array}

The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the linear graph to estimate the profits in the year 2001.2001 .
 <strong>Solve the problem.  -An accountant tabulated a firm's profits for four recent years in the following table:  \begin{array} { l | l } \text { Year } & \text { Profits } \\ \hline 1996 & \$ 250,000 \\ 1997 & \$ 300,000 \\ 1998 & \$ 400,000 \\ 1999 & \$ 600,000 \end{array}   The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the linear graph to estimate the profits in the year  2001 .    </strong> A) About  \$ 500,000  B) About  \$ 700,000  C) About  \$ 800,000  D) About  \$ 900,000  <div style=padding-top: 35px>

A) About $500,000\$ 500,000
B) About $700,000\$ 700,000
C) About $800,000\$ 800,000
D) About $900,000\$ 900,000
Question
Graph.
f(x)=(12)xf(x)=\left(\frac{1}{2}\right)^{x}
 <strong>Graph.  f(x)=\left(\frac{1}{2}\right)^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph.  f(x)=\left(\frac{1}{2}\right)^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph.  f(x)=\left(\frac{1}{2}\right)^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph.  f(x)=\left(\frac{1}{2}\right)^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph.  f(x)=\left(\frac{1}{2}\right)^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph.
f(x)=4x3f(x)=4^{x}-3
 <strong>Graph.  f(x)=4^{x}-3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph.  f(x)=4^{x}-3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph.  f(x)=4^{x}-3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph.  f(x)=4^{x}-3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph.  f(x)=4^{x}-3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the requested composition of functions.
Given f(x)=5x+2f ( x ) = - 5 x + 2 and g(x)=2x+4g ( x ) = 2 x + 4 , find gf(x)g f ( x ) .

A) x+8x + 8
B) 10x+8- 10 x + 8
C) 10x+22- 10 x + 22
D) x8x - 8
Question
Find the inverse of the relation.
{(6,0),(4,1),(6,2),(8,3)}\{ ( 6,0 ) , ( - 4,1 ) , ( - 6,2 ) , ( - 8,3 ) \}

A) {(1,0),(3,6),(6,6),(1,2)}\{ ( 1,0 ) , ( 3 , - 6 ) , ( 6 , - 6 ) , ( 1,2 ) \}
B) {(0,6),(1,4),(2,6),(3,8)}\{ ( 0,6 ) , ( 1 , - 4 ) , ( 2 , - 6 ) , ( 3 , - 8 ) \}
C) {(1,0),(0,6),(6,4),(1,2)}\{ ( 1,0 ) , ( 0 , - 6 ) , ( 6 , - 4 ) , ( 1,2 ) \}
Question
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=x54x5+2h ( x ) = \frac { x ^ { 5 } - 4 } { x ^ { 5 } + 2 }

A) f(x)=x4x+2,g(x)=x5f ( x ) = \frac { x - 4 } { x + 2 } , g ( x ) = x ^ { 5 }
B) f(x)=x5+2,g(x)=x54f ( x ) = x ^ { 5 } + 2 , g ( x ) = x ^ { 5 } - 4
C) f(x)=x5,g(x)=x4x+2f ( x ) = x ^ { 5 } , g ( x ) = \frac { x - 4 } { x + 2 }
D) f(x)=1x5+2,g(x)=x54f ( x ) = \frac { 1 } { x ^ { 5 } + 2 } , g ( x ) = x ^ { 5 } - 4
Question
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=610x+7h ( x ) = \frac { 6 } { \sqrt { 10 x + 7 } }

A) f(x)=6,g(x)=10+7f ( x ) = 6 , g ( x ) = \sqrt { 10 + 7 }
B) f(x)=10x+7,g(x)=6f ( x ) = \sqrt { 10 x + 7 } , g ( x ) = 6
C) f(x)=6x,g(x)=10x+7f ( x ) = \frac { 6 } { \sqrt { x } } , g ( x ) = 10 x + 7
D) f(x)=6x,g(x)=10x+7f ( x ) = \frac { 6 } { x } , g ( x ) = 10 x + 7
Question
Find the inverse of the relation.
{(16,3),(5,16),(14,12)}\{ ( - 16,3 ) , ( 5 , - 16 ) , ( - 14 , - 12 ) \}

A) {(16,16),(16,5),(12,14)}\{ ( - 16 , - 16 ) , ( - 16,5 ) , ( - 12 , - 14 ) \}
B) {(3,16),(16,5),(12,14)}\{ ( 3 , - 16 ) , ( - 16,5 ) , ( - 12 , - 14 ) \}
C) {(3,16),(14,5),(12,16)}\{ ( 3 , - 16 ) , ( - 14,5 ) , ( - 12 , - 16 ) \}
Question
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=1x25h ( x ) = \frac { 1 } { x ^ { 2 } - 5 }

A) f(x)=15,g(x)=x25f ( x ) = \frac { 1 } { 5 } , g ( x ) = x ^ { 2 } - 5
B) f(x)=1x,g(x)=x25f ( x ) = \frac { 1 } { x } , g ( x ) = x ^ { 2 } - 5
C) f(x)=1x2,g(x)=x5f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = x - 5
D) f(x)=1x2,g(x)=15f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = - \frac { 1 } { 5 }
Question
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=58x2+92h ( x ) = \sqrt { 58 x ^ { 2 } + 92 }

A) f(x)=58x2,g(x)=92f ( x ) = \sqrt { 58 x ^ { 2 } } , g ( x ) = \sqrt { 92 }
B) f(x)=58x2+92,g(x)=xf ( x ) = 58 x ^ { 2 } + 92 , g ( x ) = \sqrt { x }
C) f(x)=x,g(x)=58x2+92f ( x ) = \sqrt { x } , g ( x ) = 58 x ^ { 2 } + 92
D) f(x)=58x+92,g(x)=x2f ( x ) = \sqrt { 58 x + 92 } , g ( x ) = x ^ { 2 }
Question
Find the requested composition of functions.
Given f(x)=6x2f ( x ) = \frac { 6 } { x ^ { 2 } } and g(x)=x3g ( x ) = x - 3 , find gf(x)g f ( x )

A) 6x23\frac { 6 } { x ^ { 2 } - 3 }
B) 6x23\frac { 6 } { x ^ { 2 } } - 3
C) 3x2\frac { 3 } { x ^ { 2 } }
D) 6(x3)2\frac { 6 } { ( x - 3 ) ^ { 2 } }
Question
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=8x2+7h ( x ) = \frac { 8 } { x ^ { 2 } } + 7

A) f(x)=8x2,g(x)=7f ( x ) = \frac { 8 } { x ^ { 2 } } , g ( x ) = 7
B) f(x)=x,g(x)=8x+7f ( x ) = x , g ( x ) = \frac { 8 } { x } + 7
C) f(x)=x+7,g(x)=8x2f ( x ) = x + 7 , g ( x ) = \frac { 8 } { x ^ { 2 } }
D) f(x)=1x,g(x)=8x+7f ( x ) = \frac { 1 } { x } , g ( x ) = \frac { 8 } { x } + 7
Question
Find the requested composition of functions.
Given f(x)=x107f ( x ) = \frac { x - 10 } { 7 } and g(x)=7x+10g ( x ) = 7 x + 10 , find gf(x)g f ( x ) .

A) x107x - \frac { 10 } { 7 }
B) x+20x + 20
C) 7x+607 x + 60
D) xx
Question
Find the inverse of the relation.
{(5,4),(5,4),(3,6),(3,6)}\{ ( - 5 , - 4 ) , ( 5,4 ) , ( - 3,6 ) , ( 3 , - 6 ) \}

A) {(4,5),(4,5),(6,5),(6,3)}\{ ( - 4 , - 5 ) , ( 4,5 ) , ( 6,5 ) , ( - 6,3 ) \}
B) {(4,5),(4,5),(6,3),(6,3)}\{ ( - 4 , - 5 ) , ( 4,5 ) , ( 6 , - 3 ) , ( - 6,3 ) \}
C) {(4,5),(5,5),(6,3),(6,3)}\{ ( - 4 , - 5 ) , ( - 5,5 ) , ( 6 , - 3 ) , ( - 6,3 ) \}
Question
Find the requested composition of functions.
Given f(x)=x2+8f ( x ) = x ^ { 2 } + 8 and g(x)=x28g ( x ) = x ^ { 2 } - 8 , find fg(x)f g ( x ) .

A) x416x2+72x ^ { 4 } - 16 x ^ { 2 } + 72
B) x4+16x2+72x ^ { 4 } + 16 x ^ { 2 } + 72
C) x4+16x2+56x ^ { 4 } + 16 x ^ { 2 } + 56
D) x416x2+56x ^ { 4 } - 16 x ^ { 2 } + 56
Question
Find the requested composition of functions.
Given f(x)=2x23f ( x ) = 2 x ^ { 2 } - 3 and g(x)=3xg ( x ) = \frac { 3 } { x } , find fg(x)f g ( x ) .

A) 18x23\frac { 18 } { x ^ { 2 } } - 3
B) 6x9x6 x - \frac { 9 } { x }
C) 32x23\frac { 3 } { 2 x ^ { 2 } - 3 }
D) 18x3\frac { 18 } { x } - 3
Question
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=7x+5h ( x ) = | 7 x + 5 |

A) f(x)=x,g(x)=7x+5f ( x ) = x , g ( x ) = 7 x + 5
B) f(x)=x,g(x)=7x5f ( x ) = | - x | , g ( x ) = 7 x - 5
C) f(x)=x,g(x)=7x+5f ( x ) = - | x | , g ( x ) = 7 x + 5
D) f(x)=x,g(x)=7x+5f ( x ) = | x | , g ( x ) = 7 x + 5
Question
Find the requested composition of functions.
Given f(x)=3xf ( x ) = \frac { 3 } { x } and g(x)=2x2g ( x ) = 2 x ^ { 2 } , find gf(x)g f ( x ) .

A) 2x23\frac { 2 x ^ { 2 } } { 3 }
B) 2x29\frac { 2 x ^ { 2 } } { 9 }
C) 32x2\frac { 3 } { 2 x ^ { 2 } }
D) 18x2\frac { 18 } { \mathrm { x } ^ { 2 } }
Question
Find the inverse of the relation.
{(8,7),(7,8),(4,3),(4,3)}\{ ( - 8 , - 7 ) , ( 7,8 ) , ( - 4 , - 3 ) , ( 4,3 ) \}

A) {(3,4),(4,7),(7,8),(3,4)}\{ ( 3 , - 4 ) , ( - 4,7 ) , ( - 7 , - 8 ) , ( - 3,4 ) \}
B) {(7,8),(8,7),(3,4),(3,4)}\{ ( - 7 , - 8 ) , ( 8,7 ) , ( - 3 , - 4 ) , ( 3,4 ) \}
C) {(3,4),(8,7),(7,7),(3,4)}\{ ( 3 , - 4 ) , ( 8,7 ) , ( - 7,7 ) , ( - 3,4 ) \}
Question
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=(9x+9)7h ( x ) = ( 9 x + 9 ) ^ { 7 }

A) f(x)=(9x)7,g(x)=9f ( x ) = ( 9 x ) ^ { 7 } , g ( x ) = 9
B) f(x)=9x+9,g(x)=x7f ( x ) = 9 x + 9 , g ( x ) = x ^ { 7 }
C) f(x)=9x7,g(x)=x+9f ( x ) = 9 x ^ { 7 } , g ( x ) = x + 9
D) f(x)=x7,g(x)=9x+9f ( x ) = x ^ { 7 } , g ( x ) = 9 x + 9
Question
Find the requested composition of functions.
Given f(x)=7x+8f ( x ) = 7 x + 8 and g(x)=5x1g ( x ) = 5 x - 1 , find fg(x)f g ( x ) .

A) 35x+3935 x + 39
B) 35x+1535 x + 15
C) 35x+135 x + 1
D) 35x+735 x + 7
Question
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=6(8x+7)29h ( x ) = 6 ( 8 x + 7 ) ^ { 2 } - 9

A) f(x)=8x+7,g(x)=6x29f ( x ) = 8 x + 7 , g ( x ) = 6 x ^ { 2 } - 9
B) f(x)=6x29,g(x)=(8x+7)2f ( x ) = 6 x ^ { 2 } - 9 , g ( x ) = ( 8 x + 7 ) ^ { 2 }
C) f(x)=6x29,g(x)=8x+7f ( x ) = 6 x ^ { 2 } - 9 , g ( x ) = 8 x + 7
D) f(x)=(6x9)2,g(x)=8x+7f ( x ) = ( 6 x - 9 ) ^ { 2 } , g ( x ) = 8 x + 7
Question
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=(x5)5h ( x ) = ( \sqrt { x } - 5 ) ^ { 5 }

A) f(x)=x5,g(x)=x5f ( x ) = x ^ { 5 } , g ( x ) = \sqrt { x } - 5
B) f(x)=x5,g(x)=x5f ( x ) = \sqrt { x ^ { 5 } } , g ( x ) = x - 5
C) f(x)=x5,g(x)=x5f ( x ) = \sqrt { x } - 5 , g ( x ) = x ^ { 5 }
D) f(x)=x,g(x)=(x5)5f ( x ) = \sqrt { x } , g ( x ) = ( x - 5 ) ^ { 5 }
Question
Graph the relation using solid circles and the inverse using open circles.
{(9,3),(9,3),(7,1),(7,1)}\{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the relation using solid circles and the inverse using open circles.
{(1,16),(7,2),(5,11)}\{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the relation using solid circles and the inverse using open circles.
{(3,12),(5,11),(7,10),(9,9)}\{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.
y=7x2+2xy = 7 x ^ { 2 } + 2 x
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x ^ { 2 } + 2 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x ^ { 2 } + 2 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x ^ { 2 } + 2 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x ^ { 2 } + 2 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x ^ { 2 } + 2 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find an equation of the inverse of the relation.
y=3x2+5xy = 3 x ^ { 2 } + 5 x

A) x=5y2+3yx = 5 y ^ { 2 } + 3 y
B) y=5x2+3xy = 5 x ^ { 2 } + 3 x
C) x=3y2+5yx = 3 y ^ { 2 } + 5 y
D) y=3x25xy = - 3 x ^ { 2 } - 5 x
Question
Determine whether the function is one-to-one.

- f(x)=4x2+xf ( x ) = 4 x ^ { 2 } + x
Question
Determine whether the function is one-to-one.

- f(x)=6x6f ( x ) = 6 x - 6
Question
Determine whether the function is one-to-one.

- f(x)=x26f ( x ) = x ^ { 2 } - 6
Question
Find an equation of the inverse of the relation.
y=2x3+6y = 2 x ^ { 3 } + 6

A) y=2x36y = - 2 x ^ { 3 } - 6
B) x=2y3+6x = 2 y ^ { 3 } + 6
C) x=6y3+2x = 6 y ^ { 3 } + 2
D) y=6x3+2y = 6 x ^ { 3 } + 2
Question
Determine whether the function is one-to-one.

- f(x)=6x32f ( x ) = 6 x ^ { 3 } - 2
Question
Determine whether the function is one-to-one.

- f(x)=7x26f ( x ) = 7 x ^ { 2 } - 6
Question
Determine whether the function is one-to-one.

- f(x)=x3+8f ( x ) = x ^ { 3 } + 8
Question
Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.
y=2x3+3y = 2 x ^ { 3 } + 3
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 x ^ { 3 } + 3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 x ^ { 3 } + 3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 x ^ { 3 } + 3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 x ^ { 3 } + 3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 x ^ { 3 } + 3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find an equation of the inverse of the relation.
y=4+6xy = 4 + 6 x

A) y=64xy = 6 - 4 x
B) y=6+4xy = 6 + 4 x
C) x=6+4yx = 6 + 4 y
D) x=4+6yx = 4 + 6 y
Question
Determine whether the function is one-to-one.

- f(x)=36x2f ( x ) = \left| 36 - x ^ { 2 } \right|
Question
Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.
y=7x8y = 7 x - 8
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x - 8    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x - 8    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x - 8    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x - 8    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x - 8    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine whether the function is one-to-one.

- f(x)=64x2f ( x ) = 64 - x ^ { 2 }
Question
Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.
y=2+3xy = 2 + 3 x
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 + 3 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 + 3 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 + 3 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 + 3 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 + 3 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the relation using solid circles and the inverse using open circles.
{(6,7),(7,6),(9,4),(9,4)}\{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find an equation of the inverse of the relation.
y=2x7y = 2 x - 7

A) y=2x+7y = - 2 x + 7
B) y=7x+2y = - 7 x + 2
C) x=2y7x = 2 y - 7
D) x=7y+2x = - 7 y + 2
Question
Determine whether the function is one-to-one.

- f(x)=(13)xf ( x ) = \left( \frac { 1 } { 3 } \right) ^ { x }
Question
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=6x3+4f ( x ) = 6 x ^ { 3 } + 4

A) f1(x)=x463f ^ { - 1 } ( x ) = \sqrt [ 3 ] { \frac { x - 4 } { 6 } }
B) f1(x)=x+463\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \frac { \mathrm { x } + 4 } { 6 } }
C) Not a one-to-one function
D) f1(x)=x634f ^ { - 1 } ( x ) = \sqrt [ 3 ] { \frac { x } { 6 } } - 4
Question
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=4x+5f ( x ) = \frac { 4 } { x + 5 }

A) f1(x)=5x+4xf ^ { - 1 } ( x ) = \frac { - 5 x + 4 } { x }
B) f1(x)=5+4xxf ^ { - 1 } ( x ) = \frac { 5 + 4 x } { x }
C) Not a one-to-one function
D) f1(x)=x5+4xf ^ { - 1 } ( x ) = \frac { x } { 5 + 4 x }
Question
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=4x+3f ( x ) = 4 x + 3

A) f1(x)=x+34f ^ { - 1 } ( x ) = \frac { x + 3 } { 4 }
B) f1(x)=x34\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { \mathrm { x } - 3 } { 4 }
C) f1(x)=x43f ^ { - 1 } ( x ) = \frac { x } { 4 } - 3
D) Not a one-to-one function
Question
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=x38f ( x ) = x ^ { 3 } - 8

A) f1(x)=x3+8f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x } + 8
B) f1(x)=x+83f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x + 8 }
C) Not a one-to-one function
D) f1(x)=x83\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } - 8 }
Question
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=(x+5)2f ( x ) = ( x + 5 ) ^ { 2 }

A) f1(x)=x5f ^ { - 1 } ( x ) = \sqrt { x - 5 }
B) f1(x)=x5f ^ { - 1 } ( x ) = \sqrt { x } - 5
C) Not a one-to-one function
D) f1(x)=1x5f ^ { - 1 } ( x ) = \frac { 1 } { \sqrt { x - 5 } }
Question
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=x+33f ( x ) = \sqrt [ 3 ] { x + 3 }

A) f1(x)=x33f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x - 3 }
B) Not a one-to-one function
C) f1(x)=x33f ^ { - 1 } ( x ) = x ^ { 3 } - 3
D) f1(x)=(x+3)3f ^ { - 1 } ( x ) = ( x + 3 ) ^ { 3 }
Question
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=4x72x+6f ( x ) = \frac { 4 x - 7 } { 2 x + 6 }

A) Not a one-to-one function
B) f1(x)=4x72x+6f ^ { - 1 } ( x ) = \frac { 4 x - 7 } { 2 x + 6 }
C) f1(x)=6x72x4f ^ { - 1 } ( x ) = \frac { - 6 x - 7 } { 2 x - 4 }
D) f1(x)=2x46x7f ^ { - 1 } ( x ) = \frac { 2 x - 4 } { - 6 x - 7 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/68
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: Exponential Functions and Logarithmic Functions
1
Solve the problem.

-An accountant tabulated a firm's profits for four recent years in the following table:
 Year  Profits 1996$250,0001997$300,0001998$400,0001999$600,000\begin{array} { l | l } \text { Year } & \text { Profits } \\\hline 1996 & \$ 250,000 \\1997 & \$ 300,000 \\1998 & \$ 400,000 \\1999 & \$ 600,000\end{array}

The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the exponential graph to estimate the profits in the year 2002.2002 .
 <strong>Solve the problem.  -An accountant tabulated a firm's profits for four recent years in the following table:  \begin{array} { l | l } \text { Year } & \text { Profits } \\ \hline 1996 & \$ 250,000 \\ 1997 & \$ 300,000 \\ 1998 & \$ 400,000 \\ 1999 & \$ 600,000 \end{array}   The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the exponential graph to estimate the profits in the year  2002 .   </strong> A) About  \$ 1,000,000  B) About  \$ 1,700,000  C) About  \$ 1,300,000  D) About  \$ 750,000

A) About $1,000,000\$ 1,000,000
B) About $1,700,000\$ 1,700,000
C) About $1,300,000\$ 1,300,000
D) About $750,000\$ 750,000
About $1,300,000\$ 1,300,000
2
Solve the problem.
Suppose that $40,000\$ 40,000 is invested at 6%6 \% interest, compounded annually. Find a function A for the amount in the account after tt years.

A) A(t)=$40,0000.06t\mathrm { A } ( \mathrm { t } ) = \$ 40,000 ^ { 0.06 \mathrm { t } }
B) A(t)=$40,000(1.06)t\mathrm { A } ( \mathrm { t } ) = \$ 40,000 ( 1.06 ) ^ { \mathrm { t } }
C) A(t)=$40,0001.06t\mathrm { A } ( \mathrm { t } ) = \$ 40,000 ^ { 1.06 t }
D) A(t)=$40,000(0.06)t\mathrm { A } ( \mathrm { t } ) = \$ 40,000 ( 0.06 ) ^ { t }
B
3
Solve the problem.

-An accountant tabulated a firm's profits for four recent years in the following table:
 Year  Profits 1996$250,0001997$300,0001998$400,0001999$600,000\begin{array} { l | l } \text { Year } & \text { Profits } \\\hline 1996 & \$ 250,000 \\1997 & \$ 300,000 \\1998 & \$ 400,000 \\1999 & \$ 600,000\end{array}

The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the exponential graph to estimate the profits in the year 2001.2001 .

 <strong>Solve the problem.  -An accountant tabulated a firm's profits for four recent years in the following table:  \begin{array} { l | l } \text { Year } & \text { Profits } \\ \hline 1996 & \$ 250,000 \\ 1997 & \$ 300,000 \\ 1998 & \$ 400,000 \\ 1999 & \$ 600,000 \end{array}   The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the exponential graph to estimate the profits in the year  2001 .    </strong> A) About  \$ 750,000  B) About  \$ 300,000  C) About  \$ 1,300,000  D) About  \$ 1,000,000

A) About $750,000\$ 750,000
B) About $300,000\$ 300,000
C) About $1,300,000\$ 1,300,000
D) About $1,000,000\$ 1,000,000
About $1,000,000\$ 1,000,000
4
Graph.
x=2yx = 2 y
 <strong>Graph.  x = 2 y   </strong> A)   B)   C)   D)

A)
 <strong>Graph.  x = 2 y   </strong> A)   B)   C)   D)
B)
 <strong>Graph.  x = 2 y   </strong> A)   B)   C)   D)
C)
 <strong>Graph.  x = 2 y   </strong> A)   B)   C)   D)
D)
 <strong>Graph.  x = 2 y   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
5
Solve the problem.
A computer is purchased for $4500\$ 4500 . Its value each year is about 77%77 \% of the value the preceding year. Its value, in dollars, after tt years is given by the exponential function V(t)=4500(0.77)tV ( t ) = 4500 ( 0.77 ) ^ { t } . Find the value of the computer after 6 years.

A) $556.08\$ 556.08
B) $20,790.00\$ 20,790.00
C) $937.90\$ 937.90
D) $722.18\$ 722.18
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
6
Solve the problem.
The amount of particulate matter left in solution during a filtering process decreases by the equation P(n)=700(0.5)0.6n\mathrm { P } ( \mathrm { n } ) = 700 ( 0.5 ) ^ { 0.6 \mathrm { n } } , where n\mathrm { n } is the number of filtering steps. Find the amounts left for n=0\mathrm { n } = 0 and n=5\mathrm { n } = 5 . (Round to the nearest whole number.)

A) 700;22700 ; 22
B) 700;88700 ; 88
C) 1400;881400 ; 88
D) 700;5600700 ; 5600
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
7
Solve the problem.

-An accountant tabulated a firm's profits for four recent years in the following table:
 Year  Profits 1996$250,0001997$300,0001998$400,0001999$600,000\begin{array} { l | l } \text { Year } & \text { Profits } \\\hline 1996 & \$ 250,000 \\1997 & \$ 300,000 \\1998 & \$ 400,000 \\1999 & \$ 600,000\end{array}

The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the linear graph to estimate the profits in the year 2002.2002 .
 <strong>Solve the problem.  -An accountant tabulated a firm's profits for four recent years in the following table:  \begin{array} { l | l } \text { Year } & \text { Profits } \\ \hline 1996 & \$ 250,000 \\ 1997 & \$ 300,000 \\ 1998 & \$ 400,000 \\ 1999 & \$ 600,000 \end{array}   The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the linear graph to estimate the profits in the year  2002 .   </strong> A) About  \$ 800,000  B) About  \$ 500,000  C) About  \$ 1,000,000  D) About  \$ 900,000

A) About $800,000\$ 800,000
B) About $500,000\$ 500,000
C) About $1,000,000\$ 1,000,000
D) About $900,000\$ 900,000
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
8
Graph.
f(x)=4xf(x)=4^{x}
 <strong>Graph.  f(x)=4^{x}   </strong> A)   B)   C)   D)

A)
 <strong>Graph.  f(x)=4^{x}   </strong> A)   B)   C)   D)
B)
 <strong>Graph.  f(x)=4^{x}   </strong> A)   B)   C)   D)
C)
 <strong>Graph.  f(x)=4^{x}   </strong> A)   B)   C)   D)
D)
 <strong>Graph.  f(x)=4^{x}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
9
Graph.
f(x)=(13)x+2f(x)=\left(\frac{1}{3}\right)^{x}+2
 <strong>Graph.  f(x)=\left(\frac{1}{3}\right)^{x}+2    </strong> A)   B)   C)   D)

A)
 <strong>Graph.  f(x)=\left(\frac{1}{3}\right)^{x}+2    </strong> A)   B)   C)   D)
B)
 <strong>Graph.  f(x)=\left(\frac{1}{3}\right)^{x}+2    </strong> A)   B)   C)   D)
C)
 <strong>Graph.  f(x)=\left(\frac{1}{3}\right)^{x}+2    </strong> A)   B)   C)   D)
D)
 <strong>Graph.  f(x)=\left(\frac{1}{3}\right)^{x}+2    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
10
Solve the problem.
The half-life of a certain radioactive substance is 8 years. Suppose that at time t=0t = 0 , there are 29 g29 \mathrm {~g} of the substance. Then after t years, the number of grams of the substance remaining will be:
N(t)=29(12)t/16N ( t ) = 29 \left( \frac { 1 } { 2 } \right) ^ { t / 16 }
How many grams of the substance will remain after 56 years? Round to the nearest hundredth when necessary.

A) 0.64 g0.64 \mathrm {~g}
B) 1.28 g1.28 \mathrm {~g}
C) 0.32 g0.32 \mathrm {~g}
D) 2.56 g2.56 \mathrm {~g}
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
11
Solve the problem.
The half-life of Cesium 134 m134 \mathrm {~m} is 3.03.0 hours. If the formula P(t)=(12)t/3.0\mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 } gives the percent (as a decimal) remaining after time t\mathrm { t } (in hours), sketch P versus t\mathrm { t } .
 <strong>Solve the problem. The half-life of Cesium  134 \mathrm {~m}  is  3.0  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 }  gives the percent (as a decimal) remaining after time  \mathrm { t }  (in hours), sketch P versus  \mathrm { t } .  </strong> A)   B)   C)   D)

A)
 <strong>Solve the problem. The half-life of Cesium  134 \mathrm {~m}  is  3.0  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 }  gives the percent (as a decimal) remaining after time  \mathrm { t }  (in hours), sketch P versus  \mathrm { t } .  </strong> A)   B)   C)   D)
B)
 <strong>Solve the problem. The half-life of Cesium  134 \mathrm {~m}  is  3.0  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 }  gives the percent (as a decimal) remaining after time  \mathrm { t }  (in hours), sketch P versus  \mathrm { t } .  </strong> A)   B)   C)   D)
C)
 <strong>Solve the problem. The half-life of Cesium  134 \mathrm {~m}  is  3.0  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 }  gives the percent (as a decimal) remaining after time  \mathrm { t }  (in hours), sketch P versus  \mathrm { t } .  </strong> A)   B)   C)   D)
D)
 <strong>Solve the problem. The half-life of Cesium  134 \mathrm {~m}  is  3.0  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.0 }  gives the percent (as a decimal) remaining after time  \mathrm { t }  (in hours), sketch P versus  \mathrm { t } .  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
12
Graph.
f(x)=2xf(x)=2^{-x}
 <strong>Graph.  f(x)=2^{-x}   </strong> A)   B)   C)   D)

A)
 <strong>Graph.  f(x)=2^{-x}   </strong> A)   B)   C)   D)
B)
 <strong>Graph.  f(x)=2^{-x}   </strong> A)   B)   C)   D)
C)
 <strong>Graph.  f(x)=2^{-x}   </strong> A)   B)   C)   D)
D)
 <strong>Graph.  f(x)=2^{-x}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
13
Solve the problem.
The number of bacteria growing in an incubation culture increases with time according to B(x)=9800(2)x\mathrm { B } ( \mathrm { x } ) = 9800 ( 2 ) ^ { \mathrm { x } } , where xx is time in days. Find the number of bacteria when x=0x = 0 and x=3x = 3 .

A) 19, 600;78,400600 ; 78,400
B) 9800;58,8009800 ; 58,800
C) 9800;39,2009800 ; 39,200
D) 9800;78,4009800 ; 78,400
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
14
Graph.
x=(14)yx=\left(\frac{1}{4}\right)^{y}
 <strong>Graph.  x=\left(\frac{1}{4}\right)^{y}   </strong> A)   B)   C)   D)

A)
 <strong>Graph.  x=\left(\frac{1}{4}\right)^{y}   </strong> A)   B)   C)   D)
B)
 <strong>Graph.  x=\left(\frac{1}{4}\right)^{y}   </strong> A)   B)   C)   D)
C)
 <strong>Graph.  x=\left(\frac{1}{4}\right)^{y}   </strong> A)   B)   C)   D)
D)
 <strong>Graph.  x=\left(\frac{1}{4}\right)^{y}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
15
Solve the problem.
The number of dislocated electric impulses per cubic inch in a transformer increases when lightning strikes by D(x)=1000(2)x\mathrm { D } ( \mathrm { x } ) = 1000 ( 2 ) ^ { \mathrm { x } } , where x\mathrm { x } is the time in milliseconds of the lightning strike. Find the number of dislocated impulses at x=0x = 0 and x=5x = 5 .

A) 2000;32,0002000 ; 32,000
B) 1000;10,0001000 ; 10,000
C) 1000;32,0001000 ; 32,000
D) 1000;40001000 ; 4000
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
16
Graph.
f(x)=32x1f ( x ) = 3 ^ { 2 x - 1 }
 <strong>Graph.  f ( x ) = 3 ^ { 2 x - 1 }   </strong> A)   B)   C)   D)

A)
 <strong>Graph.  f ( x ) = 3 ^ { 2 x - 1 }   </strong> A)   B)   C)   D)
B)
 <strong>Graph.  f ( x ) = 3 ^ { 2 x - 1 }   </strong> A)   B)   C)   D)
C)
 <strong>Graph.  f ( x ) = 3 ^ { 2 x - 1 }   </strong> A)   B)   C)   D)
D)
 <strong>Graph.  f ( x ) = 3 ^ { 2 x - 1 }   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
17
Graph.
f(x)=3x1f(x)=3 x-1
 <strong>Graph.  f(x)=3 x-1   </strong> A)   B)   C)   D)

A)
 <strong>Graph.  f(x)=3 x-1   </strong> A)   B)   C)   D)
B)
 <strong>Graph.  f(x)=3 x-1   </strong> A)   B)   C)   D)
C)
 <strong>Graph.  f(x)=3 x-1   </strong> A)   B)   C)   D)
D)
 <strong>Graph.  f(x)=3 x-1   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
18
Solve the problem.

-An accountant tabulated a firm's profits for four recent years in the following table:
 Year  Profits 1996$250,0001997$300,0001998$400,0001999$600,000\begin{array} { l | l } \text { Year } & \text { Profits } \\\hline 1996 & \$ 250,000 \\1997 & \$ 300,000 \\1998 & \$ 400,000 \\1999 & \$ 600,000\end{array}

The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the linear graph to estimate the profits in the year 2001.2001 .
 <strong>Solve the problem.  -An accountant tabulated a firm's profits for four recent years in the following table:  \begin{array} { l | l } \text { Year } & \text { Profits } \\ \hline 1996 & \$ 250,000 \\ 1997 & \$ 300,000 \\ 1998 & \$ 400,000 \\ 1999 & \$ 600,000 \end{array}   The accountant then fit both a linear graph and an exponential curve (seen below) to the data, in order to estimat profits. Use the linear graph to estimate the profits in the year  2001 .    </strong> A) About  \$ 500,000  B) About  \$ 700,000  C) About  \$ 800,000  D) About  \$ 900,000

A) About $500,000\$ 500,000
B) About $700,000\$ 700,000
C) About $800,000\$ 800,000
D) About $900,000\$ 900,000
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
19
Graph.
f(x)=(12)xf(x)=\left(\frac{1}{2}\right)^{x}
 <strong>Graph.  f(x)=\left(\frac{1}{2}\right)^{x}   </strong> A)   B)   C)   D)

A)
 <strong>Graph.  f(x)=\left(\frac{1}{2}\right)^{x}   </strong> A)   B)   C)   D)
B)
 <strong>Graph.  f(x)=\left(\frac{1}{2}\right)^{x}   </strong> A)   B)   C)   D)
C)
 <strong>Graph.  f(x)=\left(\frac{1}{2}\right)^{x}   </strong> A)   B)   C)   D)
D)
 <strong>Graph.  f(x)=\left(\frac{1}{2}\right)^{x}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
20
Graph.
f(x)=4x3f(x)=4^{x}-3
 <strong>Graph.  f(x)=4^{x}-3   </strong> A)   B)   C)   D)

A)
 <strong>Graph.  f(x)=4^{x}-3   </strong> A)   B)   C)   D)
B)
 <strong>Graph.  f(x)=4^{x}-3   </strong> A)   B)   C)   D)
C)
 <strong>Graph.  f(x)=4^{x}-3   </strong> A)   B)   C)   D)
D)
 <strong>Graph.  f(x)=4^{x}-3   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
21
Find the requested composition of functions.
Given f(x)=5x+2f ( x ) = - 5 x + 2 and g(x)=2x+4g ( x ) = 2 x + 4 , find gf(x)g f ( x ) .

A) x+8x + 8
B) 10x+8- 10 x + 8
C) 10x+22- 10 x + 22
D) x8x - 8
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
22
Find the inverse of the relation.
{(6,0),(4,1),(6,2),(8,3)}\{ ( 6,0 ) , ( - 4,1 ) , ( - 6,2 ) , ( - 8,3 ) \}

A) {(1,0),(3,6),(6,6),(1,2)}\{ ( 1,0 ) , ( 3 , - 6 ) , ( 6 , - 6 ) , ( 1,2 ) \}
B) {(0,6),(1,4),(2,6),(3,8)}\{ ( 0,6 ) , ( 1 , - 4 ) , ( 2 , - 6 ) , ( 3 , - 8 ) \}
C) {(1,0),(0,6),(6,4),(1,2)}\{ ( 1,0 ) , ( 0 , - 6 ) , ( 6 , - 4 ) , ( 1,2 ) \}
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
23
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=x54x5+2h ( x ) = \frac { x ^ { 5 } - 4 } { x ^ { 5 } + 2 }

A) f(x)=x4x+2,g(x)=x5f ( x ) = \frac { x - 4 } { x + 2 } , g ( x ) = x ^ { 5 }
B) f(x)=x5+2,g(x)=x54f ( x ) = x ^ { 5 } + 2 , g ( x ) = x ^ { 5 } - 4
C) f(x)=x5,g(x)=x4x+2f ( x ) = x ^ { 5 } , g ( x ) = \frac { x - 4 } { x + 2 }
D) f(x)=1x5+2,g(x)=x54f ( x ) = \frac { 1 } { x ^ { 5 } + 2 } , g ( x ) = x ^ { 5 } - 4
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
24
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=610x+7h ( x ) = \frac { 6 } { \sqrt { 10 x + 7 } }

A) f(x)=6,g(x)=10+7f ( x ) = 6 , g ( x ) = \sqrt { 10 + 7 }
B) f(x)=10x+7,g(x)=6f ( x ) = \sqrt { 10 x + 7 } , g ( x ) = 6
C) f(x)=6x,g(x)=10x+7f ( x ) = \frac { 6 } { \sqrt { x } } , g ( x ) = 10 x + 7
D) f(x)=6x,g(x)=10x+7f ( x ) = \frac { 6 } { x } , g ( x ) = 10 x + 7
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
25
Find the inverse of the relation.
{(16,3),(5,16),(14,12)}\{ ( - 16,3 ) , ( 5 , - 16 ) , ( - 14 , - 12 ) \}

A) {(16,16),(16,5),(12,14)}\{ ( - 16 , - 16 ) , ( - 16,5 ) , ( - 12 , - 14 ) \}
B) {(3,16),(16,5),(12,14)}\{ ( 3 , - 16 ) , ( - 16,5 ) , ( - 12 , - 14 ) \}
C) {(3,16),(14,5),(12,16)}\{ ( 3 , - 16 ) , ( - 14,5 ) , ( - 12 , - 16 ) \}
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
26
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=1x25h ( x ) = \frac { 1 } { x ^ { 2 } - 5 }

A) f(x)=15,g(x)=x25f ( x ) = \frac { 1 } { 5 } , g ( x ) = x ^ { 2 } - 5
B) f(x)=1x,g(x)=x25f ( x ) = \frac { 1 } { x } , g ( x ) = x ^ { 2 } - 5
C) f(x)=1x2,g(x)=x5f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = x - 5
D) f(x)=1x2,g(x)=15f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = - \frac { 1 } { 5 }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
27
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=58x2+92h ( x ) = \sqrt { 58 x ^ { 2 } + 92 }

A) f(x)=58x2,g(x)=92f ( x ) = \sqrt { 58 x ^ { 2 } } , g ( x ) = \sqrt { 92 }
B) f(x)=58x2+92,g(x)=xf ( x ) = 58 x ^ { 2 } + 92 , g ( x ) = \sqrt { x }
C) f(x)=x,g(x)=58x2+92f ( x ) = \sqrt { x } , g ( x ) = 58 x ^ { 2 } + 92
D) f(x)=58x+92,g(x)=x2f ( x ) = \sqrt { 58 x + 92 } , g ( x ) = x ^ { 2 }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
28
Find the requested composition of functions.
Given f(x)=6x2f ( x ) = \frac { 6 } { x ^ { 2 } } and g(x)=x3g ( x ) = x - 3 , find gf(x)g f ( x )

A) 6x23\frac { 6 } { x ^ { 2 } - 3 }
B) 6x23\frac { 6 } { x ^ { 2 } } - 3
C) 3x2\frac { 3 } { x ^ { 2 } }
D) 6(x3)2\frac { 6 } { ( x - 3 ) ^ { 2 } }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
29
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=8x2+7h ( x ) = \frac { 8 } { x ^ { 2 } } + 7

A) f(x)=8x2,g(x)=7f ( x ) = \frac { 8 } { x ^ { 2 } } , g ( x ) = 7
B) f(x)=x,g(x)=8x+7f ( x ) = x , g ( x ) = \frac { 8 } { x } + 7
C) f(x)=x+7,g(x)=8x2f ( x ) = x + 7 , g ( x ) = \frac { 8 } { x ^ { 2 } }
D) f(x)=1x,g(x)=8x+7f ( x ) = \frac { 1 } { x } , g ( x ) = \frac { 8 } { x } + 7
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
30
Find the requested composition of functions.
Given f(x)=x107f ( x ) = \frac { x - 10 } { 7 } and g(x)=7x+10g ( x ) = 7 x + 10 , find gf(x)g f ( x ) .

A) x107x - \frac { 10 } { 7 }
B) x+20x + 20
C) 7x+607 x + 60
D) xx
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
31
Find the inverse of the relation.
{(5,4),(5,4),(3,6),(3,6)}\{ ( - 5 , - 4 ) , ( 5,4 ) , ( - 3,6 ) , ( 3 , - 6 ) \}

A) {(4,5),(4,5),(6,5),(6,3)}\{ ( - 4 , - 5 ) , ( 4,5 ) , ( 6,5 ) , ( - 6,3 ) \}
B) {(4,5),(4,5),(6,3),(6,3)}\{ ( - 4 , - 5 ) , ( 4,5 ) , ( 6 , - 3 ) , ( - 6,3 ) \}
C) {(4,5),(5,5),(6,3),(6,3)}\{ ( - 4 , - 5 ) , ( - 5,5 ) , ( 6 , - 3 ) , ( - 6,3 ) \}
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
32
Find the requested composition of functions.
Given f(x)=x2+8f ( x ) = x ^ { 2 } + 8 and g(x)=x28g ( x ) = x ^ { 2 } - 8 , find fg(x)f g ( x ) .

A) x416x2+72x ^ { 4 } - 16 x ^ { 2 } + 72
B) x4+16x2+72x ^ { 4 } + 16 x ^ { 2 } + 72
C) x4+16x2+56x ^ { 4 } + 16 x ^ { 2 } + 56
D) x416x2+56x ^ { 4 } - 16 x ^ { 2 } + 56
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
33
Find the requested composition of functions.
Given f(x)=2x23f ( x ) = 2 x ^ { 2 } - 3 and g(x)=3xg ( x ) = \frac { 3 } { x } , find fg(x)f g ( x ) .

A) 18x23\frac { 18 } { x ^ { 2 } } - 3
B) 6x9x6 x - \frac { 9 } { x }
C) 32x23\frac { 3 } { 2 x ^ { 2 } - 3 }
D) 18x3\frac { 18 } { x } - 3
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
34
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=7x+5h ( x ) = | 7 x + 5 |

A) f(x)=x,g(x)=7x+5f ( x ) = x , g ( x ) = 7 x + 5
B) f(x)=x,g(x)=7x5f ( x ) = | - x | , g ( x ) = 7 x - 5
C) f(x)=x,g(x)=7x+5f ( x ) = - | x | , g ( x ) = 7 x + 5
D) f(x)=x,g(x)=7x+5f ( x ) = | x | , g ( x ) = 7 x + 5
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
35
Find the requested composition of functions.
Given f(x)=3xf ( x ) = \frac { 3 } { x } and g(x)=2x2g ( x ) = 2 x ^ { 2 } , find gf(x)g f ( x ) .

A) 2x23\frac { 2 x ^ { 2 } } { 3 }
B) 2x29\frac { 2 x ^ { 2 } } { 9 }
C) 32x2\frac { 3 } { 2 x ^ { 2 } }
D) 18x2\frac { 18 } { \mathrm { x } ^ { 2 } }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
36
Find the inverse of the relation.
{(8,7),(7,8),(4,3),(4,3)}\{ ( - 8 , - 7 ) , ( 7,8 ) , ( - 4 , - 3 ) , ( 4,3 ) \}

A) {(3,4),(4,7),(7,8),(3,4)}\{ ( 3 , - 4 ) , ( - 4,7 ) , ( - 7 , - 8 ) , ( - 3,4 ) \}
B) {(7,8),(8,7),(3,4),(3,4)}\{ ( - 7 , - 8 ) , ( 8,7 ) , ( - 3 , - 4 ) , ( 3,4 ) \}
C) {(3,4),(8,7),(7,7),(3,4)}\{ ( 3 , - 4 ) , ( 8,7 ) , ( - 7,7 ) , ( - 3,4 ) \}
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
37
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=(9x+9)7h ( x ) = ( 9 x + 9 ) ^ { 7 }

A) f(x)=(9x)7,g(x)=9f ( x ) = ( 9 x ) ^ { 7 } , g ( x ) = 9
B) f(x)=9x+9,g(x)=x7f ( x ) = 9 x + 9 , g ( x ) = x ^ { 7 }
C) f(x)=9x7,g(x)=x+9f ( x ) = 9 x ^ { 7 } , g ( x ) = x + 9
D) f(x)=x7,g(x)=9x+9f ( x ) = x ^ { 7 } , g ( x ) = 9 x + 9
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
38
Find the requested composition of functions.
Given f(x)=7x+8f ( x ) = 7 x + 8 and g(x)=5x1g ( x ) = 5 x - 1 , find fg(x)f g ( x ) .

A) 35x+3935 x + 39
B) 35x+1535 x + 15
C) 35x+135 x + 1
D) 35x+735 x + 7
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
39
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=6(8x+7)29h ( x ) = 6 ( 8 x + 7 ) ^ { 2 } - 9

A) f(x)=8x+7,g(x)=6x29f ( x ) = 8 x + 7 , g ( x ) = 6 x ^ { 2 } - 9
B) f(x)=6x29,g(x)=(8x+7)2f ( x ) = 6 x ^ { 2 } - 9 , g ( x ) = ( 8 x + 7 ) ^ { 2 }
C) f(x)=6x29,g(x)=8x+7f ( x ) = 6 x ^ { 2 } - 9 , g ( x ) = 8 x + 7
D) f(x)=(6x9)2,g(x)=8x+7f ( x ) = ( 6 x - 9 ) ^ { 2 } , g ( x ) = 8 x + 7
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
40
Find f(x)and g(x)such that h(x)= (f ° g)(x).
h(x)=(x5)5h ( x ) = ( \sqrt { x } - 5 ) ^ { 5 }

A) f(x)=x5,g(x)=x5f ( x ) = x ^ { 5 } , g ( x ) = \sqrt { x } - 5
B) f(x)=x5,g(x)=x5f ( x ) = \sqrt { x ^ { 5 } } , g ( x ) = x - 5
C) f(x)=x5,g(x)=x5f ( x ) = \sqrt { x } - 5 , g ( x ) = x ^ { 5 }
D) f(x)=x,g(x)=(x5)5f ( x ) = \sqrt { x } , g ( x ) = ( x - 5 ) ^ { 5 }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
41
Graph the relation using solid circles and the inverse using open circles.
{(9,3),(9,3),(7,1),(7,1)}\{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}    </strong> A)   B)   C)   D)

A)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}    </strong> A)   B)   C)   D)
B)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}    </strong> A)   B)   C)   D)
C)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}    </strong> A)   B)   C)   D)
D)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 9,3 ) , ( 9 , - 3 ) , ( - 7 , - 1 ) , ( 7,1 ) \}    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
42
Graph the relation using solid circles and the inverse using open circles.
{(1,16),(7,2),(5,11)}\{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}   </strong> A)   B)   C)   D)

A)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}   </strong> A)   B)   C)   D)
B)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}   </strong> A)   B)   C)   D)
C)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}   </strong> A)   B)   C)   D)
D)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 1,16 ) , ( - 7 , - 2 ) , ( 5 , - 11 ) \}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
43
Graph the relation using solid circles and the inverse using open circles.
{(3,12),(5,11),(7,10),(9,9)}\{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}    </strong> A)   B)   C)   D)

A)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}    </strong> A)   B)   C)   D)
B)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}    </strong> A)   B)   C)   D)
C)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}    </strong> A)   B)   C)   D)
D)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 3 , - 12 ) , ( - 5 , - 11 ) , ( - 7 , - 10 ) , ( - 9 , - 9 ) \}    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
44
Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.
y=7x2+2xy = 7 x ^ { 2 } + 2 x
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x ^ { 2 } + 2 x    </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x ^ { 2 } + 2 x    </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x ^ { 2 } + 2 x    </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x ^ { 2 } + 2 x    </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x ^ { 2 } + 2 x    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
45
Find an equation of the inverse of the relation.
y=3x2+5xy = 3 x ^ { 2 } + 5 x

A) x=5y2+3yx = 5 y ^ { 2 } + 3 y
B) y=5x2+3xy = 5 x ^ { 2 } + 3 x
C) x=3y2+5yx = 3 y ^ { 2 } + 5 y
D) y=3x25xy = - 3 x ^ { 2 } - 5 x
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
46
Determine whether the function is one-to-one.

- f(x)=4x2+xf ( x ) = 4 x ^ { 2 } + x
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
47
Determine whether the function is one-to-one.

- f(x)=6x6f ( x ) = 6 x - 6
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
48
Determine whether the function is one-to-one.

- f(x)=x26f ( x ) = x ^ { 2 } - 6
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
49
Find an equation of the inverse of the relation.
y=2x3+6y = 2 x ^ { 3 } + 6

A) y=2x36y = - 2 x ^ { 3 } - 6
B) x=2y3+6x = 2 y ^ { 3 } + 6
C) x=6y3+2x = 6 y ^ { 3 } + 2
D) y=6x3+2y = 6 x ^ { 3 } + 2
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
50
Determine whether the function is one-to-one.

- f(x)=6x32f ( x ) = 6 x ^ { 3 } - 2
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
51
Determine whether the function is one-to-one.

- f(x)=7x26f ( x ) = 7 x ^ { 2 } - 6
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
52
Determine whether the function is one-to-one.

- f(x)=x3+8f ( x ) = x ^ { 3 } + 8
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
53
Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.
y=2x3+3y = 2 x ^ { 3 } + 3
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 x ^ { 3 } + 3   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 x ^ { 3 } + 3   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 x ^ { 3 } + 3   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 x ^ { 3 } + 3   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 x ^ { 3 } + 3   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
54
Find an equation of the inverse of the relation.
y=4+6xy = 4 + 6 x

A) y=64xy = 6 - 4 x
B) y=6+4xy = 6 + 4 x
C) x=6+4yx = 6 + 4 y
D) x=4+6yx = 4 + 6 y
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
55
Determine whether the function is one-to-one.

- f(x)=36x2f ( x ) = \left| 36 - x ^ { 2 } \right|
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
56
Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.
y=7x8y = 7 x - 8
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x - 8    </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x - 8    </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x - 8    </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x - 8    </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 7 x - 8    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
57
Determine whether the function is one-to-one.

- f(x)=64x2f ( x ) = 64 - x ^ { 2 }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
58
Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.
y=2+3xy = 2 + 3 x
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 + 3 x    </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 + 3 x    </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 + 3 x    </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 + 3 x    </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation of the relation using a solid line, and then graph the inverse of the relation using a dashed line.  y = 2 + 3 x    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
59
Graph the relation using solid circles and the inverse using open circles.
{(6,7),(7,6),(9,4),(9,4)}\{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}   </strong> A)   B)   C)   D)

A)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}   </strong> A)   B)   C)   D)
B)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}   </strong> A)   B)   C)   D)
C)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}   </strong> A)   B)   C)   D)
D)
 <strong>Graph the relation using solid circles and the inverse using open circles.  \{ ( - 6,7 ) , ( - 7,6 ) , ( - 9 , - 4 ) , ( 9,4 ) \}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
60
Find an equation of the inverse of the relation.
y=2x7y = 2 x - 7

A) y=2x+7y = - 2 x + 7
B) y=7x+2y = - 7 x + 2
C) x=2y7x = 2 y - 7
D) x=7y+2x = - 7 y + 2
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
61
Determine whether the function is one-to-one.

- f(x)=(13)xf ( x ) = \left( \frac { 1 } { 3 } \right) ^ { x }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
62
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=6x3+4f ( x ) = 6 x ^ { 3 } + 4

A) f1(x)=x463f ^ { - 1 } ( x ) = \sqrt [ 3 ] { \frac { x - 4 } { 6 } }
B) f1(x)=x+463\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \frac { \mathrm { x } + 4 } { 6 } }
C) Not a one-to-one function
D) f1(x)=x634f ^ { - 1 } ( x ) = \sqrt [ 3 ] { \frac { x } { 6 } } - 4
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
63
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=4x+5f ( x ) = \frac { 4 } { x + 5 }

A) f1(x)=5x+4xf ^ { - 1 } ( x ) = \frac { - 5 x + 4 } { x }
B) f1(x)=5+4xxf ^ { - 1 } ( x ) = \frac { 5 + 4 x } { x }
C) Not a one-to-one function
D) f1(x)=x5+4xf ^ { - 1 } ( x ) = \frac { x } { 5 + 4 x }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
64
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=4x+3f ( x ) = 4 x + 3

A) f1(x)=x+34f ^ { - 1 } ( x ) = \frac { x + 3 } { 4 }
B) f1(x)=x34\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { \mathrm { x } - 3 } { 4 }
C) f1(x)=x43f ^ { - 1 } ( x ) = \frac { x } { 4 } - 3
D) Not a one-to-one function
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
65
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=x38f ( x ) = x ^ { 3 } - 8

A) f1(x)=x3+8f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x } + 8
B) f1(x)=x+83f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x + 8 }
C) Not a one-to-one function
D) f1(x)=x83\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } - 8 }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
66
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=(x+5)2f ( x ) = ( x + 5 ) ^ { 2 }

A) f1(x)=x5f ^ { - 1 } ( x ) = \sqrt { x - 5 }
B) f1(x)=x5f ^ { - 1 } ( x ) = \sqrt { x } - 5
C) Not a one-to-one function
D) f1(x)=1x5f ^ { - 1 } ( x ) = \frac { 1 } { \sqrt { x - 5 } }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
67
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=x+33f ( x ) = \sqrt [ 3 ] { x + 3 }

A) f1(x)=x33f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x - 3 }
B) Not a one-to-one function
C) f1(x)=x33f ^ { - 1 } ( x ) = x ^ { 3 } - 3
D) f1(x)=(x+3)3f ^ { - 1 } ( x ) = ( x + 3 ) ^ { 3 }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
68
Determine whether the given function is one-to-one. If so, find a formula for the inverse.
f(x)=4x72x+6f ( x ) = \frac { 4 x - 7 } { 2 x + 6 }

A) Not a one-to-one function
B) f1(x)=4x72x+6f ^ { - 1 } ( x ) = \frac { 4 x - 7 } { 2 x + 6 }
C) f1(x)=6x72x4f ^ { - 1 } ( x ) = \frac { - 6 x - 7 } { 2 x - 4 }
D) f1(x)=2x46x7f ^ { - 1 } ( x ) = \frac { 2 x - 4 } { - 6 x - 7 }
Unlock Deck
Unlock for access to all 68 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 68 flashcards in this deck.